
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

CLONE: Customizing LLMs for Efficient
Latency-Aware Inference at the Edge

Chunlin Tian, Xinpeng Qin, Kahou Tam, Li Li, Zijian Wang, Yuanzhe Zhao,
Minglei Zhang, and Chengzhong Xu, University of Macau

https://www.usenix.org/conference/atc25/presentation/tian

CLONE: Customizing LLMs for Efficient Latency-Aware Inference at the Edge

Chunlin Tian, Xinpeng Qin, Kahou Tam, Li Li†, Zijian Wang, Yuanzhe Zhao,
Minglei Zhang, and Chengzhong Xu

University of Macau

Abstract
Deploying large language models (LLMs) on edge devices is
crucial for delivering fast responses and ensuring data privacy.
However, the limited storage, weight, and power of edge de-
vices make it difficult to deploy LLM-powered applications.
These devices must balance latency requirements with energy
consumption and model accuracy. In this paper, we first quan-
tify the challenges of deploying LLMs on off-the-shelf edge
devices and then we present CLONE, an in-depth algorithm-
hardware co-design at both the model- and system-level that
intelligently integrates real-time, energy optimization while
maintaining robust generality. In order to maximize the syner-
gistic benefits of these algorithms in always-on and intermedi-
ate edge computing settings, we specialize in a 28nm scalable
hardware accelerator system. We implement and extensively
evaluate CLONE on two off-the-shelf edge platforms. Experi-
ments show that CLONE effectively accelerates the inference
process up to 11.92×, and saves energy up to 7.36×, while
maintaining high-generation.

1 Introduction

Large language models (LLMs) [19, 80, 96, 109, 132] are
reshaping artificial intelligence for their remarkable perfor-
mance to comprehend human language and handle language-
related tasks [120, 129, 136]. Though born from the cloud,
deploying LLMs on edge devices such as personal PC, smart-
phones, robots, and even IoT devices is becoming an impor-
tant trend [81,119]. First, on-device LLM can be widely used
to support different kinds of applications, including chatbots
[6, 114], robotics [61, 162], and autonomous vehicles [144].
Moreover, directly accessing the LLM on the edge not only
preserves data privacy but also can provide instant service
without relying on a stable internet connection. Despite the po-
tential benefits, deploying LLMs on commercial-off-the-shelf
(COTS) edge devices faces stringent space, weight, and power
(SWaP) constraints [10,138] due to the billion-parameter size
coupled with intensive computing costs. For instance, the

widely used Llama-7B model [132] requires approximately
14GB of memory for inference, even when utilizing 16-bit pre-
cision (FP16) format. However, the available RAM on typical
edge devices only ranges from 4GB to 12GB [125]. Further-
more, inferring a single token with Llama-7B requires approx-
imately 14 TFLOPs for an 11-token prompt [25], which is
roughly 360× the 39 GFLOPs needed by VGG-19 to process
a single image with an input resolution of 224× 224 [36].
Moreover, LLMs’ inference process demands substantial en-
ergy consumption. For instance, GPT-3 [31] consumes 300
J/response [20] on an NVIDIA A100 GPU, which is 400× the
0.75 J/response required by ResNet-50 [72]. Thus, intensive
memory footprint, high computational demands, and signifi-
cant energy costs pose severe bottlenecks to deploying LLMs
at the edge.

Limitation of Prior Arts. To break the SwaP constraints,
several optimization techniques have been proposed. Tech-
niques such as model architecture search [54, 60, 88], quan-
tization [26, 55, 57, 91, 143], and pruning [27, 30, 32, 84]
help to reduce the size of models while preserving their
performance. However, these methods typically focus on
optimizing the model itself and may not fully address the
system-level trade-offs related to storage and weight. Addi-
tionally, recent improvements in LLM compilers and soft-
ware stacks [56, 99, 113, 128] have facilitated the adoption
of co-processors to sustain high performance by leverag-
ing co-processors or near-sensor processing alongside GPUs
[4, 44, 57, 74, 74, 86, 107, 111, 118, 122, 148, 159]. However,
they incur additional computational/communication overhead
that significantly reduces the edge device lifecycle and in-
terferes with the smooth execution of other applications. To
address power constraints, Dynamic Voltage and Frequency
Scaling (DVFS) [10, 47, 48, 65, 112] has been widely adopted
to adjust the power usage of processors by dynamically chang-
ing their voltage and frequency. However, most existing ap-
proaches are designed for discriminative CNN or RNN and
treat the entire network as a black box during tuning. Genera-
tive LLMs have not undergone the necessary scrutiny due to
the auto-regressive inference schemes and the heterogeneity

USENIX Association 2025 USENIX Annual Technical Conference 563

of stochastic requests and generated outputs. Thus, an edge-
tailored LLM system that intelligently coordinates model- and
system-level optimizations, balancing energy efficiency, la-
tency, and model performance is urgently required.
Challenge. Designing such a customization system is not
straightforward and faces the following critical challenges.
First, the “billion-parameter” poses a significant barrier to
deployment on resource-constrained edge devices due to the
high memory footprint and computation cost. How to cus-
tomize the LLM according to the hardware profile of a spe-
cific edge device to effectively meet the memory constraint
and reduce the computing latency while ensuring the gen-
erating capability is the first critical challenge. In addition,
when deploying customized LLMs on edge devices, LLM-
powered applications feature stochastic and dynamic I/O, un-
like traditional models with stable inputs. Moreover, tailored
layers introduce unique approximation characteristics, while
interference from co-running applications during mobile exe-
cution can cause runtime variance. Therefore, designing an
efficient system-level controller to meet latency targets while
optimizing energy consumption is another challenge. Fur-
thermore, model-level (accuracy/latency) and system-level
(energy/latency) optimizations in isolation can be naive, often
resulting in unnecessary energy consumption or reduced accu-
racy. Effectively coordinating these optimizations to balance
accuracy, latency, and energy efficiency is the third challenge.

In this work, we present CLONE, a comprehensive sys-
tem that intelligently customizes LLM for efficient latency-
aware inference on commercial-off-the-shelf edge devices. It
adopts a hierarchical structure to jointly handle model- and
system-level optimization in a unified manner to consider
real-timeliness, model accuracy, and energy efficiency jointly.
Specifically, CLONE consists of two main phases: offline
device-specific model tailoring and online latency-aware sys-
tem optimization. Within the offline tailoring process, for
a specific device, CLONE reformulates the tailoring of tar-
get LLMs for a specific device as a generative task within a
continuous representation space. Using an encoder-evaluator-
decoder architecture, it generates optimal pruning configura-
tions through gradient-based optimization, effectively bridg-
ing the gap between resource constraints and model perfor-
mance. To support diverse edge applications [6, 138, 146],
CLONE performs parameter-efficient fine-tuning on the cus-
tomized LLM using multiple plug-and-play Low-Rank Ap-
proximation (LoRA) [52] adapters, ensuring adaptability and
optimized performance. Once the customized model is ported
to edge devices, during online inference, CLONE employs
a Mixture-of-Experts (MoE) [59, 131] router to dynamically
integrate optimal LoRA adapters, enabling more precise re-
sponses to stochastic, complex, or mixed-task end-user re-
quests. At the system level, CLONE applies Dynamic Voltage
and Frequency Scaling (DVFS) to the per-token, autoregres-
sive inference process of LLMs, optimizing the supply voltage
(VDD) and operating frequency (Freq) to minimize energy con-

sumption while meeting real-time constraints. Recognizing
the LLM layer characteristics, especially post-pruned uneven
parameter, CLONE enhances the granularity of DVFS ad-
justments at layer boundaries. This provides greater flexibil-
ity and adaptability for power-sensitive systems compared
to traditional workload-level (whole model) black-box opti-
mizations. While existing vanilla DVFS on edge devices are
typically discrete, CLONE introduces a learning-based DVFS
approach to reduce budget gaps that maximize system effi-
ciency and model performance. To fully harness the benefits
of these technologies, we have developed a specialized 28nm
scalable hardware accelerator system. It contains a LoRA
Processing Unit (LPU) for hot-swapping adapters, enabling
dynamic model performance adjustments through dedicated
data paths, and a Special Function Unit (SFU) designed for
fine-grained and continuous DVFS adjustments equipped with
a fast-switching low-dropout (LDO) voltage regulator and an
all-digital phase-locked loop (ADPLL). The LPU supports the
runtime MoE router algorithm to handle stochastic requests,
eliminating bottlenecks of general-purpose processors and
boosting computational efficiency. The SFU implements the
learning-based DVFS algorithm to effectively manage run-
time variance and swiftly achieve the desired VDD and Freq.
Specifically, we make the following key contributions:

• We propose CLONE, an efficient software-hardware
co-design system for customized LLM inference on
resource-constrained edge devices, where the model- and
system-level coordinators cooperate to intelligently bal-
ance the inference speed and energy efficiency while
maintaining robust generative performance.

• We design hierarchical offline/online optimization
phases that effectively coordinate customization by ad-
dressing static model weights, hardware characteristics,
stochastic I/O patterns, and runtime variance. Addition-
ally, a 28nm accelerator with specialized datapaths sup-
ports these algorithms for optimized performance.

• To evaluate the effectiveness of CLONE, we conduct ex-
tensive experiments based on commercial-off-the-shelf
edge devices, representative LLMs and benchmarks.

2 Background and Related Work

2.1 Large Language Models
LLM Architecture. In contrast to traditional deep neu-
ral networks (DNNs) and convolutional neural networks
(CNNs) [38, 76], which integrate diverse types of layers (e.g.,
convolutional (CONV), fully connected (FC), recurrent (RC),
pooling, etc.) designed for specific tasks, large language mod-
els (LLMs) predominantly consist of a uniform stack of trans-
former decoder layers. For instance, Llama-7B [132] adopts

564 2025 USENIX Annual Technical Conference USENIX Association

Usenix ATC
 is no more?

LLM
Iteration 1

LLM
Iteration 2

LLM
Iteration 3

LLM
Iteration 4

Token Generation/DecodingPrompt/Prefill

KV
Cache

KV
Cache

KV
Cache

Legacy still lives EOS

Figure 1: Overview of LLMs autoregressive inference.

a homogeneous architecture composed of 32 identical Lla-
maDecoderLayers. Each decoder layer encompasses two core
components: LlamaAttention and LlamaMLP. Despite the
structural uniformity across decoder layers, their contribu-
tions to model efficiency and effectiveness vary significantly
[26, 137]. Consequently, optimizing the inference execution
of LLMs necessitates a detailed analysis of the individual
impact of each layer (§3.1).

LLMs Inference. LLMs process a structured sequence in-
volving multiple forward passes through the model to se-
quentially generate each output token. Figure 1 shows the
inference process with a simple example. Typically, this pro-
cess mainly contains two stages [3,75,118]. 1) Pre-fill takes a
prompt sequence and generates the key-value (KV) cache for
each Transformer layer of LLM. Upon receiving the prompt

“Usenix ATC is no more?”, the tokenizer embeds input as to-
kens, denoted as Xin ∈Rn×d , where d is the hidden size and n
is the length of input token. Then, the LLM handles all input
tokens in parallel during a single forward iteration to gener-
ate a KV cache. The output of attention is sent to MLP to
generate the first output token “Legacy”. Large-scale matrix
multiplications are required to generate the KV cache, which
makes the pre-fill computing intensive. 2) Decoding utilizes
and updates the KV cache to generate tokens step-by-step.
Following the generation of the first token, the LLM leverages
the KV caches prepared earlier and adds new information to
them. The creation of each new token is influenced by the to-
kens generated before it. During each token generation, for the
input Xdec ∈ R1×d , attention layers load the previously stored
KV cache, and new KV pairs are computed and concatenated
to the existing cache. The output of the last decoder layer
is sent to the final prediction layer to predict the next token
sequentially. It executes iteratively until an End of Sequence
(EOS) token is encountered or a predefined termination crite-
rion is met. Unlike traditional models with fixed input formats
and structured workflows [38,76], LLM inputs and outputs are
highly non-deterministic. This stems from the diverse, open-
ended nature of user prompts, which vary widely in structure,
intent, and context [15, 87, 89]. Additionally, autoregressive
token generation is inherently probabilistic, driven by sam-
pling methods [50, 111, 115, 132] and variability in training
datasets [11, 13, 134], making outputs context-sensitive.

2.2 Bottlenecks of Deploying Edge LLMs

Table 1 lists specifications for server-level and edge-level
processors commonly used for ML workloads, highlighting
resource collapse. Despite the potential benefits, including
privacy preservation and instant responses without depending
on a stable internet connection [42, 105], deploying LLMs on
the edge faces the following critical bottlenecks.
1) High Memory Footprint. The main contributors of
“billion-parameter” LLMs are model weights (memory is
occupied by the model parameters) and KV cache (mem-
ory is occupied by the caching of self-attention tensors
to avoid redundant computation). For example, Llama-7B
in 16-bit precision requires approximately 14GB memory
(7B× sizeof(FP16)). Its architecture with 32 layers, 32 heads
per layer, and a head dimension of 128 incurs a memory cost
of 0.5MB per token, accounting for K and V matrices. Con-
sequently, processing 4096 tokens demands 2GB, limiting
the size of models that can be deployed on edge devices with
4–12GB memory [125] and often causing Out-of-Memory
(OOM) errors.

Table 1: Popular ML hardware specifications.
GPU Types Peak Perf. Memory Bandwidth Peak Power

Server-level
NVIDIA A100 312 TFLOPS 80GB 1935 GB/s 300W
NVIDIA A40 149.7 TFLOPS 48 GB 696 GB/s 300W

Edge-level
Jetson Orin NX 100 TOPS 16GB 102.4GB/s 25W

Jetson Orin Nano 40 TOPS 8GB 68 GB/s 15W

2) High Inference Latency. Inference latency is a crucial
metric for mobile optimization because if the latency of a
service exceeds the human-acceptable thresholds (e.g., 33.3
ms for a 30 FPS video frame rate [28, 161] or 50 ms for
interactive applications [29, 92]), end-users will abandon the
service [161]. To evaluate inference QoE for LLMs, there are
three main metrics: 1) Time To First Token (TTFT) latency
from input to the output of the first token (prefill). Low TTFT
means fast response, which is essential for user experience
in real-time interactions. 2) Time Per Output Token (TPOT)
latency to track the auto-regressive process of each token
generated serially. TPOT refers to how each user perceives
the “speed” of the model. 3) End-to-end (E2E) latency, the
overall time it takes for the model to generate the full response
for a user, denoted as: E2E = (T T FT)+(T POT)∗N, where
N is the generated token number. Figure 2 (a) illustrates the
latency across different processors running the same LLMs,
representative Gemma-2B/7B [96], on the Wikitext2 [95]
dataset. While Gemma-7B is OOM for edge device. For the
same user request on Gemma-2B, the Orin Nano experiences
15.18× more latency than the NVIDIA A100, significantly
impacting the Quality of end-user Experience (QoE) [53, 68,
69, 90]. Additionally, LLMs operate with an auto-regressive
and probabilistic inference process [121]. Figure 2 (b) shows

USENIX Association 2025 USENIX Annual Technical Conference 565

(a) Server/edge latency. (b) Latency breakdown.

Figure 2: LLMs inference latency analysis. (a) Latency effi-
ciency of two common LLMs (Gemma-2B/7B) inference use
cases over server-level and edge-level processors. (b) Infer-
ence latency with different prompt and output tokens.

as prompt sizes increase (128 → 512 → 1024) inference
Gemma-2B on Orin NX. We can observe that the number
of pre-filled tokens increases significantly (255→1935ms)
due to parallel processing capabilities. Conversely, the TPOT
remains relatively stable (180∼200ms) due to serial decoding
generation. However, the E2E is more than 100s, which fails
to serve the end-user demands, indicating opportunities for
optimizing practical inference performance.
3) High Energy Consumption. In server-level GPU deploy-
ments, it is typically assumed that these units are plugged into
wall power due to the substantial energy demands of LLMs
inference [4, 64, 74, 107, 111, 141]. However, this assump-
tion does not hold for edge-level devices such as robots and
autonomous vehicles, where energy availability is severely
restricted [66]. In contrast to conventional on-device tasks,
LLM inference consumes an order of magnitude more energy.
For example, a Google search driven by a large AI model
expends 8.9 watt-hours (Wh) of energy, approximately 30
times the 0.3 Wh required by a standard Google search [124].
Importantly, “Scaling Laws” [21, 63] suggest that as model
parameters scale up, there is a corresponding increase in both
performance and energy consumption. Transitioning from
Gemma-2B to 7B, for instance, boosts accuracy from 42.3%
to 64.3% on the MMLU benchmark [46]—a comprehensive
evaluation platform—at the cost of tripling energy usage. Con-
sequently, there is a pressing need to optimize the energy
efficiency of LLM inference at edge to meet QoE.

3 Motivation

In this section, we present key observations from model-
intrinsic dimensions (layer characteristics (§3.1)), stochastic
I/O (§3.2)) and system factors (hardware and runtime vari-
ance (§3.3)) for practical LLM inference on edge devices. The
design space is analyzed across three critical axes: generation
quality, latency, and energy efficiency.

3.1 Heterogeneity of Model Characteristics

In order to investigate the contribution of different decoder
layers, we conduct an in-depth analysis of the inherent sen-
sitivity of the stacked transformer architecture across three
critical dimensions: generative ability, energy efficiency, and
latency. For general-purpose, we employ zero-shot perplexity
(PPL) [14, 96, 132], a common metric, to evaluate generative
abilities, lower PPL indicates higher model adeptness in pre-
dicting sequence tokens. Figure 3 (a) presents the PPL on the
WikiText2 [95] dataset after removing specific decoder lay-
ers in the Llama-7B, Llama2-7B [133], and Vicuna-7B [160]
models. The results show that the front and back layers have
higher PPL values than the middle layers. Because the front
layers play a critical role in feature extraction, while the back
layers significantly influence output generation, both con-
tribute markedly to model performance. while LLMs maintain
a homogeneous layer structure, the generative impact varies
by layer due to input and output data stream heterogeneity.
To evaluate the system effectiveness, we infer LLMs on Wiki-
Text2, monitoring energy consumption and duration using
CodeCarbon [24]. Figure 3 (b, c) shows that removing differ-
ent decoder layers yields non-uniform changes in end-to-end
energy and latency. This suggests that, beyond nominal pa-
rameter counts, each layer contributes heterogeneously to
practical resource usage. We attribute this to (i) varying
sequence-length–dependent workloads, (ii) hardware-level
cache and parallel-sync effects, and (iii) non-linear inter-layer
interactions typical of deep networks.

▶ Motivation 1: LLM layers contribute unevenly to effec-
tiveness and efficiency, underscoring opportunities for model
customization by pruning non-essential components and sys-
tem optimization through fine-grained layer-wise tuning.

3.2 Heterogeneity of Stochastic Input/Output

As discussed at §2.1, inference serving systems exhibit signif-
icant non-deterministic due to the diversity of input prompts,
and LLM auto-regressive output exhibit distinct execution
behaviors. Case study. As shown in Figure 5 (a), we first il-
lustrate the distribution of prompt input and generated output
tokens on an Azure LLM inference services trace [111]. These
long-tail patterns and the unpredictability of token generation
lengths highlight the need for dynamic resource allocation to
manage varying computational demands. Performance im-
pact. To analyze the inherent patterns of mixed-task end-user
requests, we visualized the task embedding similarities of the
Flanv2 dataset [135] using a heatmap, as shown in Figure
4. Each axis enumerates the individual subtasks within the
dataset, and each matrix cell quantifies the pairwise corre-
lation between subtasks. The results reveal significant data
heterogeneity across tasks. System impact. Otherwise, re-
quests of different input and output lengths possess different
compute and energy characteristics. As shown in Figure 5

566 2025 USENIX Annual Technical Conference USENIX Association

(a) Generative-ability (b) Energy (c) Latency

Figure 3: Layer sensitivity analysis: removing specific layers one-by-one to mea-
sure each layer’s impact on Llama-7B (•), Llama2-7B (⋆), and Vicuna-7B (▲).

Figure 4: Task embedding simi-
larity heatmap.

(a) Practical inference traces. (b) Memory consumption. (c) Latency analysis. (d) Energy consumption.

Figure 5: Comprehensive analysis of LLM inference system using Gemma-2B on NVIDIA Orin NX. (a) Analysis of practical
LLM inference traces., while (b-d) highlight memory, latency, and energy consumption w.r.t. input and generated length.

(b-d), we measure Gemma-2B [96] on Nvidia Orin NX with
different input and generated length to evaluate the memory
footprint, latency and energy consumption. Memory consump-
tion is influenced by both static model parameters and the
dynamic KV cache, which grows as the number of tokens to
be processed increases. E2E latency is primarily impacted
during the decoding phase, as it is step-by-step, whereas the
prefill phase computes all prompts in parallel. Consequently,
an increase in generated tokens significantly impacts over-
all latency. Energy consumption is higher during the prefill
phase due to large-scale matrix operations, while the decod-
ing phase, processing one token at a time, has lower power
demands. Inefficient system performance degrades QoE, mak-
ing it critical to meet diverse LLM request demands without
compromising output quality.

▶ Motivation 2: Stochastic I/O with mixed-task requests
underscores the need for precise inference services to improve
model performance. Similarly, significant resource slack sug-
gests potential for fine-grained, LLM-specific system opti-
mizations to improve utilization efficiency.

3.3 Heterogeneity of Runtime Platform
Practical system heterogeneity encompasses performance and
energy variations arising from platform diversity (static het-
erogeneity, Table 1), diverse LLM application demands, and

interference from co-running applications (dynamic hetero-
geneity). Table 2 lists LLM requests from various applications
or tasks, each with distinct QoE demands [83, 130, 139, 140,
142, 147, 152, 161]. To investigate the impact of edge de-
vice hardware and concurrent running apps, we deployed the
Gemma-2B model on two NVIDIA platforms—Jetson Orin
NX and Orin Nano—and processed a workload comprising
128 prompt tokens and 242 generated tokens (the first scenario
in Figure 2(b)). We profiled the resulting inference behavior,
and Figure 6 reports the TTFT, TPOT, and E2E inference
latency for both devices, alongside the corresponding per-
formance degradation observed in a foreground web-search
application [78, 161]. We find that 1) Due to the varying pro-
cessing capabilities of different edge devices, the response
time to the same end-user request can differ significantly.
For instance, when both are in an idle state, the Orin NX,
with its superior computational power, provides more timely
feedback (TTFT: 255; TPOT: 198 ms) compared to the Orin
Nano (TTFT: 268ms; TPOT: 231ms). 2) Resource contention
caused by user interaction with the concurrent running app
prominently slows down the model inference progress. For
instance, the E2E inference latency on Orin NX is 42.6s when
there is no user interaction in the foreground. However, it in-
creases to 61.4s with a website searching application running
in the foreground. This highlights the impact of latency on
user experience, as service abandonment occurs when latency

USENIX Association 2025 USENIX Annual Technical Conference 567

Orin NX

250

500

Time/ms

Orin Nano Orin NX
(+ Web APP)

Orin Nano
(+ Web APP)

TPOTTTFT
E2E Time/s

25

50

Figure 6: Impact of different hardware de-
vices (Nano/NX) and concurrently running
apps (web search) on edge LLMs inference.

Figure 7: Impact of different token lengths and GPU frequencies on a) end-to-
end (E2E) latency, b) time per output token (TPOT), and c) energy efficiency.

Table 2: SLOs of various LLM applications. Time To First
Token (TTFT): refers to the latency from input to the first
token output (prefill), while Time Per Output Token (TPOT)
is the latency for each subsequent token (decode).

LLM Application Service-Level Objective
Chatbot [5, 108] Readable TTFT/TPOT

Search Engine [97] Low TTFT, Medium TPOT
Event Logger [1, 58, 110] Tolerable TTFT, Medium TPOT

Smart Reply [40, 98] Low TTFT, Low TPOT
Code Generator [37] Medium TTFT, High TPOT

Virtual Assistant [7, 39] Low TTFT, Medium TPOT

exceeds the human-acceptable threshold [83, 161]. Figure 7
demonstrates that higher GPU frequencies reduce E2E la-
tency and TPOT by accelerating token processing (a, b) while
supporting energy-efficient control via frequency scaling (c).
Dynamically adjusting processor frequencies based on work-
load size enhances efficiency with minimal performance im-
pact, where the optimal frequency is determined by the LLM
architecture and output length. Although DVFS [47, 48, 65]
is commonly used to scale voltage and frequency for low-
intensity workloads, existing schemes often rely on coarse-
grained, black-box, workload-level adjustments with heuristic
methods [10, 47, 48, 65, 112].

▶ Motivation 3: Hardware type and LLM application
SLOs significantly impact end-user QoE, while resource pre-
emption from foreground applications exacerbates runtime
system heterogeneity. Accurate runtime estimation of appli-
cation demands and device capabilities is crucial for guiding
DVFS and optimizing LLM inference system efficiency.

4 CLONE: Design

4.1 System Overview

Figure 8 presents the architecture of CLONE which can
be mainly divided into the following two phases: 1) offline
device-specific tailor and 2) online latency-aware optimiza-
tion. The overall workflow of CLONE can be represented as

Vanilla LLMs Deployable LLMs Edge Device

Tailoring Porting

End-User

Mixed-task
Requests

Offline Device-specific Tailoring Online Latency-aware Inference

1 2 3

4

Figure 8: The overview of CLONE, including offline device-
specific tailoring and online latency-aware inference.

the following main steps. ➊ CLONE leverages edge hardware
profiles and LLM architecture using an encoder-evaluator-
decoder framework to reframe LLM compression as a data-
driven generative task. This approach addresses memory con-
straints, meets latency and energy requirements, and preserves
generation performance. Plug-and-play LoRA adapters fur-
ther fine-tune the tailored LLM for diverse edge applications.
➋ The deployable model is then ported onto the edge de-
vice. ➌ During runtime inference, to handle stochastic and
mixed-task user requests, CLONE integrates a MoE router to
dynamically select optimal LoRA adapters, enhancing model
performance. ➍ At the system level, CLONE incorporates
a learning-based DVFS controller to adjust device voltage
(VDD) and frequency (Freq) dynamically at layer boundaries
during per-token autoregressive inference. This minimizes
energy consumption while ensuring target latency is met. Fur-
thermore, in order to fully leverage the synergistic advantages
of these algorithms, we develop a specialized 28nm scalable
hardware accelerator system designed to further boost energy
efficiency through customized hardware integration.

4.2 Offline Device-specific Tailoring

According to Motivation 1, LLMs demonstrate considerable
parameter redundancy, especially within their intermediate
layers. This variance in contribution across layers not only
affects performance but also system efficiency, facilitating
tailored adaptations for edge deployment. To meet heteroge-
neous hardware constraints, CLONE redefines LLM pruning
as a generative task, surpassing traditional manually designed
discrete heuristic optimizations to identify and remove non-
essential structures in a system-efficient manner. Specifically,

568 2025 USENIX Annual Technical Conference USENIX Association

LLMs
Archtecture

Edge Hardware
Profile Info.

“Ratio-Score”
Pair Data
Collection

Continuous
Space for
Tailoring

Gradient-based
Tailoring

Optimization

Optimal
Tailoring

Generation

Encoder
Hidden
State

Decoder

Evaluator
Decoder

Optimal
Pruning Config.

[�. ��, �. ퟑ�, . . �. ퟒ�]

Top-K

Records
as Starting

Points

Encoder

Evaluator Candidate Tailoring
Embeddings

Optimal Pruning Ratio
(overall and layer-wise)

Exploration

Exploitation

Structure
Discovery

Structure
Estimation

“Ratio
Score”

Figure 9: Hardware-aware tailor workflow. Four key components: “ratio-score” data collection, continuous space for tailoring,
gradient-based tailoring optimization, and optimal tailoring generation.

it employs a data-driven tailor that identifies the optimal prun-
ing configuration through gradient-based optimization within
a continuous representation space. As illustrated in Figure 9,
the generative tailor comprises four key modules:

1) “Ratio-score” Data Collection. Considering the memory
constraints of the edge device and the dimensions of the model
to be deployed, we initially establish the overall reduction ra-
tio for the LLMs. For fine-grained optimization, we develop
an exploration-exploitation strategy to determine layer-wise
level pruning ratios ri. This approach utilizes heuristic-based
pruning methods [8,30,94] to produce high-quality ratios and
incorporates random pruning ratios as part of the exploration
process. In contrast to prior works [45, 55, 102] primarily
focus on reducing the model size and computational over-
head, CLONE integrates broader criteria including genera-
tion ability, inference latency, and energy cost. We define a
holistic metric function f to characterize overall performance
for a given ri, aiming for optimization suitable for resource-
constrained edge devices:

si = f(ri) =
1

ppli
×
(

E
ei

)1(E<ei)×α

×
(

T
ti

)1(T<ti)×β

, (1)

where ppl is the zero-shot perplexity [14], quantifies the gen-
erative capabilities, with lower values indicating more precise
model predictions. T and E denote the latency and energy
budgets specific to edge, respectively. ti and ei represent the
latency and energy consumption for a given ratio ri. 1(x) is an
indicator that returns 1 if condition x holds, and 0 otherwise.
Thus, configurations that exceed the thresholds T and E are
penalized by developer-specified factors α and β, both set to
2 in our implementation. Finally, we obtain comprehensive
ratio-score pairs, denoted as P = (ri,si).

2) Continuous Space for Tailoring. Traditional approaches
[8, 30, 94] often employ discrete pruning spaces, resulting
in heuristic and incomprehensive pruning ratios. In order to
characterize the continuous tailoring optimization space of
edge devices, we implement an encoder-evaluator-decoder
framework. This architecture includes a single-layer LSTM

network [49] functioning as both encoder and decoder, along-
side a feed-forward neural network serving as the evaluator.
This setup effectively embeds ratio-score pairs (ri,si) into a
continuous representation space Θ.

3) Gradient-based Tailoring Optimization. With the well-
trained representation space Θ, we utilize a gradient-based
optimization method to identify the optimal pruning config-
uration. We select top-K collected pairs serving as starting
points to ensure effective initialization. Denoting such start-
ing points as Er, we initiate the optimization process along
the gradient direction driven by the evaluator π:

E∗
r = Er +η

∂π(Er)

∂Er
, (2)

where E∗
r denotes the optimal pruning configuration repre-

sentation, and η is step size used in the gradient update.
4) Optimal Tailoring Generation. Based on the optimal

pruning representation E∗
r , the optimal pruning configura-

tion r∗ is identified by the trained decoder ξ, denoted as
r∗ = ξ(E∗

r). To generate r∗ iteratively without pre-specifying
the ratios, we employ a beam search strategy [33], allowing
for a systematic exploration of potential configurations to
achieve the best possible performance. The generation pro-
cess continues until the stop token ⟨EOS⟩ is encountered,
enhancing the adaptiveness of the model configuration. Fi-
nally, remove non-essential groups through structural pruning,
guided by the generated optimal pruning ratio.

According to Motivation 2, the patterns of user application
usage and the inter-dependencies among tasks offer oppor-
tunities for optimization in downstream tasks, which can re-
duce the costs of fine-tuning and improve model performance.
Therefore, plug-and-play LoRA adapters are utilized to en-
hance the tailored LLM generalization capabilities across
diverse downstream applications. For n downstream appli-
cations, a set of LoRAs, Φ = {φ1,φ2, . . . ,φn}, is initialized,
where each LoRA φi = BA is trained per task. The forward
computation is:y′ = y+∆y = W0x+BAx, where y′ ∈ Rd is
the output, x ∈ Rk is the input, B ∈ Rd×r, A ∈ Rr×k with

USENIX Association 2025 USENIX Annual Technical Conference 569

 Event
Router

MoE
Router

Math

Code

0.46

0.22

0.12

Resource
Usage

Learning-based
DVFS

Prefill

Expert
Adapte

TPOT Constraint

r

Decode

① Observe
State S

② Select
Action A

③ Execute
Inference

DQN

ADPLL

LDO

VDDCLK

Available Processors
CPU GPU DSP

Medical
Real-time

Mixed-task
Requests

End User

Create a Java program to
generate a F ibonacci
sequence up to a specified
number, useful for modeling
population growth in
epidemiology.

Edge Device

Stochastic
Runtime
Variance Co-running APPs

DVFS
Controller

Decode EOS ...

(a) Software (b) Hardware

Figure 10: Online latency-aware inference workflow. Left (Software): CLONE employs a request-wise MoE router for dynamic
LoRA configuration to manage layer-wise DVFS, optimizing energy efficiency within the specified latency targets. Right
(Hardware): The hardware accelerator system features a request-wise LoRA Processing Unit (LPU) designed for LoRA
adaptation, and a Special Function Unit (SFU) tailored for pre-token DVFS at token layer boundaries.

r ≪ min(d,k), and W0 are frozen LLM parameters. B is ini-
tialized to zero and A with Gaussian values.

4.3 Online Latency-aware Inference

Motivation 2 & 3 reveals that current approaches to real-time
inference are constrained to workload-level resource adjust-
ments, resulting in energy wastage. It identifies a crucial po-
tential for system optimization via fine-grained management
of performance and energy. While offline device-specific tai-
loring effectively reduces memory constraints and enhances
downstream performance, the achieved latency can fluctuate
significantly due to diverse user requests and runtime vari-
ability, potentially violating real-time latency constraints and
increasing energy consumption. As shown in Figure 10, at
the model level, a MoE-based router dynamically selects the
optimal LoRA adapter based on stochastic user prompts, im-
proving the accuracy of LLM-powered application responses.
At the system level, CLONE integrates a token predictor to
estimate the output token count, guiding a learning-based
DVFS controller to adjust frequency and voltage for each
token at layer boundaries. This minimizes per-request en-
ergy consumption while adhering to real-time latency targets.
Additionally, CLONE embeds these efficient algorithmic en-
hancements into a 28nm on-chip accelerator architecture.
Request-wise MoE-based Router. In practice, end-user re-
quests cover a diverse range of prompts, each associated with
different tasks. Consequently, as shown in Figure 10 (a), an
MoE (Mixture-of-Experts) [59, 117] router has been devel-
oped to dynamically and effectively merge LoRA modules
for each mixed-task prompt. This development significantly

extends the plug-and-play capabilities of CLONE. A set of
experts E = (E1,E2, . . . ,EN), where each expert Ei represents
a tuned LoRA module. For input xi, the output yi:

yi = Woxi +
N

∑
j=1

ωi j ·E j (xi) , (3)

where ωi j modulates the contribution weights of each ex-
pert. Unlike traditional methods [131, 150] that incur extra
computation and storage from trainable gate functions, we
propose a parameter-free soft MoE method leveraging dy-
namic prompts. Using a sentence-embedding model, Γ (here
adopting BGE [17]), the input embedding is formulated as
Γ(x). For each LoRA module φ, the embedding is obtained
from randomly selected domain-specific samples k, expressed
as Γ(φ) = 1

k ∑
k
i=1 Γ(ki·φ). To measure the similarity between

the LoRA module φ and the prompt x, we leverage the cosine
similarity, denoted as σ, as follows:

σ(x,φ) = cos(Γ(x),Γ(φ)), (4)

Followed by a softmax function which takes an intermediate
token representation as input and combines the output of each
expert based on the gating weight Ω = (ω1, . . . ,ωN):

Ω = softmax(sx), (5)

Learning-based DVFS Controller. To further improve sys-
tem effectiveness for LLM inference at the edge, a learning-
based DVFS is developed to reduce per-generated token en-
ergy consumption while satisfying the real-time latency target
at the layer-wise level. Among various reinforcement learning

570 2025 USENIX Annual Technical Conference USENIX Association

(RL) methods [18, 62, 79, 85, 101], CLONE employs a simple
two-layer MLP to efficiently learn policies within an episodic
Markov decision process, ensuring minimal latency overhead.
RL involves three core components:

State: Edge inference efficiency is heavily influenced by
the processor intensity of co-running applications, denoted
as Spro. For runtime SLO constraints, inference efficiency is
tightly coupled with frontend prefill time TTFT (TPRE) and
per-token decoding latency TPOT target (TDEC).

Action: In RL, actions represent the adjustable control pa-
rameters of the system. For LLM inference at the edge, we
define these actions as the selectable execution settings, specif-
ically the energy-optimal supply voltage (VDD) and the opti-
mal running frequency (Freq) for each layer. Provided that the
QoS constraints are met, it is feasible to lower the processor
frequency, thereby conserving energy.

Reward: In RL, a reward models the optimization objective
of the system. We encode energy optimization within the
execution target as the reward, Renergy, which is calculated
using the power model [67, 70]:

Renergy = ∑
f
(P f

DEC ×TDEC +P f
PRE ×TPRE) (6)

where P f
PRE and P f

DEC , representing the power consumption
of the CPU/GPU at each frequency during the prefill and
decoding states respectively, are determined through power
measurements. These values are subsequently stored in a
lookup table (LUT) within CLONE for efficient retrieval.

4.4 Hardware Accelerator System.

As illustrated in Figure 10 (b), acknowledging the limitations
inherent in purely software-based approaches, CLONE intro-
duces a scalable 28nm hardware accelerator specifically de-
signed for edge-based LLM inference, effectively translating
software optimizations into concrete performance improve-
ments. This system integrates a LoRA Processing Unit (LPU)
for dynamic adapter hot-swapping, enabling adaptive model
performance optimization via dedicated data paths. Comple-
menting this, a Special Function Unit (SFU) is equipped to
perform continuous, fine-grained DVFS adjustments. The
LPU executes a request-wise MoE router algorithm to ef-
ficiently manage stochastic requests, mitigating the limita-
tions of general-purpose processors and enhancing computa-
tional throughput. Unlike conventional LoRA weight stored
in on-chip SRAM, which either require frequent reloads from
DRAM during wake-up cycles or keep SRAM active, wast-
ing leakage power [73, 77, 90], we utilize an embedded non-
volatile memory (eNVM) buffer to retain LoRA modules,
eliminating reload overhead upon power-on. Simultaneously,
the SFU employs a learning-based DVFS mechanism to adapt
to runtime variability, ensuring rapid convergence to the de-
sired voltage (VDD) and frequency (Freq) settings. The SFU

employs a lightweight predictor and DVFS model imple-
mented as lookup tables (LUTs) for efficient hardware opera-
tion and action determination. The generated voltage (VDD)
and frequency (Freq) are realized using a fast-switching low-
dropout (LDO) voltage regulator [9, 16] and an all-digital
phase-locked loop (ADPLL) [2, 51], ensuring rapid runtime
adjustments. Communication between the LPU and SFU is
facilitated via a custom-built bi-directional streaming channel.
An AXI splitter arbitrates the control flow of instructions and
data bound for the LPU and SFU AXI-slave partitions.

5 EVALUATION

5.1 Experimental Setup
Infrastructure. In order to comprehensively evaluate the effi-
ciency and effectiveness of CLONE, We perform our experi-
ments on two heterogeneous edge devices: Orin Nano [104]
and Jetson Orin NX [106]. Table 1 summarizes their specifi-
cations. To emulate heterogeneous deployment models, we
utilize Llama-7B [132], Llama2-7B [133], Llama2-13B and
Vicuna-7B [160] as baseline models. To simulate the hetero-
geneous performance requirements of multiple tasks at the
edge, we employ the Flanv2 [135] dataset, which comprises
46 tasks across 10 domains, serving as the edge downstream
dataset. Devices run stochastic web-search to simulate run-
time variance. CodeCarbon [24] is utilized to measure runtime
duration and the power consumption.
Baselines. To evaluate the effectiveness of CLONE, we com-
pare CLONE with 7 representative approaches, including: A.
Vanilla: (1) Vanilla assess the effectiveness of the original
LLMs as the baseline criterion. B. Model compression: (2)
Random randomly selects certain groups for pruning. (3) LLM-
Pruner [30] removes connected structures of dependent multi-
head attention from LLMs based on gradient information. (4)
ShortGPT [94] defines the Block Influence metric to guide
redundant subset removal. (5) SliceGPT [8] replaces each
weight matrix in the network with a smaller, dense matrix,
thereby reducing the network embedding dimension. C. Com-
putation optimization: (6) FlexGen [118] retains all model
parameters on CPU DRAM. During inference, the demand
weights are loaded from the CPU to the GPU. D. Small size
model: (7) OpenLLaMA-3B [35], an open reproduction of
Llama with 3B parameters, trained on 1T tokens.
Evaluation Metrics. In order to comprehensively evaluate
the efficiency and effectiveness of CLONE, we conduct eval-
uations from three perspectives. A.Generation ability. We
measure the zero-shot perplexity (PPL) analysis on Wiki-
Text2 [95] and PTB [93], two of the most commonly used
evaluation datasets, to evaluate the generation capabilities of
the customized model. Lower PPL values signify stronger
generation ability. B. General-purpose task solving ability.
To demonstrate the world knowledge and problem-solving
skills of the customized model, we utilize three benchmarks:

USENIX Association 2025 USENIX Annual Technical Conference 571

Figure 11: 28nm physical layout and area breakdown of the
energy-optimal CLONE accelerator system.

Figure 12: Test system. Integration of the CLONE accelerator
into the Jetson platform via a PCIe interface to facilitate high-
performance data exchange.

1) BBH [123], which includes 23 challenging tasks such as
Q&A, natural language reasoning, and sentiment analysis. 2)
MMLU [46], covering 57 tasks across diverse domains like
mathematics, history, law, and ethics. 3) Commonsense rea-
soning tasks used in Llama paper [132], featuring BoolQ [22],
PIQA [12], OBQA [100], ARC-c [23], ARC-e [23], Wino-
Grande [116], and HellaSwag [151]. C. System effectiveness.
We evaluate the system effectiveness of CLONE from two per-
spectives: latency and energy consumption, which are defined
as the duration and energy cost to infer the WikiText2 [95].
Hyperparameter and Reproducibility. For offline device-
specific tailoring, we first execute classic approaches for 100
epochs to collect training data, and use 25× randomly shuf-
fled client selection as data augmentation for tailoring training.
Both Encoder and Decoder use a single-layer LSTM configu-
ration, while the Predictor has a dual-layer feed-forward setup.
Hidden state dimensions are 64 for Encoder and Decoder, and
200 for the Predictor, with all layers having an embedding
size of 32. The hyperparameters include a batch size of 1024,
a learning rate of 0.001, and η = 0.8. For optimization, we
start with the top 25 model pruning ratio records. The LoRA
rank r and the scaling hyperparameter α are set to 8 and 16,
respectively, with 3 training rounds.

Figure 13: Generation ability comparison of various schemes
on WikiText2 and PTB dataset across 3 representative LLMs.

5.2 Test System
Figure 11 presents the layout of the energy-optimal 28nm
CLONE accelerator system. After place-and-route, the core
footprint is only 1.588 mm2; the figure also delineates
module boundaries and reports the post-layout power- and
area-breakdowns. Due to the high cost and time require-
ments of a full tape-out, the CLONE accelerator was vali-
dated through post-layout simulation. The physical layout
was generated from Cadence Innovus synthesis results, fol-
lowing a complete design flow: behavioral modeling, RTL
design, synthesis, P&R, and physical verification, ensuring
simulation fidelity to actual fabrication. Figure 12 illustrates
the integration of the CLONE accelerator into the Jetson plat-
form via a PCIe interface to facilitate high-performance data
exchange. The data flow initiates with the AI-Chip (CLONE),
which interfaces with the Jetson GPU through a PCIe con-
nection. An interface board bridges the PCIe endpoints of
the CLONE accelerator and the Jetson GPU. This architec-
ture is supported by the host CPU and RAM, where the CPU
handles top-level data flow control, ensuring that requests are
efficiently managed and routed. The CLONE is responsible
for executing tasks based on user inputs, such as selecting
the most efficient LoRA group and performing edge real-
time DVFS control to optimize performance. By bypassing
system software dependencies, this hardware-centric setup
ensures seamless communication and data transfer between
the CLONE and the Jetson device, achieving high levels of
performance and energy efficiency.

5.3 Evaluation Results and Analysis
Generation Ability. To evaluate the customized model gener-
ation ability, we use the WikiText2 and PTB datasets to mea-
sure the zero-shot PPL (lower values correspond to stronger
text generation capability) across different models on the

572 2025 USENIX Annual Technical Conference USENIX Association

Figure 14: Downstream task performance of different customization approaches of Llama-7B on 3 representative benchmarks,
including BBH (zero-shot), MMLU (3-shot), and Commonsense (zero-shot).

(a) Llama2-7B (b) Vicuna-7B (c) Llama2-13B

Figure 15: Zero-shot performance (commonsense) of Llama2-7B, Vicuna-7B and Llama2-13B.

Orin NX. Figure 13 shows the zero-shot PPL values that
compare CLONE with the baselines. In order to effectively
demonstrate the characteristics of different schemes, we nor-
malize the measured PPL values to the vanilla model. Com-
pared to baselines, CLONE preserves the most generation
ability, achieving up to 5.1× generating capacity of Random
on WikiText2 and up to 3.4× on PTB. This can be attributed
to CLONE using PPL as a pruning metric to construct a con-
tinuous pruning selection space. It then utilizes gradient-based
optimization to identify the optimal pruning configuration that
minimally impacts generation ability.

Downstream Task Performance. Figure 14 illustrates the
downstream task performance of CLONE across three rep-
resentative benchmarks (BBH, MMLU, and Commonsense),
covering 87 tasks. We observe that CLONE significantly out-
performs other baselines across various domains and tasks.
Specifically, for BBH, CLONE improves the average accuracy
by 15.1% over Random and by 2.37% over others on average;
for MMLU, it increases average accuracy by 6.0% over Ran-
dom and by 2.96% over others on average; for commonsense
tasks, CLONE enhances average accuracy by 10.1% over
Random and by 6.1% over others on average. The principle
as discussed in §3, CLONE implements task-aware tailor-
ing for specific devices by considering end-user usage pat-
terns and task specificity and relevance. It selects appropriate
types and quantities of LoRA for fine-tuning. Moreover, we
note that baseline performance varies across different down-
stream tasks. For instance, in BBH, ShortGPT is the sub-
optimal model, whereas in Commonsense, LLMPruner is the
sub-optimal. This variability stems from the heuristic and in-
complete nature of baseline approaches. In contrast, CLONE
utilizes a request-wise MoE-based router to effectively man-
age the properties of diverse real-world requests, resulting
in superior LoRA module fusion. Overall, this experiment

demonstrates CLONE’s practical and robust ability to scale
to complex workloads and applications.
Robustness and Scalability. Figure 15 details the zero-shot
performance of the pruned model across a variety of down-
stream tasks, as well as its zero-shot perplexity on the Wiki-
Text2 and PTB datasets, utilizing diverse pruning configu-
rations. Our observations confirm that CLONE consistently
outperforms established baselines across all metrics.1) Differ-
ent types of models: Comparing Llama2-7B and Vicuna-7B,
the results indicate that CLONE exhibits a strong general-
ization capability, outperforming baselines by an average of
23.85%. 2) Different model sizes: Evaluating Llama2-7B and
Llama2-13B, it is evident from Figure 15 that CLONE main-
tains 91.13% of the performance of the unpruned (vanilla)
models, underscoring its scalability. These results collectively
affirm that CLONE is scalable to different LLMs in general,
not limited to specific LLMs, so it is not a one-off “software-
ASIC”.

Request 1

������� = 10 � ������� = 10 � ������� = 10 �

Wakeup

Request 2 Request 3

Prefilling

Idle

Decoding with opt. F/V

Figure 16: Simulations of LDO dynamic VDD adjustments.

System Effectiveness. Then, we evaluate the system effi-
ciency of CLONE from latency and energy consumption dur-
ing the LLMs inference process on the WikiText2 dataset
at the off-the-shelf devices Orin NX and Nano. As shown

USENIX Association 2025 USENIX Annual Technical Conference 573

0 5 10 15 20 25 30
Layer

0.0
0.2
0.4
0.6
0.8
1.0

L
ay

er
 T

ai
lo

ri
n
g
 R

a
ti
o

(%
)

LLMPruner
ShortGPT
CLONE (ours)

Figure 17: Comparison of the model pruning configuration.

in Table 3, we can see that CLONE effectively speeds up
the inference process up to 11.92×, and achieves significant
energy saving up to 7.36×. Figure 16 shows the spice-level
simulation of the DVFS for runtime inference. There are two
possible reasons 1) As shown in Equation 1, CLONE jointly
considers the latency and energy budgets as metrics to gen-
erate optimal pruning configuration. 2) CLONE decouples
prefill and decoding phases, applying request-level DVFS
to boost effectiveness. In contrast, FlexGen trades high la-
tency and energy for full-parameter LLMs, while methods
like LLMPruner and ShortGPT focus on static, one-off com-
pression without considering system-level optimization.

Table 3: System efficiency (latency and energy) comparison
of various schemes to inference WikiText2 dataset.

Energy (Wh) Latency (s)Method Jetson NX Jetson Nano Jetson NX Jetson Nano
Random 7.27 8.26 842.40 1145.07

SliceGPT 5.47 7.54 661.65 929.39
OpenLLaMA 5.67 7.70 506.73 662.73
LLMPruner 6.01 6.91 622.92 1023.51
ShortGPT 5.67 8.56 555.14 698.02
FlexGen 21.12 26.04 3166.27 4674.42

CLONE−HW 4.81 5.56 462.72 552.18
CLONE 3.46 3.54 322.76 392.15

Study of the Generative Pruning Configuration. To ex-
amine how CLONE adaptively generates the optimal model
pruning configuration, we compare the generative pruning
approach to the layer-wise method used by ShortGPT and
the uniform direct average method employed by LLMPruner
on Llama-7B to illustrate the strategic disparities in their
decision-making processes. As presented in Figure 17, LLM-
Pruner remains static from the 5th to 30th layer. In contrast,
ShortGPT uses only binary values of 0 or 1. We note that
the layer-level pruning configuration determined by CLONE
dynamically varies across layers. This adaptability reflects
a more nuanced decision-making process, where the contri-
butions of individual layers are recognized as heterogeneous,
as discussed in Motivation 1. This indicates that CLONE’s
generative decision-making is more adaptive and tailored to
the specific contributions of each layer.
Effectiveness of the Hardware Accelerator. The accelerator
boosts efficiency by exploiting dedicated hardware resources;

4 8 16 32 64 128 256
LoRA Rank

25

26

27

28

29

30

M
M

LU
 (%

)

MMLU
Param.

0

50

100

Pa
ra

m
et

er
s (

M
B

)

Figure 18: MMLU performance and parameter size across
LoRA ranks.

it does not itself alter generation quality or task-specific accu-
racy. Disabling it forces the workload onto general-purpose
compute units, eliminating these hardware-level gains. As
Table 3 shows, energy rises from 3.46Wh to 4.81Wh and
end-to-end latency from 322.76s to 462.72s without the
accelerator CLONE−HW . Even in this regime, our offline,
metric-guided generative pruning (Eq. 1) still surpasses all
baselines, underscoring its robustness.
Effectiveness of Request-wise MoE Router. Figure 19 illus-
trates the performance of different LoRA adapter fusion meth-
ods during runtime inference for dynamic end-user requests.
w/o MoE indicates direct averaging of all LoRA modules
for all requests, which typically results in suboptimal perfor-
mance due to the fact that not all stochastic multi-tasks benefit
each other. MoE (Top-1) means based on the request to select
the most similar LoRA for LLM inference. However, from
Figure 19, we can see that w/o MoE Simply combining Lo-
RAs results in worse performance because not all stochastic
multi-tasks are beneficial to the others. Though MoE (Top-1)
signifies that the most similar LoRA is selected based on the
request for LLM inference. Although this approach enhances
overall performance, it can still be sub-optimal in practice, as
even a single request may involve multiple tasks, and merely
considering task differences is insufficient. This observation
highlights the critical importance of both the request-wise
MoE router in maintaining CLONE performance within di-
verse data and task demands.
Impact of the Rank of LoRA Adapters. The rank r controls
the number of trainable parameters, where larger values of r
provide greater adapter capacity at the expense of increased
training overhead. As illustrated in Figure 18, performance
initially improves with higher ranks but eventually saturates,
offering diminishing returns despite the rapidly growing pa-
rameter size.
Overhead Analysis. Offline tailoring utilizes a single-layer
LSTM encoder-decoder and a dual-layer feed-forward net-
work, adding minimal overhead and enhancing accuracy with-
out affecting online inference. During online inference, the
soft MoE router introduces no additional trainable parame-
ters and performs a single probabilistic routing computation.

574 2025 USENIX Annual Technical Conference USENIX Association

a
b

c

d

e
f

g

h

i

j 1

(a) w/o MoE

a
b

c

d

e
f

g

h

i

j 1

(b) MoE (Top-1)

a
b

c

d

e
f

g

h

i

j 1

(c) CLONE

Figure 19: Performance magnitudes of w/o MoE, MoE (Top-
1) and CLONE. a-j represent different downstream tasks.

Implemented as a two-layer MLP with under 1K parameters,
the DVFS controller imposes negligible overhead relative to
billion-parameter LLMs. Both modules first execute concur-
rently (< 10ms) with the prefill stage (> 100 ms; see Figure 2),
then the DVFS decision for token t + 1 is generated while
token t is being decoded, keeping the controller off the critical
path. Meanwhile, the incremental energy cost of CLONE is
on the milliwatt-hour scale, rendering it negligible compared
with the watt-hour-level consumption of full-model inference.

6 Related Work

LLMs are highly memory-, compute-, and energy-intensive [5,
19, 96, 109, 132, 133], driving most "billion-parameter" infer-
ence to the cloud [6, 34, 81, 122, 124, 145, 149]. However,
as edge devices become more powerful, there is increas-
ing interest in executing LLM inference on the edge [4, 6,
34, 57, 74, 81, 107, 111, 122, 145, 149], which enhances data
privacy and enables real-time service delivery. To address
edge resource constraints, techniques such as model archi-
tecture search [54, 60, 88], quantization [26, 55, 57, 91, 143],
pruning [27, 32, 91, 103], and knowledge distillation [41, 71]
have been proposed. However, most approaches focus solely
on model-level optimization, neglecting system-level trade-
offs like storage and weight efficiency. Advances in LLM
compilers and software stacks [56, 99, 113, 128] have en-
abled integration with co-processors and near-sensor pro-
cessing [4, 43, 57, 74, 107, 111, 118, 122, 148, 155–158], but
these often add computational and communication overhead,
reducing edge device longevity and hindering concurrent
application execution. Existing model customization meth-
ods [82, 126, 127, 153, 154] cannot directly address task-
agnostic LLMs, where generalization is crucial. The unique
characteristics of LLM decoder layers and stochastic outputs
present untapped opportunities for hardware optimization. For
system-level optimization, DVFS [10,47,48,65,112] has been
widely used to dynamically adjust processor voltage and fre-
quency. However, most DVFS strategies are designed for dis-
criminative models like CNNs and RNNs, treating networks
as black boxes. Generative LLMs, with their auto-regressive

inference and stochastic prompt variability, remain underex-
plored in this context.

Edge–cloud collaboration offers a pragmatic middle ground
between fully local and fully cloud-based inference. In prac-
tice, the edge should remain the first line of execution for
latency-critical or privacy-sensitive workloads, running com-
pact SLMs that fit the device’s power and memory envelope.
When a request exceeds local capacity—e.g., requires deeper
reasoning, broader context, or larger knowledge—CLONE
can transparently escalate the call to a cloud-resident LLM.
This selective offloading preserves real-time responsiveness,
keeps private data on-device whenever possible, and amor-
tizes bandwidth and compute costs by invoking the cloud only
for the fraction of tasks that truly need it.

7 Conclusion

CLONE integrates offline generative pruning and online
latency-aware optimization to enhance edge deployment
of LLMs. Offline, it dynamically generates device-specific
pruning configurations via a generative framework. Online,
CLONE employs a layer-wise DVFS strategy to optimize
energy efficiency within latency constraints, using an MoE
router with multiple LoRA adapters to support diverse tasks.
Supported by a dedicated 28nm hardware accelerator, includ-
ing specialized units for rapid LoRA adapter switching and
fine-grained DVFS control, benchmarks confirm that CLONE
significantly improves inference speed and energy efficiency
while maintaining robust task performance, ideal for latency-
sensitive, energy-constrained edge scenarios.

Acknowledgment

We sincerely thank the anonymous ATC’25 reviewers, and
our shepherd, Dr. Joel Wolfrath, for their insightful sugges-
tions. This work is supported in part by the Science and
Technology Development Fund of Macau (0107/2024/RIA2),
Joint Science and Technology Research Project with Hong
Kong and Macau in Key Areas of Nansha District’s Sci-
ence and Technology Plan (EF2024-00180-IOTSC) and the
Multi-Year Research Grant of University of Macau (MYRG-
GRG2023-00211-IOTSC-UMDF, MYRG-GRG2024-00180-
IOTSC). Please ask Dr. Li Li (llili@um.edu.mo) for corre-
spondence.

References

[1] Rewind AI. Rewind: A better way to search your
digital life, 2024.

[2] Tutu Ajayi, Sumanth Kamineni, Yaswanth K Cherivi-
rala, Morteza Fayazi, Kyumin Kwon, Mehdi Saligane,
Shourya Gupta, Chien-Hen Chen, Dennis Sylvester,

USENIX Association 2025 USENIX Annual Technical Conference 575

David Blaauw, et al. An open-source framework for
autonomous soc design with analog block generation.
In 2020 IFIP/IEEE 28th International Conference on
Very Large Scale Integration (VLSI-SOC), pages 141–
146. IEEE, 2020.

[3] Jay Alammar. The illustrated gpt-2 (visualizing trans-
former language models). Jalammar. github. io.
https://jalammar. github. io/illustrated-gpt2, 2019.

[4] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,
Karen Khatamifard, Minsik Cho, Carlo C. Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. LLM
in a flash: Efficient large language model inference
with limited memory. CoRR, abs/2312.11514, 2023.

[5] Anthropic. Claude: A family of ai models, 2024.

[6] Apple. Apple intelligence. https://www.apple.
com/apple-intelligence/, 2024.

[7] Apple. Apple siri: Virtual assistant, 2024.

[8] Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen-
nari Do Nascimento, Torsten Hoefler, and James Hens-
man. Slicegpt: Compress large language models by
deleting rows and columns. CoRR, abs/2401.15024,
2024.

[9] Suyoung Bang, Wootaek Lim, Charles Augustine, An-
dres Malavasi, Muhammad Khellah, James Tschanz,
and Vivek De. 25.1 a fully synthesizable distributed
and scalable all-digital ldo in 10nm cmos. In 2020
IEEE International Solid-State Circuits Conference-
(ISSCC), pages 380–382. IEEE, 2020.

[10] Soroush Bateni and Cong Liu. {NeuOS}: A {Latency-
Predictable}{Multi-Dimensional} optimization frame-
work for {DNN-driven} autonomous systems. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 371–385, 2020.

[11] Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too
big? In Madeleine Clare Elish, William Isaac, and
Richard S. Zemel, editors, FAccT ’21: 2021 ACM Con-
ference on Fairness, Accountability, and Transparency,
Virtual Event / Toronto, Canada, March 3-10, 2021,
pages 610–623. ACM, 2021.

[12] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jian-
feng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7432–7439. AAAI
Press, 2020.

[13] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,
Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch,
Dallas Card, Rodrigo Castellon, Niladri S. Chat-
terji, Annie S. Chen, Kathleen Creel, Jared Quincy
Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass,
Ranjay Krishna, Rohith Kuditipudi, and et al. On the
opportunities and risks of foundation models. CoRR,
abs/2108.07258, 2021.

[14] Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, Jennifer C Lai, and Robert L Mercer. An
estimate of an upper bound for the entropy of english.
Computational Linguistics, 18(1):31–40, 1992.

[15] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language mod-
els are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neu-
ral Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[16] Chaitanya K Chava and José Silva-Martínez. A fre-
quency compensation scheme for ldo voltage regula-
tors. IEEE Transactions on Circuits and Systems I:
Regular Papers, 51(6):1041–1050, 2004.

[17] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo,
Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-
lingual, multi-functionality, multi-granularity text em-
beddings through self-knowledge distillation, 2024.

576 2025 USENIX Annual Technical Conference USENIX Association

https://www.apple.com/apple-intelligence/
https://www.apple.com/apple-intelligence/

[18] Yonghun Choi, Seonghoon Park, and Hojung Cha. Op-
timizing energy efficiency of browsers in energy-aware
scheduling-enabled mobile devices. In Stephen A.
Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vas-
silis Kostakos, editors, The 25th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom 2019, Los Cabos, Mexico, October 21-25, 2019,
pages 48:1–48:16. ACM, 2019.

[19] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard,
Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways. J. Mach.
Learn. Res., 24:240:1–240:113, 2023.

[20] Jae-Won Chung, Jiachen Liu, Zhiyu Wu, Yuxuan Xia,
and Mosharaf Chowdhury. ML.ENERGY leaderboard.
https://ml.energy/leaderboard, 2023.

[21] Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bogdan
Damoc, Blake A. Hechtman, Trevor Cai, Sebastian
Borgeaud, George van den Driessche, Eliza Ruther-
ford, Tom Hennigan, Matthew J. Johnson, Albin Cas-
sirer, Chris Jones, Elena Buchatskaya, David Bud-
den, Laurent Sifre, Simon Osindero, Oriol Vinyals,
Marc’Aurelio Ranzato, Jack W. Rae, Erich Elsen, Ko-
ray Kavukcuoglu, and Karen Simonyan. Unified
scaling laws for routed language models. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato, editors, In-
ternational Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Re-
search, pages 4057–4086. PMLR, 2022.

[22] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.

Boolq: Exploring the surprising difficulty of natural
yes/no questions. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 2924–2936. Association for Computa-
tional Linguistics, 2019.

[23] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar
Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved ques-
tion answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

[24] codecarbon. Track and reduce co2 emissions from
your computing. https://codecarbon.io/, 2023.

[25] Dell. Llama 2: Inferencing on a single gpu. https:
//infohub.delltechnologies.com/zh-cn/t/
llama-2-inferencing-on-a-single-gpu/, 2023.

[26] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm.int8(): 8-bit matrix multiplication for
transformers at scale. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

[27] Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. Pruner-
zero: Evolving symbolic pruning metric from scratch
for large language models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[28] Begum Egilmez, Matthew Schuchhardt, Gokhan
Memik, Raid Ayoub, Niranjan Soundararajan, and
Michael Kishinevsky. User-aware frame rate man-
agement in android smartphones. ACM Trans. Embed.
Comput. Syst., 16(5s):131:1–131:17, 2017.

[29] Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and
Margo I. Seltzer. Using latency to evaluate inter-
active system performance. In Karin Petersen and
Willy Zwaenepoel, editors, Proceedings of the Second
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, Washington, USA, Oc-
tober 28-31, 1996, pages 185–199. ACM, 1996.

[30] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi
Mi, and Xinchao Wang. Depgraph: Towards any struc-
tural pruning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2023, Van-

USENIX Association 2025 USENIX Annual Technical Conference 577

https://ml.energy/leaderboard
https://codecarbon.io/
https://infohub.delltechnologies.com/zh-cn/t/llama-2-inferencing-on-a-single-gpu/
https://infohub.delltechnologies.com/zh-cn/t/llama-2-inferencing-on-a-single-gpu/
https://infohub.delltechnologies.com/zh-cn/t/llama-2-inferencing-on-a-single-gpu/

couver, BC, Canada, June 17-24, 2023, pages 16091–
16101. IEEE, 2023.

[31] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its
nature, scope, limits, and consequences. Minds and
Machines, 30:681–694, 2020.

[32] Elias Frantar and Dan Alistarh. Sparsegpt: Massive
language models can be accurately pruned in one-
shot. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR, 2023.

[33] Markus Freitag and Yaser Al-Onaizan. Beam search
strategies for neural machine translation. In Thang Lu-
ong, Alexandra Birch, Graham Neubig, and Andrew M.
Finch, editors, Proceedings of the First Workshop on
Neural Machine Translation, NMT@ACL 2017, Van-
couver, Canada, August 4, 2017, pages 56–60. Associ-
ation for Computational Linguistics, 2017.

[34] Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong
Cai, Botian Shi, and Yu Qiao. Drive like a human:
Rethinking autonomous driving with large language
models. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 910–
919, 2024.

[35] Xinyang Geng and Hao Liu. Openllama: An
open reproduction of llama. https://github.com/
openlm-research/open_llama, May 2023.

[36] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W. Mahoney, and Kurt Keutzer. AI
and memory wall. IEEE Micro, 44(3):33–39, 2024.

[37] github. GitHub Copilot: Your AI pair programmer.
https://github.com/features/copilot.

[38] Ian J. Goodfellow, Yoshua Bengio, and Aaron C.
Courville. Deep Learning. Adaptive computation
and machine learning. MIT Press, 2016.

[39] Google. Google assistant, 2024.

[40] Google. Ml kit smart reply, 2024.

[41] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024.

[42] Peizhen Guo, Bo Hu, and Wenjun Hu. Mistify: Au-
tomating DNN model porting for on-device inference

at the edge. In James Mickens and Renata Teixeira, ed-
itors, 18th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2021, April 12-14,
2021, pages 705–719. USENIX Association, 2021.

[43] Pengyu He, Yuanzhe Zhao, Heng Xie, Yang Wang,
Shouyi Yin, Li Li, Yan Zhu, Rui P Martins, Chi-Hang
Chan, and Minglei Zhang. A reconfigurable floating-
point compute-in-memory with analog exponent pre-
processes. IEEE Solid-State Circuits Letters, 2024.

[44] Pengyu He, Yuanzhe Zhao, Heng Xie, Yang Wang,
Shouyi Yin, Li Li, Yan Zhu, Rui Paulo Martins, Chi-
Hang Chan, and Minglei Zhang. A 28nm 314.6 tl-
fops/w reconfigurable floating-point analog compute-
in-memory macro with exponent approximation and
two-stage sharing td-adc. In 2024 IEEE Custom Inte-
grated Circuits Conference (CICC), pages 1–2. IEEE,
2024.

[45] Yihui He, Xiangyu Zhang, and Jian Sun. Channel
pruning for accelerating very deep neural networks. In
IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pages
1398–1406. IEEE Computer Society, 2017.

[46] Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language under-
standing. Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[47] Sebastian Herbert and Diana Marculescu. Variation-
aware dynamic voltage/frequency scaling. In 15th
International Conference on High-Performance Com-
puter Architecture (HPCA-15 2009), 14-18 February
2009, Raleigh, North Carolina, USA, pages 301–312.
IEEE Computer Society, 2009.

[48] Robert Hesse and Natalie D. Enright Jerger. Improving
DVFS in nocs with coherence prediction. In André
Ivanov, Diana Marculescu, Partha Pratim Pande, José
Flich, and Karthik Pattabiraman, editors, Proceedings
of the 9th International Symposium on Networks-on-
Chip, NOCS 2015, Vancouver, BC, Canada, September
28-30, 2015, pages 24:1–24:8. ACM, 2015.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Comput., 9(8):1735–1780, 1997.

[50] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. The curious case of neural text degener-
ation. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

578 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/features/copilot

[51] Terng-Yin Hsu, Bai-Jue Shieh, and Chen-Yi Lee. An
all-digital phase-locked loop (adpll)-based clock re-
covery circuit. IEEE Journal of Solid-State Circuits,
34(8):1063–1073, 1999.

[52] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-Rank Adaptation of
Large Language Models. arXiv e-prints, page
arXiv:2106.09685, June 2021.

[53] Yi Huang, Zhiyu Chen, Dai Li, and Kaiyuan Yang.
CAMA: energy and memory efficient automata pro-
cessing in content-addressable memories. In IEEE
International Symposium on High-Performance Com-
puter Architecture, HPCA 2022, Seoul, South Korea,
April 2-6, 2022, pages 25–37. IEEE, 2022.

[54] Yingbing Huang, Lily Jiaxin Wan, Hanchen Ye, Manvi
Jha, Jinghua Wang, Yuhong Li, Xiaofan Zhang, and
Deming Chen. New solutions on llm acceleration,
optimization, and application. In Proceedings of the
61st ACM/IEEE Design Automation Conference, pages
1–4, 2024.

[55] Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low precision
weights and activations. Journal of Machine Learning
Research, 18(187):1–30, 2018.

[56] HuggingFace Team. Transformers documentation,
2024.

[57] Mohamed Assem Ibrahim, Shaizeen Aga, Ada Li, Su-
chita Pati, and Mahzabeen Islam. Just-in-time quan-
tization with processing-in-memory for efficient ml
training, 2023.

[58] Mem Inc. Mem: Your ai-powered assistant, 2024.

[59] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural Comput., 3(1):79–87, 1991.

[60] Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS
Lakshmanan, and Dujian Ding. Llm performance pre-
dictors are good initializers for architecture search.
arXiv preprint arXiv:2310.16712, 2023.

[61] Kabilankb. Robot control using llama: Bridging ai and
robotics. Medium, 2024. Oct 13, 2024.

[62] Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285,
1996.

[63] Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models. CoRR,
abs/2001.08361, 2020.

[64] Byeongho Kim, Sanghoon Cha, Sangsoo Park, Jieun
Lee, Sukhan Lee, Shinhaeng Kang, Jinin So, Kyungsoo
Kim, Jin Jung, Jong-Geon Lee, Sunjung Lee, Yoonah
Paik, Hyeonsu Kim, Jin-Seong Kim, Won-Jo Lee, Yuh-
wan Ro, Yeongon Cho, Jin Hyun Kim, Joon-Ho Song,
Jaehoon Yu, Seungwon Lee, Jeonghyeon Cho, and Ky-
omin Sohn. The breakthrough memory solutions for
improved performance on LLM inference. IEEE Micro,
44(3):40–48, 2024.

[65] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei,
and David M. Brooks. System level analysis of fast,
per-core DVFS using on-chip switching regulators. In
14th International Conference on High-Performance
Computer Architecture (HPCA-14 2008), 16-20 Febru-
ary 2008, Salt Lake City, UT, USA, pages 123–134.
IEEE Computer Society, 2008.

[66] Young Geun Kim, Minyong Kim, and Sung Woo
Chung. Enhancing energy efficiency of multimedia
applications in heterogeneous mobile multi-core pro-
cessors. IEEE Trans. Computers, 66(11):1878–1889,
2017.

[67] Young Geun Kim, Minyong Kim, Jae Min Kim, Miny-
oung Sung, and Sung Woo Chung. A novel gpu
power model for accurate smartphone power break-
down. ETRI journal, 37(1):157–164, 2015.

[68] Young Geun Kim, Joonho Kong, and Sung Woo Chung.
A survey on recent os-level energy management tech-
niques for mobile processing units. IEEE Trans. Paral-
lel Distributed Syst., 29(10):2388–2401, 2018.

[69] Young Geun Kim and Carole-Jean Wu. Autoscale:
Energy efficiency optimization for stochastic edge in-
ference using reinforcement learning. In 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2020, Athens, Greece, October 17-21,
2020, pages 1082–1096. IEEE, 2020.

[70] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun
Kim, and Jangwoo Kim. µlayer: Low latency on-device
inference using cooperative single-layer acceleration
and processor-friendly quantization. In Proceedings of
the Fourteenth EuroSys Conference 2019, pages 1–15,
2019.

[71] Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. Distillm: Towards streamlined distillation
for large language models. In Forty-first International

USENIX Association 2025 USENIX Annual Technical Conference 579

https://medium.com/@kabilankb2003/robot-control-using-llama-bridging-ai-and-robotics-4bf8b37b953c

Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[72] Brett Koonce and Brett Koonce. Resnet 50. Convolu-
tional neural networks with swift for tensorflow: image
recognition and dataset categorization, pages 63–72,
2021.

[73] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj,
Paul Whatmough, Aleksandra Faust, Sabrina Neuman,
Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi.
Automatic domain-specific soc design for autonomous
unmanned aerial vehicles. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 300–317. IEEE, 2022.

[74] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with
pagedattention. In Jason Flinn, Margo I. Seltzer, Pe-
ter Druschel, Antoine Kaufmann, and Jonathan Mace,
editors, Proceedings of the 29th Symposium on Operat-
ing Systems Principles, SOSP 2023, Koblenz, Germany,
October 23-26, 2023, pages 611–626. ACM, 2023.

[75] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with
pagedattention. In Jason Flinn, Margo I. Seltzer, Pe-
ter Druschel, Antoine Kaufmann, and Jonathan Mace,
editors, Proceedings of the 29th Symposium on Operat-
ing Systems Principles, SOSP 2023, Koblenz, Germany,
October 23-26, 2023, pages 611–626. ACM, 2023.

[76] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[77] Haitong Li, Mudit Bhargava, Paul N Whatmough, and
H-S Philip Wong. On-chip memory technology design
space explorations for mobile deep neural network ac-
celerators. In Proceedings of the 56th Annual Design
Automation Conference 2019, pages 1–6, 2019.

[78] Li Li, Xiaorui Wang, and Feng Qin. Energydx: Diag-
nosing energy anomaly in mobile apps by identifying
the manifestation point. In 2020 IEEE 40th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 256–266. IEEE, 2020.

[79] Yuxi Li. Deep reinforcement learning: An overview.
arXiv preprint arXiv:1701.07274, 2017.

[80] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying

Zhang, Fei Yin, Jiahua Dong, Zhiwei Li, Bao-Long Bi,
Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song,
and Cheng-Lin Liu. From system 1 to system 2: A
survey of reasoning large language models, 2025.

[81] Haicheng Liao, Zhenning Li, Huanming Shen, Wenx-
uan Zeng, Dongping Liao, Guofa Li, Shengbo Eben Li,
and Chengzhong Xu. BAT: behavior-aware human-like
trajectory prediction for autonomous driving. CoRR,
abs/2312.06371, 2023.

[82] Edgar Liberis and Nicholas D Lane. Differentiable
neural network pruning to enable smart applications
on microcontrollers. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
6(4):1–19, 2023.

[83] Chaofan Lin, Zhenhua Han, Chengruidong Zhang,
Yuqing Yang, Fan Yang, Chen Chen, and Lili Qiu. Par-
rot: Efficient serving of llm-based applications with
semantic variable. In Ada Gavrilovska and Douglas B.
Terry, editors, 18th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2024,
Santa Clara, CA, USA, July 10-12, 2024, pages 929–
945. USENIX Association, 2024.

[84] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. AWQ: activation-aware
weight quantization for LLM compression and acceler-
ation. CoRR, abs/2306.00978, 2023.

[85] Xue Lin, Yanzhi Wang, and Massoud Pedram. A rein-
forcement learning-based power management frame-
work for green computing data centers. In 2016 IEEE
International Conference on Cloud Engineering, IC2E
2016, Berlin, Germany, April 4-8, 2016, pages 135–138.
IEEE Computer Society, 2016.

[86] Jiahao Liu, Yuanzhe Zhao, Yan Zhu, Chi-Hang Chan,
and Rui Paulo Martins. A weak puf-assisted strong
PUF with inherent immunity to modeling attacks and
ultra-low BER. IEEE Trans. Circuits Syst. I Regul.
Pap., 69(12):4898–4907, 2022.

[87] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Comput.
Surv., 55(9):195:1–195:35, 2023.

[88] Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo,
Shiyi Cao, Joseph E Gonzalez, Ion Stoica, and Matei
Zaharia. Optimizing llm queries in relational work-
loads. arXiv preprint arXiv:2403.05821, 2024.

[89] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. P-tuning v2: Prompt tuning

580 2025 USENIX Annual Technical Conference USENIX Association

can be comparable to fine-tuning universally across
scales and tasks. CoRR, abs/2110.07602, 2021.

[90] Zhi-Gang Liu, Paul N Whatmough, Yuhao Zhu, and
Matthew Mattina. S2ta: Exploiting structured sparsity
for energy-efficient mobile cnn acceleration. In 2022
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 573–586. IEEE,
2022.

[91] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Ré, and Beidi Chen. Deja
vu: Contextual sparsity for efficient llms at inference
time. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 22137–22176. PMLR, 2023.

[92] Daniel Lo, Taejoon Song, and G Edward Suh.
Prediction-guided performance-energy trade-off for in-
teractive applications. In Proceedings of the 48th In-
ternational Symposium on Microarchitecture, pages
508–520, 2015.

[93] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Comput. Linguistics,
19(2):313–330, 1993.

[94] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language mod-
els are more redundant than you expect. CoRR,
abs/2403.03853, 2024.

[95] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[96] Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya, Eric
Ni, Eric Noland, Geng Yan, George Tucker, George-
Christian Muraru, Grigory Rozhdestvenskiy, Henryk
Michalewski, Ian Tenney, Ivan Grishchenko, Jacob

Austin, James Keeling, Jane Labanowski, Jean-Baptiste
Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen,
Johan Ferret, Justin Chiu, and et al. Gemma: Open
models based on gemini research and technology.
CoRR, abs/2403.08295, 2024.

[97] microsoft. Your Everyday AI Companion | Microsoft
Bing. https://www.bing.com/new.

[98] Microsoft. Azure cognitive services - text analytics:
Smart reply, 2024.

[99] Microsoft DeepSpeed Team. Deepspeed: Advancing
the science of ai through efficient training of large
models, 2024.

[100] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. Can a suit of armor conduct electricity?
A new dataset for open book question answering. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii, editors, Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November
4, 2018, pages 2381–2391. Association for Computa-
tional Linguistics, 2018.

[101] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–
533, 2015.

[102] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. Importance estimation for neu-
ral network pruning. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 11264–
11272. Computer Vision Foundation / IEEE, 2019.

[103] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. Pruning convolutional neural net-
works for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

[104] nano. Nvidia jetson nano, 2023.

[105] Rajiv Nishtala, Vinicius Petrucci, Paul M. Carpenter,
and Magnus Själander. Twig: Multi-agent task manage-
ment for colocated latency-critical cloud services. In
IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020, pages 167–179. IEEE,
2020.

[106] NVIDIA. Nvidia jetson orin - autonomous ma-
chines - nvidia. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/
jetson-orin/, 2024.

USENIX Association 2025 USENIX Annual Technical Conference 581

https://www.bing.com/new
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

[107] Hyungjun Oh, Kihong Kim, Jaemin Kim, Sungkyun
Kim, Junyeol Lee, Du-seong Chang, and Jiwon Seo.
Exegpt: Constraint-aware resource scheduling for
LLM inference. In Rajiv Gupta, Nael B. Abu-
Ghazaleh, Madan Musuvathi, and Dan Tsafrir, editors,
Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS 2024, La
Jolla, CA, USA, 27 April 2024- 1 May 2024, pages
369–384. ACM, 2024.

[108] OpenAI. Chatgpt, 2022.

[109] OpenAI. GPT-4 technical report. CoRR,
abs/2303.08774, 2023.

[110] Otter.ai. Otter: Transcription and note-taking with ai,
2024.

[111] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo
Goiri, Aashaka Shah, Saeed Maleki, and Ricardo Bian-
chini. Splitwise: Efficient generative LLM inference
using phase splitting. CoRR, abs/2311.18677, 2023.

[112] Leonardo Piga, Iyswarya Narayanan, Aditya Sundar-
rajan, Matt Skach, Qingyuan Deng, Biswadip Maity,
Manoj Chakkaravarthy, Alison Huang, Abhishek Dhan-
otia, and Parth Malani. Expanding datacenter capacity
with DVFS boosting: A safe and scalable deployment
experience. In Rajiv Gupta, Nael B. Abu-Ghazaleh,
Madan Musuvathi, and Dan Tsafrir, editors, Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 1, ASPLOS 2024, La Jolla,
CA, USA, 27 April 2024- 1 May 2024, pages 150–165.
ACM, 2024.

[113] PyTorch Contributors. Pytorch: An open source ma-
chine learning framework, 2024.

[114] Qualcomm Technologies, Inc. Llama-v2-7B-Chat
Quantized Model. https://aihub.qualcomm.
com/models/llama_v2_7b_chat_quantized, 2024.
Qualcomm AI Hub, 2024.

[115] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[116] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. arXiv preprint
arXiv:1907.10641, 2019.

[117] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[118] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-
throughput generative inference of large language mod-
els with a single gpu. In International Conference on
Machine Learning, pages 31094–31116. PMLR, 2023.

[119] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. Progprompt: Gen-
erating situated robot task plans using large language
models. In IEEE International Conference on Robotics
and Automation, ICRA 2023, London, UK, May 29 -
June 2, 2023, pages 11523–11530, London, UK, 2023.
IEEE.

[120] Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen
Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble,
Chris Kelly, Nathaneal Schärli, Aakanksha Chowdh-
ery, Philip Andrew Mansfield, Blaise Agüera y Arcas,
Dale R. Webster, Gregory S. Corrado, Yossi Matias,
Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun
Liu, Alvin Rajkomar, Joelle K. Barral, Christopher
Semturs, Alan Karthikesalingam, and Vivek Natara-
jan. Large language models encode clinical knowledge.
CoRR, abs/2212.13138, 2022.

[121] Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-
planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 2998–3009, 2023.

[122] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
Powerinfer: Fast large language model serving with
a consumer-grade gpu. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Prin-
ciples, pages 590–606, 2024.

[123] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz,
Akshat Agarwal, Alethea Power, Alex Ray, Alex
Warstadt, Alexander W. Kocurek, Ali Safaya, Ali
Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman
Hussain, Amanda Askell, Amanda Dsouza, Ameet Ra-
hane, Anantharaman S. Iyer, Anders Andreassen, An-
drea Santilli, Andreas Stuhlmüller, Andrew M. Dai,

582 2025 USENIX Annual Technical Conference USENIX Association

https://aihub.qualcomm.com/models/llama_v2_7b_chat_quantized
https://aihub.qualcomm.com/models/llama_v2_7b_chat_quantized

Andrew La, Andrew K. Lampinen, Andy Zou, An-
gela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh,
Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes,
Arun Kirubarajan, Asher Mullokandov, Ashish Sabhar-
wal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla
Karakas, and et al. Beyond the imitation game: Quan-
tifying and extrapolating the capabilities of language
models. CoRR, abs/2206.04615, 2022.

[124] stanford. Ai index report. https://aiindex.
stanford.edu/report/, 2024. Accessed: 2024-07.

[125] Statista Inc. Mobile ram usage worldwide
from 1q-19 to 1q-21 (in gb per device).
www.statista.com/statistics/1057679/mobile-ram-
usage-worldwide-by-average-size-per-device/, 2021.

[126] Kahou Tam, Chunlin Tian, Li Li, Haikai Zhao, and
ChengZhong Xu. Fedhybrid: Breaking the memory
wall of federated learning via hybrid tensor manage-
ment. In Proceedings of the 22nd ACM Conference on
Embedded Networked Sensor Systems, pages 394–408,
2024.

[127] Thierry Tambe, Coleman Hooper, Lillian Pentecost,
Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh,
Paul Whatmough, Alexander M Rush, David Brooks,
et al. Edgebert: Sentence-level energy optimizations
for latency-aware multi-task nlp inference. In MICRO-
54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 830–844, 2021.

[128] TensorFlow Contributors. Tensorflow: An open source
machine learning framework for everyone, 2024.

[129] Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. Large language models in
medicine. Nature medicine, 29(8):1930–1940, 2023.

[130] Chunlin Tian, Li Li, Zhan Shi, Jun Wang, and
ChengZhong Xu. Harmony: Heterogeneity-aware hi-
erarchical management for federated learning system.
In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 631–645. IEEE,
2022.

[131] Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and
Cheng-Zhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. Advances in Neu-
ral Information Processing Systems, 37:9565–9584,
2024.

[132] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971, 2023.

[133] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn-
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288, 2023.

[134] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pages 5998–6008,
2017.

[135] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. Finetuned language models are
zero-shot learners. CoRR, abs/2109.01652, 2021.

[136] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang,
Jeff Dean, and William Fedus. Emergent abilities of
large language models. Trans. Mach. Learn. Res.,
2022, 2022.

[137] Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo
Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu.
Outlier suppression+: Accurate quantization of large

USENIX Association 2025 USENIX Annual Technical Conference 583

https://aiindex.stanford.edu/report/
https://aiindex.stanford.edu/report/

language models by equivalent and effective shifting
and scaling. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pages
1648–1665. Association for Computational Linguistics,
2023.

[138] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-
powered task automation in android. In Proceedings of
the 30th Annual International Conference on Mobile
Computing and Networking (MobiCom ’24), Wash-
ington D.C., USA, 2024. Association for Computing
Machinery.

[139] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-
ing at facebook: Understanding inference at the edge.
In 2019 IEEE international symposium on high perfor-
mance computer architecture (HPCA), pages 331–344.
IEEE, 2019.

[140] Yebo Wu, Li Li, Chunlin Tian, Tao Chang, Chi Lin,
Cong Wang, and Cheng-Zhong Xu. Heterogeneity-
aware memory efficient federated learning via progres-
sive layer freezing. In 2024 IEEE/ACM 32nd Inter-
national Symposium on Quality of Service (IWQoS),
pages 1–10. IEEE, 2024.

[141] Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou
Tam, Li Li, and Chengzhong Xu. A survey on federated
fine-tuning of large language models. arXiv preprint
arXiv:2503.12016, 2025.

[142] Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou
Tam, Li Li, and Chengzhong Xu. A survey on fed-
erated fine-tuning of large language models. CoRR,
abs/2503.12016, 2025.

[143] Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu,
Julien Demouth, and Song Han. Smoothquant: Accu-
rate and efficient post-training quantization for large
language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, International Confer-
ence on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Pro-
ceedings of Machine Learning Research, pages 38087–
38099. PMLR, 2023.

[144] Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi
Yan. Llm4drive: A survey of large language models for
autonomous driving. arXiv preprint arXiv:2311.01043,
2023.

[145] Xinyu Ye, Zhe Wang, Haihao Shen, Yu Luo, and Han-
wen Chang. Creating large language models on your
laptop. Medium, 2023.

[146] Rongjie Yi, Xiang Li, Weikai Xie, Zhenyan Lu,
Chenghua Wang, Ao Zhou, Shangguang Wang, Xiwen
Zhang, and Mengwei Xu. Phonelm: An efficient and
capable small language model family through princi-
pled pre-training. arXiv preprint arXiv:2411.05046,
2024.

[147] Wangsong Yin, Rongjie Yi, Daliang Xu, Gang Huang,
Mengwei Xu, and Xuanzhe Liu. Elms: Elasticized
large language models on mobile devices. arXiv
preprint arXiv:2409.09071, 2024.

[148] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative mod-
els. In Marcos K. Aguilera and Hakim Weather-
spoon, editors, 16th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2022,
Carlsbad, CA, USA, July 11-13, 2022, pages 521–538.
USENIX Association, 2022.

[149] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,
Hanzi Mei, Xianqing Jia, et al. Mobile foundation
model as firmware. arXiv preprint arXiv:2308.14363,
2023.

[150] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
mis, Acyr Locatelli, and Sara Hooker. Pushing mixture
of experts to the limit: Extremely parameter efficient
moe for instruction tuning. CoRR, abs/2309.05444,
2023.

[151] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. Hellaswag: Can a machine re-
ally finish your sentence? In Anna Korhonen, David R.
Traum, and Lluís Màrquez, editors, Proceedings of the
57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 4791–4800.
Association for Computational Linguistics, 2019.

[152] Shichen Zhan, Yebo Wu, Chunlin Tian, Yan Zhao, and
Li Li. Heterogeneity-aware coordination for feder-
ated learning via stitching pre-trained blocks. In 2024
IEEE/ACM 32nd International Symposium on Quality
of Service (IWQoS), pages 1–10. IEEE, 2024.

[153] Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa
Misailovic. Felix: Optimizing tensor programs with
gradient descent. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, pages 367–381, 2024.

584 2025 USENIX Annual Technical Conference USENIX Association

https://medium.com/intel-analytics-software/creating-your-own-llms-on-your-laptop-a08cc4f7c91b

[154] Yifan Zhao, Hashim Sharif, Peter Pao-Huang,
Vatsin Shah, Arun Narenthiran Sivakumar, Ma-
teus Valverde Gasparino, Abdulrahman Mahmoud,
Nathan Zhao, Sarita Adve, Girish Chowdhary, et al.
Approxcaliper: A programmable framework for
application-aware neural network optimization.
Proceedings of Machine Learning and Systems, 5,
2023.

[155] Yuanzhe Zhao, Pengyu He, Yan Zhu, Rui P Martins,
Chi-Hang Chan, and Minglei Zhang. A 28-nm 3.32-
nj/frame compute-in-memory cnn processor with layer
fusion for always-on applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 2025.

[156] Yuanzhe Zhao, Yang Wang, Yuheng Wang, Heng Xie,
Yan Zhu, RP Martins, Chi-Hang Chan, Shouyi Yin, and
Minglei Zhang. A 28nm value-wise hybrid-domain
compute-in-memory macro with heterogeneous mem-
ory fabric and asynchronous sparsity manager. In 2025
IEEE Custom Integrated Circuits Conference (CICC),
pages 1–3. IEEE, 2025.

[157] Yuanzhe Zhao, Yuheng Wang, Zijian Wang, Yan Zhu,
RP Martins, Chi-Hang Chan, and Minglei Zhang. A
reconfigurable 0.69-1.02 nj/classification biomedical
ai processor for intelligent health monitoring devices.
In 2025 IEEE Custom Integrated Circuits Conference
(CICC), pages 1–3. IEEE, 2025.

[158] Yuanzhe Zhao, Heng Xie, Zijian Wang, Chunlin Tian,
Li Li, Yan Zhu, RP Martins, Chi-Hang Chan, and Min-
glei Zhang. A one-shot floating-point compute-in-
memory macro featuring pvt robustness and mismatch
tolerance for edge llms. In 2025 IEEE Custom Inte-
grated Circuits Conference (CICC), pages 1–3. IEEE,
2025.

[159] Yuanzhe Zhao, Minglei Zhang, Pengyu He, Yan Zhu,
Chi-Hang Chan, and Rui Paulo Martins. A double-
mode sparse compute-in-memory macro with recon-
figurable single and dual layer computation. In IEEE
Custom Integrated Circuits Conference, CICC 2023,
San Antonio, TX, USA, April 23-26, 2023, pages 1–2.
IEEE, 2023.

[160] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E.
Gonzalez, and Ion Stoica. Judging llm-as-a-judge with
mt-bench and chatbot arena. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine, editors, Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

[161] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi.
Event-based scheduling for energy-efficient qos (eqos)
in mobile web applications. In 21st IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture, HPCA 2015, Burlingame, CA, USA, Febru-
ary 7-11, 2015, pages 137–149. IEEE Computer Soci-
ety, 2015.

[162] Ömer Bilgin Bilgili. Ai robotics case - controlling
robots with llms (large language models). acrome,
2024. Acrome Robotics Blog, October 23, 2024.

USENIX Association 2025 USENIX Annual Technical Conference 585

https://acrome.net/post/controlling-robots-with-llms-large-language-models

	Introduction
	Background and Related Work
	Large Language Models
	Bottlenecks of Deploying Edge LLMs

	Motivation
	Heterogeneity of Model Characteristics
	Heterogeneity of Stochastic Input/Output
	Heterogeneity of Runtime Platform

	CLONE: Design
	System Overview
	Offline Device-specific Tailoring
	Online Latency-aware Inference
	Hardware Accelerator System.

	EVALUATION
	Experimental Setup
	Test System
	Evaluation Results and Analysis

	Related Work
	Conclusion

