Chunlin Tian, Xinpeng Qin, Kahou Tam, Li Li, Zijian Wang, Yuanzhe Zhao, Minglei Zhang, and Chengzhong Xu, University of Macau
Deploying large language models (LLMs) on edge devices is crucial for delivering fast responses and ensuring data privacy. However, the limited storage, weight, and power of edge devices make it difficult to deploy LLM-powered applications. These devices must balance latency requirements with energy consumption and model accuracy. In this paper, we first quantify the challenges of deploying LLMs on off-the-shelf edge devices and then we present CLONE, an in-depth algorithm-hardware co-design at both the model- and system-level that intelligently integrates real-time, energy optimization while maintaining robust generality. In order to maximize the synergistic benefits of these algorithms in always-on and intermediate edge computing settings, we specialize in a 28nm scalable hardware accelerator system. We implement and extensively evaluate CLONE on two off-the-shelf edge platforms. Experiments show that CLONE effectively accelerates the inference process up to 11.92×, and saves energy up to 7.36×, while maintaining high-generation.
USENIX ATC '25 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

