PPipe: Efficient Video Analytics Serving on Heterogeneous GPU Clusters via Pool-Based Pipeline Parallelism

Authors: 

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu, Purdue University

Abstract: 

With the rapid innovation of GPUs, heterogeneous GPU clusters in both public clouds and on-premise data centers have become increasingly commonplace. In this paper, we demonstrate how pipeline parallelism, a technique wellstudied for throughput-oriented deep learning model training, can be used effectively for serving latency-bound model inference, e.g., in video analytics systems, on heterogeneous GPU clusters. Our work exploits the synergy between diversity in model layers and diversity in GPU architectures, which results in comparable inference latency for many layers when running on low-class and high-class GPUs. We explore how such overlooked capability of low-class GPUs can be exploited using pipeline parallelism and present a novel inference serving system, PPipe, that employs pool-based pipeline parallelism via an MILP-based control plane and a data plane that performs resource reservation-based adaptive batching. Evaluation results on diverse workloads (18 CNN models) show that PPipe achieves 41.1%–65.5% higher utilization of low-class GPUs while maintaining high utilization of high-class GPUs, leading to 32.2%–75.1% higher serving throughput compared to various baselines.

USENIX ATC '25 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.