
This paper is included in the Proceedings of the  
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the 
2025 USENIX Annual Technical Conference  

is sponsored by

PPipe: Efficient Video Analytics Serving on 
Heterogeneous GPU Clusters via Pool-Based 

Pipeline Parallelism
Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu, Purdue University

https://www.usenix.org/conference/atc25/presentation/kong



PPipe: Efficient Video Analytics Serving on Heterogeneous GPU Clusters via
Pool-Based Pipeline Parallelism

Z. Jonny Kong∗

Purdue University
Qiang Xu∗

Purdue University
Y. Charlie Hu

Purdue University

Abstract
With the rapid innovation of GPUs, heterogeneous GPU

clusters in both public clouds and on-premise data cen-
ters have become increasingly commonplace. In this paper,
we demonstrate how pipeline parallelism, a technique well-
studied for throughput-oriented deep learning model training,
can be used effectively for serving latency-bound model infer-
ence, e.g., in video analytics systems, on heterogeneous GPU
clusters. Our work exploits the synergy between diversity in
model layers and diversity in GPU architectures, which results
in comparable inference latency for many layers when run-
ning on low-class and high-class GPUs. We explore how such
overlooked capability of low-class GPUs can be exploited us-
ing pipeline parallelism and present a novel inference serving
system, PPipe, that employs pool-based pipeline parallelism
via an MILP-based control plane and a data plane that per-
forms resource reservation-based adaptive batching. Evalua-
tion results on diverse workloads (18 CNN models) show that
PPipe achieves 41.1%–65.5% higher utilization of low-class
GPUs while maintaining high utilization of high-class GPUs,
leading to 32.2%–75.1% higher serving throughput compared
to various baselines.

1 Introduction

While applications based on large language models (LLMs)
have witnessed remarkable advancements in recent years,
video analytics systems [1–4], which leverage extensive net-
works of cameras deployed in major cities across the U.S. and
around the world [3–5], remain heavily reliant on traditional
machine learning models such as convolutional neural net-
works (CNNs). These systems play a critical role in enabling
a wide range of applications, including real-time surveillance
for security purposes, efficient transportation management
through traffic monitoring, enhanced public safety via crowd
analysis, and improvements in healthcare through patient mon-
itoring. The global video analytics market is estimated to grow

*Both authors contributed equally to the paper.

...
... ...

...

Requests

GPU class 1

GPU class 2

Partition 1 Partition 2

Results

Partition 3

Request A

Figure 1: Pool-based pipeline parallelism on a heterogeneous GPU
cluster with model partitioning. Each request (e.g., request A) is
processed by all partitions sequentially, and may be processed by
any of the GPU servers allocated to each partition (GPU pool).

from $3.2 billion in 2023 to $19.1 billion by 2030, at a CAGR
of 29.2% [17].

In video analytics systems, streams of video frames from
cameras deployed at different locations of interest are up-
loaded to the cloud servers that perform analytics, i.e., deep
neural network (DNN) model inference. Serving such infer-
ence requests is challenging for two primary reasons. First,
video analytics inference requests often have stringent ser-
vice level objectives (SLOs), e.g., 200 ms [26, 65]. Sec-
ond, inference requests from real-world applications can be
bursty [11, 34, 47, 62]. Meeting the latency SLO for all infer-
ence requests requires provisioning hardware resources for
the peak load, which can be costly as the hardware resource
becomes under-utilized during off-peak periods.

As with model training, model inference relies on the
use of accelerators such as GPUs. With rapid innovation of
GPUs [40], newer generations of GPUs are introduced to the
market in short release cycles. Yet, their high cost and lim-
ited supply have dis-incentivized cloud vendors and private
organizations from retiring older generations of GPUs. As a
result, these organizations are increasingly operating highly
heterogeneous GPU clusters [54].

This paper studies how to serve popular DNN models, i.e.,
with high volumes of requests [8], on heterogeneous GPU

USENIX Association 2025 USENIX Annual Technical Conference    679



clusters. Being able to do so not only allows utilizing low-
class computing resources that are otherwise unusable [43]
in clusters dedicated to model serving, e.g., in edge clouds or
private clouds running AI-based apps [7, 18], but also, as we
will show in this paper, can significantly enhance the serving
throughput of high-class GPUs.

In particular, we explore the under appreciated benefits
of pipeline parallelism among lower-class and higher-class
GPUs in online model serving. While the benefits of pipeline
parallelism have been well studied for throughput-oriented
model training [14, 29, 32, 43, 56], its potential for model
serving under latency (SLO)-constrained settings on heteroge-
neous GPU clusters has been largely unexploited. Intuitively,
the benefits of partitioning a model and pipelining the parti-
tioned inference among mixed high-class and low-class GPUs
appear limited. For example, if the high-class GPU is 10×
faster (i.e., lower latency) than the low-class GPU for a given
model, then simply running 1/10 of the model layers on the
low-class GPU already leads to 1.9× longer total latency.

We instead make a key observation about the performance
characteristics of DNN model inference on heterogeneous
GPUs: the two forms of diversity in model inference on a
heterogeneous GPU cluster — diversity in model layers and
in GPU types — can interact with each other synergistically.
First, a DNN model typically has many layers with diverse
operations and tensor dimensions, leading to varying GPU
utilization on a given GPU. Second, more importantly, for the
same DNN model, the relative per-layer inference latency on
different classes of GPUs can vary significantly across the
model layers. This observation suggests that partitioning the
DNN model in a GPU-aware manner and executing each par-
tition on the GPU type that runs most effectively can improve
the effectiveness of all GPU types and hence the inference
throughput of the whole cluster. Effectively, lower-class GPUs
offload part of the model inference from higher-class GPUs
with minimum elongation of the end-to-end inference latency.

While this observation provides guidelines on efficient
pipeline parallelism on heterogeneous GPU servers, parti-
tioning a model and running the partitions along a chain of
GPUs, as done in pipeline parallel DNN training [25, 39], is
too stringent and leads to suboptimal partitions: all partition
stages must have matching latencies to avoid pipeline stalls,
which restricts the flexibility of model partitioning and leaves
less opportunity for low-class GPUs to run layers they are
efficient at.

To this end, we present PPipe, a model serving system
that harnesses mixed GPU types in heterogeneous GPU clus-
ters to maximize serving throughput. PPipe is built on three
key ideas. First, to improve scheduling flexibility, it employs
pool-based pipeline parallelism where each model partition
is associated with a pool of GPU servers, and each request
can be processed by any GPU in each partition pool along the
pipeline, as shown in Figure 1. Such pooled pipeline paral-
lelism allows different partitions to have different numbers of

GPU servers, varying inference latencies, and run with differ-
ent batch sizes, as long as the inference throughput provided
by each pool of GPU servers matches with each other.

Second, to realize the scheduling flexibility exposed by
pool-based pipelined model inference, PPipe generates the
optimal configuration of pool-based pipelined model infer-
ence, e.g., one that maximizes the model serving throughput
of a given cluster while meeting inference SLOs, using Mixed
Integer Linear Programming (MILP), which takes as input the
per-layer inference latency on all candidate GPUs and under
all candidate batch sizes from offline profiling.

Such an MILP-based optimal solution, however, effectively
assumes ideal request arrivals, i.e., synchronous arrival of
batches in locksteps at all GPUs of the first partition pool,
and flow down the pipeline partitions in sync. In practice,
the inference requests arrive asynchronously and can be
bursty [11, 34, 47, 62], which creates transient high load that
overwhelms the throughput prescribed in the MILP solution,
introducing several sources of extra delay not accounted for
in the MILP solution and leading to SLO violations.

To bridge the gap between the MILP solution and runtime
dynamics due to asynchronous and bursty request arrivals,
PPipe treats the MILP-based formulation as the control plane
which prescribes optimal DNN model partition and GPU
allocation, and employs a novel data plane that performs re-
source reservation-based adaptive batching to address the
unique challenges in batching pooled-based pipelines: decid-
ing for each batch which pooled pipeline, which path within
the pipeline, and the batch size. Our scheduler overcomes
the above challenges by (1) maintaining (current and future)
availability of resources (GPUs and network bandwidth) in
the pooled pipelines; and (2) probing them to find the maxi-
mal batch of requests that can meet the SLOs of each request
when the batch reaches the end of the pipeline path.

We evaluate PPipe using production workloads on top of
100-GPU large-scale simulations and 16-GPU testbeds on
Google Cloud consisting of a variety of high- and low-class
GPUs such as NVIDIA V100, L4, T4, and P4. Evaluation
across 18 CNN models shows that PPipe achieves 44.1%–
65.5% higher utilization of low-class GPUs while maintain-
ing high utilization of high-class GPUs compared to various
baselines, leading to 32.2%–75.1% higher serving capacity,
while successfully processing 99% of the requests without
dropping or SLO violations.

In summary, we make the following contributions:
• The first exploration of pipeline-parallel model serving

on heterogeneous GPU clusters under latency (SLO)-
constrained settings.

• The complete design of PPipe, which employs three de-
sign ideas to maximize inference throughput of heteroge-
neous GPU clusters: pool-based pipeline parallelism, an
MILP-based control plane that prescribes optimal pool-
based pipeline plans, and a data plane that performs re-
source reservation-based adaptive batching to handle run-

680    2025 USENIX Annual Technical Conference USENIX Association



DNN Model0

100

200

300

400

500
La

te
nc

y 
(m

s)
L4
P4

Figure 2: Inference latency of 18 popular DNN models (Table 2)
under batch size 4 on different GPU classes.

time dynamics due to asynchronous and bursty request
arrivals.

• Extensive evaluation of PPipe showing PPipe outperforms
baseline designs by 32.2%–75.1% in inference throughput
and 41.1%–65.5% higher low-class GPU utilization.
The source code of PPipe is available at https://

github.com/JonnyKong/PPipe.

2 Motivation and Key Idea

We motivate how low-class GPUs can be effectively used to
augment high-class GPUs in a heterogeneous cluster in model
serving by exploiting pipeline parallelism.
Low-class GPUs fail to meet the inference latency SLO. On
a highly heterogeneous GPU cluster, the inference time on
old or low-class GPUs is usually several times longer than
that on newer or high-class GPUs. For the 18 DNN models
we use for evaluation (§7.1), the inference time (on the highly
optimized TensorRT [10] inference framework) on the low-
class NVIDIA P4 is 3.0x–7.9x longer than that on the high-
class NVIDIA L4, as shown in Figure 2. Even if a model runs
on the low-class GPU without violating latency SLO, it can
barely perform batched inference, which could significantly
improve GPU utilization and throughput [6,12,47]. As shown
in Figure 2, only 22% of the DNN models can run on the low-
class GPU (NVIDIA P4) at batch size 4 without exceeding
200 ms, a latency SLO target commonly used among video
analytics pipelines [26, 65].
Key insight: Diversity in per-layer inference delay across
GPUs. Given the high latency of low-class GPUs, the benefit
of partitioning and running a model across low- and high-
class GPUs, if done in a GPU-oblivious manner, will be lim-
ited. For example, if the high-class GPU is 10× faster (i.e.,
lower latency) than the low-class GPU for a given model,
then simply running 1/10 of the model layers on the low-class
GPU already leads to 1.9× longer total latency. Our key ob-
servation is that there exist two forms of diversity in model
inference on a heterogeneous GPU cluster: diversity in model
layers and in GPU types, and they can interact with each other
synergistically.

In particular, for many popular CNN backbone architec-
tures, e.g., EfficientNet [49] and ResNet [23], later layers have
more channels compared to earlier layers, but with lower fea-
ture dimensions. Such architectural differences among layers

0

20
0

40
0

60
0

80
0

12
00

16
00

20
00

24
00

Layer

0
1
2
3
4
5

La
te

nc
y 

ra
tio

P4 / L4
P4 / V100

Figure 3: The ratio of inference latency on NVIDIA P4 over L4 and
P4 over V100 across EfficientNet-B8 [49] layers.

within a DNN model can lead to different computational prop-
erties on GPU accelerators. To gain insight into this, we mea-
sure the latency ratio, i.e., the ratio of the inference latency
of the same layer on different GPU types for all the layers
within a DNN model. Figure 3 shows that for EfficientNet-B8
on NVIDIA P4 over L4 and P4 over V100, respectively, with
a moving window of 128 layers. The inference latency ratio
on P4 over L4 is about 1.7 for early layers, indicating these
layers have closer inference latencies on both P4 and L4. On
the other hand, later layers have much higher latency ratios,
and those layers will suffer significant slowdown running on
P4 over L4. If we were to partition the DNN model and run
it on P4 and L4, we should place earlier layers on P4 and
later layers on L4, which provides higher chances to keep the
inference time below the latency SLO and enables batching
opportunities. All 18 DNN models we studied (Table 2) ex-
hibit varying latency ratios across layers and we omit the rest
due to page limit.

Interestingly, the latency ratios between P4 and V100 show
completely different trends on EfficientNet, where earlier lay-
ers exhibit much higher latency ratios than later layers. In this
case, one would run on P4 later layers instead. Such differ-
ences in the trends of latency ratios happen due to GPU design
tradeoffs, architectural improvements, and their interaction
with DNN layers of different characteristics. For example,
GPUs with more SMs or higher ops:bytes ratio provide more
benefits for layers of larger size or higher arithmetic inten-
sity [19].

Such varying trends in per-layer latency ratios on different
GPUs suggest that partitioning a DNN model in a GPU-aware
manner is critical in exploiting pipeline parallelism so that
high-class and low-class GPUs can work on model layers that
they are optimized for, which improves their efficiency and
hence the inference throughput of the whole cluster.
Key idea: pool-based pipeline parallelism. To apply model
partitioning to exploit the diversity of per-layer inference ra-
tio on different GPUs, a simple approach is partitioning a
model and pipelining the inference of partitions along a chain
of GPUs similarly as in pipeline parallelism in DNN train-
ing [25, 39], and feature maps generated by one GPU are
transferred to the next downstream GPU. Such single-chain
inference pipelines have the advantage of simple scheduling
and coordination, but also come with two major drawbacks:

USENIX Association 2025 USENIX Annual Technical Conference    681

https://github.com/JonnyKong/PPipe
https://github.com/JonnyKong/PPipe


(1) To avoid pipeline stalls, all partitions need to have similar
inference latencies. However, such a partitioning strategy is
too stringent and will lead to suboptimal partitions, e.g., leav-
ing layers with high latency ratios (on high/low-class GPUs)
to run on the low-class GPU or having a large feature map
at the partition point. (2) Many GPUs cannot take advantage
of heterogeneous inference when the cluster contains more
GPUs of one class than the other.

To provide more scheduling flexibility, we instead associate
each partition with a pool of GPU servers of the same type,
and each request can be processed by any GPU allocated to
the first partition, and then continue the inference on any GPU
in the second partition, and so on, as shown in Figure 1. This
approach mitigates the drawbacks of single-chain pipelines:
different partitions can have different numbers of GPU servers
(e.g., N1 servers in pool 1, N2 servers in pool 2), have different
inference latencies (e.g., t1 and t2 for the 2 pools), or even
run with different batch sizes (e.g., b1 and b2 for the 2 pools),
as long as the inference throughput provided by each pool of
GPU servers matches well with each other (e.g., N1 ∗b1/t1 =
N2 ∗b2/t2), and the total latency is below the latency SLO. In
an optimal partitioning, multiple such pooled pipelines may
be employed at the same time, employing different ways of
partitioning the DNN model running on different GPU pools.

3 Prelude to PPipe: Basic MILP Formulation

To exploit pool-based pipelined inference, one needs to figure
out the optimal way to partition a DNN model, the placement
of the DNN partitions onto GPU servers, and the batch size for
the GPUs in each partition. It is relatively straightforward to
formulate an MILP problem to figure out the optimal solution.
We briefly describe the MILP formulation below and present
the full mathematical formulation in Appendix §A.1.
Inputs. The MILP formulation takes as input the GPU count
of each GPU type, the interconnect bandwidth of the target
cluster, and the inference latency SLO. To decide the optimal
model partitions, it also requires the intermediate feature map
sizes and the inference latencies of individual layers within a
DNN model under different batch sizes and on different GPU
models, which can be obtained from the profiling output of
TensorRT [10].
Encoding model partition and placement. Suppose the GPU
cluster consists of 2 GPU types and we restrict a DNN model
to be divided into at most 3 partitions. The placement of DNN
model partitions falls into one of 14 potential pooled pipelines:
if partitioned into 2 partitions, each partition can run on a pool
of either GPU types (4 pipeline options); if partitioned into 3,
each of the 3 partitions again has the choice to run on a pool
of either GPU types (8 pipelines); the DNN model can also
directly run on a pool of either GPU type without partitioning
(2 pipelines). As discussed in §2, the optimal solution may
contain multiple pooled pipelines.

For each partition within a pooled pipeline, we need to
decide on the exact partition points, i.e., the first and last
layers. To this end, we construct a set of binary decision
variables for each partition indicating whether each layer is
the first or last layer of a partition. Apart from that, we also
create decision variables to represent the batch size and the
number of GPUs used by each partition.
Constraints. The total latency of each pooled pipeline, includ-
ing the inference latency of each partition and the feature map
transfer latency between partitions (both can be derived from
the batch size), should be below the latency SLO; the total
GPU count used by all partitions pertaining to a specific GPU
type should not exceed the GPU count for that GPU type.
Finally, the inference throughput of a pooled pipeline is bot-
tlenecked by the partition of lowest throughput, where each
partition’s throughput can be calculated based on its batch
size, inference latency, and the number of GPUs allocated
to the partition. We observe that CNN models commonly
used in video analytics pipelines are typically not memory-
constrained on datacenter GPUs; hence, the MILP formula-
tion does not account for GPU memory.
Objective. By default, we try to maximize the total infer-
ence throughput of the GPU cluster, which is the sum of the
throughputs of all pooled pipelines employed by the MILP
solution. The MILP formulation can also be configured for
other objectives like minimum server cost [24] or provisioned
power [28]. In the presence of multiple DNN models, given
the ratio between the DNNs’ workloads, the MILP formu-
lation computes the normalized throughput for each DNN
(throughput divided by the DNN’s workload percentage),
and maximizes the lowest normalized throughput among the
DNNs.
Outputs. The solver of the MILP formulation outputs the
pooled pipelines employed by the optimal plan, i.e., those
being allocated at least 1 GPU. For each pipeline, the solver
outputs the DNN model partition points, the batch size used by
the GPUs in each partition, and the number of GPUs allocated
to each partition.

In essence, MILP holistically determines an optimal set
of pooled pipelines by selecting the model partition points
for each pipeline, along with the GPU type, count, and batch
size for each partition in each pipeline, all of which affect the
overall throughput of the GPU cluster.

4 Challenges in Developing a Working System

While the MILP formulation above provides the optimal plan
in theory, turning it into a working DNN serving system faces
several practical challenges, as discussed below.
C1: Extensive search space of the MILP formulation. The
MILP formulation needs to decide the first and last layers of a
DNN partition, whose complexity depends on the number of
layers in a DNN model. For the set of representative models

682    2025 USENIX Annual Technical Conference USENIX Association



in our evaluation (§7.1), the average layer count is 613.2.
The partition points need to be searched for all partitions
across all pipelines, making the search space combinatorial.
The search space is further inflated by additional dimensions
including inference batch size and GPU count used by each
partition. With such a vast search space, it takes more than
7 hours (running the Gurobi [21] solver on a Google Cloud
n1-standard-64 instance) to obtain the optimal solution for 80
layers, making it impractical to adapt to changing workload,
e.g., diurnal load [28].
C2: Asynchronous and bursty request arrival. In essence,
the MILP formulation outputs a solution that assumes ideal
inference request arrival. Suppose a pipeline solution consists
of two partitions with 40 ms inference latency each, and the
inference throughput is 1000 requests per second. The MILP
solution effectively assumes that 40 requests arrive at the
same time every 40 ms, which are simultaneously processed
by all GPUs allocated to the first partition, and then forwarded
to the second partition, and so on.

In reality, in an online inference system, inference requests
arrive asynchronously and in a bursty manner, which can dis-
rupt the MILP solution with two forms of extra delays: (1)
Early arriving requests have to wait for later requests to form
a batch to be dispatched to a GPU in the first partition, incur-
ring initial batching delay (D1); (2) The staggered batched
inference initiated on the GPUs in the first partition will cas-
cade through the remaining partitions in the pipeline. In such
staggered pipelined inference, it is possible when a GPU in
partition i finishes inference on a batch, all of the GPUs in
partition i+ 1 are still busy running other batches, causing
inter-partition queuing delay (D2). Such queuing delay is
further complicated when partitions use different batch sizes,
requiring the split and merge of batches which creates com-
plex dependencies between the GPUs of different partitions.

To incorporate the above extra delays at runtime, we could
add a predefined margin to the latency SLO as input to the
MILP formulation [44, 47] which will output adjusted (still
fixed) batch sizes. But simply adding a static margin cannot
handle bursty request arrival, which can still result in either too
many or too few transient requests compared to the statically
adjusted target batch size. Such dynamic conditions require
dynamically adjusting the batch sizes.
C3: Network contention. We observe that heterogeneous
clusters such as Google Cloud Platform (GCP) and Amazon
Web Services (AWS) come with high-bandwidth networks
that theoretically can finish the transfer of a feature map with
a small percentage of the total inference latency. For example,
GCP’s P4 instances have a bandwidth of 32 Gbps, which can
theoretically transfer feature maps of CenterNet (with batch
size 1) which range from 3 MB to 50 MB in 0.8–13.2 ms.
However, it is common for multiple GPUs to collocate on the
same server, sharing the server’s network bandwidth. This
can lead to network contention between GPUs (D3) that dis-
rupts pipeline schedules and causes SLO violations. The

Adaptive
batching

Centralized
resource scheduler

vGPU 1
vGPU 2

vGPU 1

vGPU 1

vGPU 1

vGPU 1

vGPU 1
vGPU 2

vGPU 1
vGPU 2

vGPU 1

vGPU 1

vGPU 1

Pipeline 1

Pipeline 2

Load balancer

Data plane

MILP solver

GPU class 1

GPU class 2

Resource usage Resource
reservation

Batches
Requests

Batch size unification

Partition configuration

Pre-partitioning

DNN
model

Cluster info Latency SLO Objective
Control plane

DNN profiler

Offline phase

Per-layer
DNN info Per-block

DNN info

Feedback Resource
reservation

Figure 4: PPipe architecture.

contention becomes more severe when we divide each GPU
into multiple virtual GPUs (§5.3), which increases the number
of “GPUs” on the same server that likely transfer feature maps
at the same time. Note that this issue cannot be addressed by
conservatively allocating each virtual GPU an equal share of
the available bandwidth, as it results in low bandwidth for
all virtual GPUs, significantly limiting the benefit of pipeline
parallelism.

5 PPipe Design

As discussed above, designing a practical pool-based pipeline
parallel inference serving system faces a key challenge: the
MILP formulation does not capture or handle runtime dy-
namics due to asynchronous and bursty request arrival or
delayed feature map transfer from network contention. We
tackle these challenges by splitting PPipe, our pool-based
pipeline parallel inference serving system for heterogeneous
GPU clusters, into a control plane and a data plane. First,
PPipe treats the MILP-based formulation as the control plane
that prescribes optimal DNN model partitions and GPU al-
location for each pooled pipeline. Second, to handle delays
caused by asynchronous and bursty request arrivals (D1 &
D2) and network contention (D3), PPipe employs a novel
data plane that performs resource reservation-based adaptive
batching to ensure the request batches injected into the pooled
pipeline meet their latency SLOs.

5.1 Architecture Overview
Figure 4 shows the architecture of PPipe, which consists of
an offline phase, a control plane, and a data plane.
Offline phase. In the offline phase, the DNN model profiler
profiles a model’s per-layer inference latency on different
GPU types. To reduce the search space of the MILP solver

USENIX Association 2025 USENIX Annual Technical Conference    683



(C1), we design a pre-partitioning method that groups the
layers of each DNN model into blocks which are fed into the
MILP solver (§5.2). With this method, the MILP solver only
needs to find partition points among a few blocks instead of
hundreds of layers, significantly reducing the search space.
We profile each model and each block independently, and
each block is profiled on every GPU type and batch size. The
profiling is fast, requiring only a few hours to cover all 18
DNN models. Since the addition of models happens infre-
quently, and each model will be served over a long time, the
one-time offline profiling cost is amortized and manageable.
When solving MILP, the latency of each partition is computed
as the sum of the latencies of its constituent blocks.

Control plane. The control plane, which runs the MILP solver,
takes as input the profiling information of DNN blocks and
the inference latency SLO for each DNN, the cluster informa-
tion (GPU count for each GPU model), along with high-level
objective, e.g., maximum throughput, and outputs the parti-
tioning of each DNN model and allocation of GPU resources
across partitions in each pooled pipeline (detailed in §3). We
observe that the synchronization among partitions (C2) could
be much simpler if partitions within the same pooled pipeline
all use the same batch size. As such, we enhance the MILP
formulation with batch size unification.

The MILP solver runs periodically, triggered dynamically
in response to workload changes, such as shifts in the load
ratio when serving multiple DNNs, which typically occur
once every one or a few hours [28, 68]. Note that the MILP
solver runs on the CPU, and is asynchronous to the inferences
running on the GPUs. Migrating to a new MILP plan involves
reassigning GPUs to different partitions or pooled pipelines,
and having the data plane dispatch the requests according
to the updated plan. To minimize migration latency, each
GPU asynchronously preloads the new model weights into
memory ahead of the switch, without interrupting the ongo-
ing inference of the existing model; this is feasible because
GPU memory is generally not a bottleneck for vision models.
Once all GPUs complete loading, PPipe pauses ingesting new
requests to perform a pipeline flush, which takes about 1x
the SLO of the currently serving DNNs (in the order of 100s
of milliseconds). After the flush, all GPU switch to the new
weights simultaneously and the data plane resumes request
dispatching. In essence, each migration incurs a downtime of
several hundred milliseconds, which is negligible compared
to the interval between migrations.

Data plane. The data plane groups inference requests into
batches and executes them through the pools of GPUs in each
of the pipelines prescribed by MILP. To address the extra
delays D1–D3, we design a novel adaptive batching scheme
that selects the pooled pipeline to execute the next batch, one
GPU from each pool to run the corresponding model partition
(the pipeline path), and the actual batch size that meets the
request SLOs.

5.2 DNN Pre-Partitioning

As discussed in C1, the sheer number of layers within a DNN
model results in a huge search space for the MILP formu-
lation and prevents the solver from finding good plans in a
reasonable amount of time. To this end, we devised a simple
DNN pre-partitioning approach that groups the layers in a
DNN model into a few (N) blocks of approximately equal
runtime on a selected GPU type; empirical results show that
the choice of GPU type has minimal impact on the partition-
ing. Specifically, we start from the first layer and sequentially
group consecutively layers together until their combined run-
time is as close as possible to 1/N of the runtime of the entire
DNN; this process is repeated until we reach the last layer.
After grouping layers into blocks, we profile the blocks on
different GPU types and with different batch sizes, as needed
by the MILP solver. It takes only less than 10 minutes to
profile a single DNN model, as each block can be profiled
independently; when solving MILP, we obtain the latency of
each partition by adding up the latencies of the blocks in it.

With pre-partitioning, the MILP solver only needs to find
partition points among the N blocks (we tried N = 5 to N = 20
and found N = 10 provides a good balance between plan
optimality and MILP running time), instead of 613.2 layers
on average across the set of models (§7). As a result, the MILP
runtime is significantly reduced to 3.5 seconds on average
over different DNN model and GPU cluster setups.

5.3 Batch Size Unification

We tackle the key challenge of the data plane — bridging
the gap between MILP solution and runtime dynamics (C2
and C3) — in two steps. In the first step, we simplify the
challenges faced by data plane scheduling with batch size
unification.

As discussed in C2, mismatch of batch sizes between parti-
tions within a pooled pipeline requires batches to be merged
and split which complicates scheduling of batched inference
across partitions. Things can be substantially simplified if
all partitions within the same pooled pipeline use the same
batch size. However, as the GPUs have different computa-
tional capacities, in the plans generated by the MILP planner,
high-class GPUs tend to use larger batch sizes compared to
low-class GPUs to improve GPU utilization and inference
throughput. Naively forcing all partitions within the same
pooled pipeline to use a uniform batch size can lead to under-
utilization of high-class GPUs and degrade overall system
performance.

Instead of forcing all partitions of a pooled pipeline to
use the same batch size, we vary the GPU size to equalize
the batches per GPU. Specifically, we incorporate virtual
GPUs into the MILP formulation, so that the MILP solver
can take into account the throughput and inference latency
differences between batches on different partitions and make

684    2025 USENIX Annual Technical Conference USENIX Association



holistic decisions in choosing a unified batch size. To this
end, instead of feeding a GPU as a whole to MILP, we feed
four possible virtual GPU types: 1/1, 1/2, 1/3 and 1/4 of a
physical GPU (this is achieved with Multi-Process Service
(MPS) [38] during runtime). The use of virtual GPUs only
mildly expands the search space of the MILP solver as there
are only 4 virtual GPU types. Further, we profile the per-block
inference latencies under not only different batch sizes and
GPU types, but also different virtual GPU types.* Finally, we
add additional constraints to the MILP formulation requiring
all partitions within the same pooled pipeline to use the same
batch size. The mathematical representation of the enhanced
MILP formulation is provided in Appendix §A.2.

5.4 Resource Reservation-Based Adaptive
Batching

With batch size unification, PPipe stills needs to perform
adaptive batching at runtime, i.e., dynamically forming and
scheduling batches, in serving asynchronous and bursty infer-
ence requests.

Compared to pipelined inference over a single chain of
GPUs, dynamic batching in pool-based pipelines faces unique
new challenges. In a chain of GPUs, the scheduler just needs
to find the largest batch size that satisfy the end-to-end SLO.
In a cluster of pooled pipelines (output by the MILP solution),
the batching scheduler has to make three decisions for each
batch: which pooled pipeline, which path within the pipeline,
and the batch size. The decisions are further complicated by:
(1) the optimal batch size depends on which pipeline the batch
is sent to; (2) the optimal pipeline path in turn depends on the
batch size and resource availability in the pooled pipeline.
Resource reservation-based adaptive batching. Our resource-
reservation-based adaptive batching scheduler overcomes the
above challenges by (1) maintaining (current and future)
availability of resources (GPUs and network) in the pooled
pipelines; and (2) probing them to find the maximal batch of
requests that can meet the SLOs of each request when the
batch reaches the end of the pipeline path.

The scheduler works in two steps, both using a stateless
probing procedure probe(). The procedure takes a specific
pooled pipeline and a hypothetical batch size as input, and
outputs the pipeline path that minimizes the end-to-end (E2E)
inference time under current resource availability, with an
example shown in Figure 5a. The E2E inference time includes
the per-stage inference time, network transfer time, and the
waiting time for required resources (GPU and NIC) along the
pipeline path. The detailed algorithm of probe() is explained
later.

In Step 1, we identify the pooled pipeline i that can com-
plete a batched inference at the pipeline’s unified batch size

*We capture the interference between virtual GPUs during profiling by
running the same DNN on all virtual GPUs of the same physical GPU in
parallel.

bsi (as determined by the MILP solution) with the shortest
waiting time under the current resource availability. This is
achieved by invoking probe() for each pooled pipeline with
its corresponding unified batch size, and selecting the pipeline
that has the lowest waiting time, where the waiting time is
computed as the sum of delays waiting for each required re-
source along the pipeline path. Using waiting time as the
metric effectively balances the load between the pipelines
because it is a good indication of the load of the pipeline, i.e.,
the lower the waiting time, the lower the load on the pipeline.

The E2E inference time of sending a batch of size bsi
down the selected pipeline i in Step 1, however, may not meet
the SLO (as the batch size bsi generated by MILP assumed
synchronized request arrival). In Step 2, using the chosen
pooled-pipeline i, we search for the actual largest batch size
that can meet the SLOs and the corresponding pipeline path.
Specifically, we iteratively invoke probe() with progressively
smaller batch sizes, starting from bsi (the batch size from the
MILP solution), until the completion time of the pipeline
path returned by probe() falls within the deadline of the first
(oldest) pending request. Finally, one of three actions is taken
depending on the chosen batch size and the number of pending
requests: (1) If the deadline cannot be met even with batch
size 1, the oldest request will be dropped and the adaptive
batching process starts over from choosing a pooled pipeline
(Step 1); (2) if the number of pending requests is smaller than
the chosen batch size, the batching engine waits for more
requests (till the last moment when the requests in queue can
still be processed without SLO violation); (3) otherwise, the
resources of the selected pipeline path returned by probe()
are reserved (by calling reserve()), i.e., their availability are
updated as shown in Figure 5b, and the requests at the head
of queue are grouped into a batch of the chosen batch size
and dispatched to the selected pipeline path according to the
resource reservation. Since the batch size is based upon the
actual remaining time of the requests in the queue, the extra
delay D1 (initial batching delay) is taken into account, and
the requests in the batch are guaranteed to meet their SLOs.

The pseudocode for our adaptive batching algorithm is
provided in Appendix §A.3.
The probing procedure. Since adaptive batching works at the
batch level, the probing procedure needs to be fast to keep
up with the request arrival rate. To this end, we implement
probe() based on a greedy algorithm. In a nutshell, probe()
works by sequentially selecting one GPU from each GPU pool
along the pooled pipeline. For each GPU pool, it goes through
all GPUs allocated to the pool and selects the GPU that min-
imize the completion time for that partition stage. During
this process, probe() determines which resources—GPUs,
uplink bandwidth, and downlink bandwidth—need to be re-
served for specific future time intervals. Note that since fea-
ture map transfer require simultaneous availability of network
resources on both the sending and receiving sides, probe()
ensures the allocation of network resources that satisfy both

USENIX Association 2025 USENIX Annual Technical Conference    685



Node 1
Net (DL)

Net (UL)
GPU

Node 2
Net (DL)

GPU

Pool 1

Pool 2

t1

t2

t2

Resources already reserved

Net (DL)

Net (UL)
GPUNode 3

t4

t5

Net (UL)

t4

t3

now

Resources returned by probe()

(a) probe() takes as input a candi-
date pooled pipeline and batch size,
and outputs the optimal pipeline
path and the intervals of resources
to be used (in blue).

Node 1
Net (DL)

Net (UL)
GPU

Node 2
Net (DL)

GPU

Pool 1

Pool 2

Resources considered by 
probe() but not returned

Net (DL)

Net (UL)
GPUNode 3

Net (UL)

now
(b) reserve() marks the resource
intervals as reserved until the end of
the intervals returned by probe().

Figure 5: The resource reservation mechanism on an example pooled
pipeline comprising two partitions, with 1 and 2 GPUs, respectively.

the uplink of the preceding GPU and the downlink of the
current GPU.

We illustrate the workflow of probe() with an example in
Figure 5a. Consider a pooled pipeline consisting of two pools,
containing one and two GPUs respectively. For simplicity,
we assume each GPU resides on a separate node, although
in practice, multiple GPUs may reside on the same node and
share the same network resources. In the first pool, probe()
selects node 1 as it is the only option, which requires reserving
its GPU for time duration t1. In the second pool, probe()
needs to decide between nodes 2 and 3. Selecting node 2 re-
quires the simultaneous reservation (as shown by the vertical
dotted line) of node 1’s uplink and node 2’s downlink network
during t2, as well as node 2’s GPU during t3, after which the
request completes; alternatively, selecting node 3 results in a
completion time by the end of t5. Since node 2 results in an
earlier completion time than node 3, probe() selects node 2.
In the end, it returns the selected pipeline path with associated
resource allocated: node 1’s GPU during t1, node 1’s uplink
and node 2’s downlink network during t2, and node 2’s GPU
during t3.

Since probe() is based on real-time resource availability,
it directly takes into account extra delays D2 (inter-partition
queuing delay) and prevents D3 (network contention delay).
Furthermore, probe() runs in real time, and scales linearly
with the number of virtual GPUs allocated to the pooled
pipeline. The pseudocode for probe() and reserve() are
provided in Appendix §A.3.
Feedback correction. The scheduler maintains resource reser-
vation tables that keep track of when each resource will be
used. However, this scheduler’s view of resource usage might
deviate from reality due to variations in inference time and
network bandwidth. To this end, we let all nodes report back
to the scheduler when the reserved resources were actually
used immediately after every resource usage. The scheduler
updates the resource usage table accordingly. The feedback

correction mechanism ensures that the scheduler’s view of
resource usage is synchronized with reality at all times.
Extra SLO margin in the control plane. While our resource
reservation-based adaptive batching algorithm ensures re-
quests meet their SLOs, we notice that the resulting batch
size may be much smaller than that in the MILP output due to
extra delays D1–D3, causing large deviations from the MILP
plan. To bridge the gap between control plane planning and
data plane execution, we deduct an empirically determined
margin from the SLO when running the control plane MILP
solver, so that the adaptive scheduler picks the same batch
sizes as in the MILP output most of the time.
Dispatching Complexity. In the worst case, dispatching a
batch requires a number of probe() function calls equal to
the product of the number of pipelines in the cluster and
the number of candidate batch sizes. Each probe() function
call has a time complexity linear to the number of GPUs
within the corresponding pipeline. Consequently, the adaptive
batching algorithm incurs low runtime overhead, as we will
demonstrate in §7.2.

6 Implementation

Offline phase and control plane. We implement the offline
phase and control plane in Python in 2.7 kLOC. We use
Gurobi [21] as the MILP solver. We work with DNN models
in their ONNX format and TensorRT format interchangeably,
since the ONNX format provides flexibility, while the Ten-
sorRT format provides high inference performance.
Data plane. We implement both a discrete-event simulator
for modeling large-scale GPU clusters and a prototype im-
plementation for PPipe’s data plane, in about 9.0 kLOC. The
simulator is written in Java and maintains a global event
queue sorted by timestamp, executing events in chronological
order. Supported event types include request arrivals, batch
dispatches, per-partition executions, and feature map trans-
fers, etc. At each simulation step, the simulator dequeues the
next event, invokes the corresponding event handler, which
updates the system states and may produce additional events
to be added to the event queue (e.g., a request arrival event
adds the request to the waiting queue and triggers a scheduler
event).

The prototype implementation is written in a combina-
tion of Julia and C++, using TCP for control message ex-
changes and NVIDIA NCCL for transferring feature maps
between nodes. To minimize the feature map transfer latency,
we quantize float32 feature maps to float16 (only at partition
boundaries), effectively reducing the transfer size by half. We
find such quantization has negligible impact on task accuracy.
The accuracy dropped by 0.00%, 0.01%, and 0.01% for object
recognition, object detection, and instance segmentation tasks,
respectively.

686    2025 USENIX Annual Technical Conference USENIX Association



Table 1: Heterogeneous Cluster (HC) setups.
Setup GPUs Setup Instances GPUs BW (Gbps)

HC1-L
25× L4,
75× P4

HC1-S
4× g2-standard-16,
2× n1-highcpu-16

4× L4,
12× P4

50

HC2-L
25× L4,
75× T4

HC2-S
1× g2-standard-48,
6× n1-highcpu-32

4× L4,
12× T4

32

HC3-L
25× V100,
75× P4

HC3-S
2× n1-highcpu-16,
12× n1-highcpu-16

4× V100,
12× P4

50

HC4-L
25× V100,
75× T4

HC4-S
1× n1-standard-64,
6× n1-highcpu-32

4× V100,
12× T4

32

Table 2: DNN models used in the evaluation.

Recognition Detection Segmentation Others

ConvNext [35] ATSS [64] APCNet [22] Color-v2 [63]
EfficientNet [49] CenterNet [15] DNL-Net [57]
GoogleNet [48] FSAF [69] EncNet [61]
RepVGG [13] GFL [33] FCN [36]
WideResNet [59] RTMDet [37] GCNet [9]

EfficientDet [50] NonLocalNet [53]

7 Evaluation

In this section, we evaluate PPipe’s serving performance un-
der a variety of DNN models from different tasks, consider-
ing various combinations of low-class and high-class GPUs.
We show that PPipe can serve 32.2%–75.1% more requests
compared to various baselines while meeting 99% SLO at-
tainment, on the discrete-event simulator with 100 GPUs.
Additionally, on 16-GPU clusters deployed on Google Cloud,
PPipe achieves 16.7%–52.8% higher serving throughput. We
also conduct sensitivity analysis to show the impact of GPU
composition and SLO on PPipe’s performance.

7.1 Methodology

Cluster configuration. We consider 4 heterogeneous cluster
setups, labelled as HC1−HC4 in Table 1. Each setup consists
of a large (L) 100-GPU variant used for the discrete-event sim-
ulator, and a small (S) 16-GPU variant deployed on Google
Cloud. Note that a Google Cloud VM instance can host mul-
tiple GPUs, resulting in each HC having a varying number
of VMs while maintaining a consistent number of GPUs. Ac-
counting for the scarcity of high-class GPUs [54], our default
configuration includes 25 high- and 75 low-class GPUs for
each HC’s large variant, and 4 and 12 for the small variant. We
further evaluate PPipe’s performance under different ratios
of high- and low-class GPUs in §7.6. Note that for GPU-
equipped VMs, Google Cloud provisions network bandwidth
based on the number and type of its GPUs, leading to different
interconnect bandwidths across HCs. Furthermore, the effec-
tive bandwidth for both large and small clusters is only 1/5
the claimed values in Table 1 to accommodate the observed
5× network tail latency on Google Cloud.
Workloads. Following prior works [34, 62], we use Mi-
crosoft’s Azure Function (MAF) traces from 2019 [46] and
2021 [66], which were originally derived from Azure server-
less function invocations, as representative inference serving
workloads. When serving multiple DNNs in parallel (§7.2),

functions are assigned to DNNs in a round-robin manner to
determine the workload ratio among DNNs. The MAF 2019
trace only includes per-minute aggregated request counts for
each serverless function, and thus we issue requests using
Poisson arrival at the given target load. Conversely, the MAF
2021 trace includes per-request arrival timestamps, and thus
we upscale the trace to the target load and issue requests ac-
cordingly. The Poisson-emulated 2019 trace is less bursty
than the 2021 trace, and thus we refer to the two traces as
“Poisson” and “Bursty”, respectively.
DNN models. We select 18 popular DNN models from public
DNN registries such as TorchVision [51], OpenMMLab [41],
and OpenVINO model zoo [42]. The selected DNNs serve a
variety of popular computer vision tasks, as shown in Table 2.
Metrics. We employ two key metrics to evaluate the inference
serving capability. First, SLO attainment represents the per-
centage of requests that are successfully processed without
being dropped or violating the SLO, under a specific offered
load. Second, we measure the maximum load that the system
can handle at 99% SLO attainment.
Baselines. The large amount of recent works on model serv-
ing on heterogeneous clusters do not incorporate pipeline
parallelism, and thus we abstract them into a state-of-the-art
baseline, denoted as NP below. We also compare PPipe with
the only prior work that exploits pipeline parallelism across
heterogeneous GPUs, DART [55], which uses a single-chain-
based pipeline of GPUs. To isolate the benefit of pool-based
pipeline parallelism, we enhance all baselines to use PPipe’s
data plane, i.e., the resource reservation-based adaptive batch-
ing (§5.4) in presenting the overall results (§7.2 & §7.3).
We then evaluate the benefit of PPipe’s second novel design,
resource-reservation-based adaptive batching, in §7.4.
• No-Partitioning (NP). NP executes the entire DNN on ei-

ther high-class or low-class GPUs without partitioning. This
way of serving DNNs on a heterogeneous cluster is repre-
sentative of various prior works [11,24,27,28,30,31,45,60].
In particular, the allocation is done by solving PPipe’s MILP
formulation without model partitioning. When integrated
with PPipe’s reservation-based adaptive batching, NP ef-
fectively dispatches the largest possible batch to the next
available GPU while meeting the SLO for each request in
that batch.

• DART-r. DART [55] is an inference framework that par-
titions a DNN onto heterogeneous CPU and GPU cores.
However, vanilla DART constructs a pipeline by chaining
all available GPUs, each serving one model partition. This
restricts its use to small clusters, as long pipelines incur
significant overhead due to frequent feature map transfers.
To address this limitation, we introduce DART-r, a modified
version that replicates DART configurations for pairs of low-
and high-class GPUs (more efficient than longer pipelines
from fewer feature map transfers). If one GPU class has
more GPUs than the other, the leftover GPUs are allocated
to individually run entire DNNs without partitioning.

USENIX Association 2025 USENIX Annual Technical Conference    687



G1 G2 G3 G4 G5 G6
0.0

0.5

1.0

Lo
ad

 Fa
ct

or
 a

t
99

%
 A

tta
in

m
en

t
(P

oi
ss

on
)

HC1-L

G1 G2 G3 G4 G5 G6

HC2-L

G1 G2 G3 G4 G5 G6

HC3-L

G1 G2 G3 G4 G5 G6

HC4-L

G1 G2 G3 G4 G5 G6
DNN groups

0.0

0.5

1.0

Lo
ad

 Fa
ct

or
 a

t
99

%
 A

tta
in

m
en

t
(B

ur
st

y)

G1 G2 G3 G4 G5 G6
DNN groups

G1 G2 G3 G4 G5 G6
DNN groups

G1 G2 G3 G4 G5 G6
DNN groups

NP DART-r PPIPE

Figure 6: Maximum load factor of each framework under 99% SLO attainment on 100-GPU clusters, under “Poisson” and “Bursty” workloads.

Setup. Following prior work [34], for each DNN, we set the
default SLO to be 5× its inference latency on the fastest GPU
(NVIDIA L4) at batch size 1, resulting in SLOs ranging from
23.4 ms to 165.6 ms. This reflects the assumption that end
users can tolerate higher latency for more complex models
but are indifferent to the underlying GPU used. We further
evaluate PPipe under other SLOs in §7.6, ranging from 2× to
10×. As mentioned in §5.4, to bridge the gap between control
plane planning and data plane execution caused by the extra
delays, a 40% margin is deducted from DART-r and PPipe’s
MILP formulation, and in NP in picking the maximum batch
sizes that satisfy the SLOs. When comparing PPipe with the
baselines, we use load factor 1.0 to denote the throughput
in the output of PPipe’s MILP. We generate requests using
“Poisson” and “Bursty” traces respectively, with an average
request rate (λ) ranging from 0.05 to 1.0 times the load factor,
at an interval of 0.05. For each λ, the experiment lasts 30
seconds.

7.2 End-to-end Results

Overall results. In this section, we evaluate PPipe’s capability
of serving DNNs over 100-GPU clusters (HC1-L to HC4-L)
on the discrete-event simulator. We randomly divide the 18
DNNs into 6 groups of 3 DNNs each (G1–G6), and serve
DNNs within each group in parallel. During runtime, we
record the maximum load ratio that each DNN can achieve
under 99% attainment.

Figure 6 shows under cluster configurations HC1-L to HC4-
L, the maximum load factor achieved under 99% SLO attain-
ment, averaged over the DNNs in each group. First, we find
that PPipe consistently outperforms NP. PPipe achieves on
average 48.0% higher load factors than NP on the “Poisson”
trace (64.9%, 34.8%, 46.7%, and 45.5% higher for HC1-L
to HC4-L, respectively), and 75.1% on the “Bursty” trace
(161.6%, 34.1%, 50.4%, and 54.1% higher), showing the ad-
vantage of PPipe’s pipeline parallel inference scheme. Second,
compared to DART-r, PPipe achieves 32.2% higher load fac-
tors on the “Poisson” trace (47.2%, 17.3%, 34.8%, and 29.3%

higher on HC1-L to HC4-L, respectively), and 35.8% on the
“Bursty” trace (50.4%, 18.1%, 40.2%, and 34.5% higher),
showing the advantage of PPipe’s pool-based pipelined infer-
ence over DART-r’s chain-based pipelined inference. Finally,
while all frameworks suffer reduced load factors under the
“Bursty” trace (61.1%, 69.4%, and 90.3% for NP, DART-r, and
PPipe respectively), compared to “Poisson” (66.8%, 74.9%,
and 96.5%), the improvement of PPipe over the two baselines
remain high, showing PPipe’s robustness to varying request
arrival patterns.

Figure 8 shows each framework’s temporal utilization of
high- and low-class GPUs. For brevity, we only show the uti-
lization on the “Poisson” trace. While all frameworks achieve
high utilization of high-class GPUs, NP and DART-r show
zero or low utilization of low-class GPUs. On average, NP,
DART-r and PPipe achieve low-class GPU utilizations of
8.1%, 29.5%, and 73.6% respectively. NP’s low utilization is
caused by the inference time of whole DNNs on low-class
GPUs often higher than the SLO, prohibiting low-class GPUs
from being used. While DART-r employs DNN partitioning,
it chains only one low-end GPU with each high-end GPU,
resulting in under-utilization of excess low-end GPUs when
their number exceeds that of high-end GPUs.
SLO attainment under varying load factors. Figure 7 shows
the SLO attainment under varying load factors. For brevity,
we show only the SLO attainment for DNN group G1, which
includes EfficientNet-B8, EncNet, and RtmDet, and only un-
der the “Poisson” trace. The attainment is averaged over the
3 DNNs, e.g., on HC1-L at load factor 1.0, PPipe achieve
SLO attainments of 99.3%, 97.6%, and 98.4% on the 3 DNNs
respectively, resulting in an averaged attainment of 98.4%,
which is shown in the figure at load factor of 1.0.

We observe that PPipe outperforms both NP and DART-r,
achieving the highest SLO attainment under the same load
factors. Consequently, it achieves a higher load factor while
ensuring 99% SLO attainment (Figure 6). For example, on
HC1-L, PPipe achieves 99% SLO attainment under load fac-
tors up to 0.95, meaning it can handle at least 95% of the load
calculated by the MILP solver. In contrast, NP and DART-r’s

688    2025 USENIX Annual Technical Conference USENIX Association



0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

60

80

100

SL
O 

At
t.(

%
)

HC1-L

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

HC2-L

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

HC3-L

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

HC4-L
NP DART-r PPIPE

Figure 7: SLO attainment of DNN group G1 under the “Poisson” trace with varying load factors, averaged over the 3 DNNs in the group. The
vertical dotted line denotes the load factor at which each system reaches 99% SLO attainment.

HC1-L HC2-L HC3-L HC4-L
Heterogeneous Cluster Configuration

0

20

40

60

80

100

GP
U 

Ut
iliz

at
io

n 
(%

)

NP, high-class
NP, low-class

DART-r, high-class
DART-r, low-class

PPIPE, high-class
PPIPE, low-class

Figure 8: GPU temporal utilization under 99% SLO attainment,
averaged over DNNs for each cluster configuration.

SLO attainment dips below 99% as the load factor exceeds
0.45 and 0.55, respectively. This is due to the fact that a load
factor of 1.0 represents the serving capacity of PPipe, which is
higher than the capacity of NP or DART-r, leading to the drop-
ping of requests beyond their respective serving capacities.
Note that although PPipe achieves higher load factors than the
baselines, it may not reach the full load factor of 1.0, as seen
with HC1-L, HC3-L, and HC4-L. This is due to unpredictable
request arrival patterns (e.g., Poisson), which cannot be fully
accounted for by the MILP solver, as discussed in §4.
MILP runtime. PPipe’s MILP solver takes 3.5 seconds on
average, showing the effectiveness of PPipe’s pre-partitioning
(§5.2) in reducing the MILP complexity. This latency is negli-
gible compared to the intervals between re-running the MILP
— triggered by fluctuations in incoming load which occur
relatively infrequently, e.g., once every hour [28, 68].
Adaptive batching overhead. PPipe’s resource-reservation-
based adaptive batching mechanism is lightweight: on a 100-
GPU cluster, dispatching a batch requires an average of only
3.58 probe() calls, incurring a total overhead of less than 9
microseconds. This overhead is negligible compared to the
batch execution latency, even under bursty request patterns.

7.3 Testbed Results

We verify PPipe’s DNN serving capability on real-world 16-
GPU heterogeneous cluster testbeds (HC1-S to HC4-S) de-
ployed on Google Cloud. Due to the testbed’s smaller GPU
counts, instead of serving DNNs in groups of three as in §7.2,
we serve one DNN at a time with Poisson-arrival requests.
Figure 9 shows the maximum load factor under 99% SLO
attainment averaged over the 18 DNNs.

HC1-S HC2-S HC3-S HC4-S
Heterogeneous Cluster Configuration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ad

 Fa
ct

or
 a

t 9
9%

 A
tta

in
m

en
t NP DART-r PPIPE

Figure 9: Maximum load factor each clus-
ter configuration can achieve under 99%
SLO attainment on the testbed, averaged
over the DNNs.

Reactive PPIPE
Scheduler

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Lo

ad
 Fa

ct
or

at
 9

9%
 A

tta
in

m
en

t

Figure 10: SLO attain-
ment with the reactive
scheduler and PPipe’s
data plane scheduler.

First, we observe that PPipe consistently outperforms NP,
achieving 42.6%–52.8% higher load factors at 99% SLO at-
tainment across the cluster configurations. This validates the
advantage of PPipe’s model-parallelism inference in a real-
world setting. Secondly, compared to DART-r, PPipe achieves
16.7%–34.1% higher load factors, which shows the advan-
tage of PPipe’s pool-based pipelined inference. In summary,
PPipe’s significant performance gains over NP and DART-
r, previously demonstrated in the discrete-event simulator,
remain consistent when deployed on a real-world testbed.

7.4 Ablation Study: Benefit of Resource Reser-
vation

As discussed in §5.4, PPipe’s resource reservation-based data
plane dynamically schedules requests onto GPUs to overcome
the delays caused by bursty request arrival and network con-
tention. To demonstrate its effectiveness, we compare it to a
reactive, distributed adaptive batching scheduler. The reac-
tive scheduler performs adaptive batching independently for
each GPU pool in a pooled pipeline. For each pool, it selects
the largest possible batch size that meets the pool’s SLO (as
determined by the MILP solver). A similar idea was used in
previous model-granularity pipeline scheduling in [47].

Figure 10 shows the maximum load factor achieved by the
two data plane designs under 99% SLO attainment on HC2-L,
averaged over the DNNs, under the “Poisson” arrival. PPipe
achieves an average load factor of 0.92, while reactive only
achieves 0.71. The primary factor contributing to this perfor-
mance degradation is that the reactive, distributed scheduler

USENIX Association 2025 USENIX Annual Technical Conference    689



Partition 1
                            vGPU model:  1/1 V100
                            vGPU count:   1
                            Batch size:      2
                            Inference:       12.3 ms
                            Throughput:   162 req/s

Partition 1
vGPU model: 1/1 P4
vGPU count:  12
Batch size:     1
Inference:      11.1 ms
Throughput:  1082 req/s

Partition 2
vGPU model: 1/2 V100
vGPU count:  6
Batch size:     1
Inference:      5.7 ms
Throughput:  1050 req/s

NCCL
1.4ms

Pi
pe

lin
e 

1
Pi

pe
lin

e 
2

Partitioning Plan
GPUs:    4x V100, 12x P4      Bandwidth:     32 Gbps
SLA:      33.3ms                    Throughput:    1212 req/s

Figure 11: Partitioning plan for the FCN model on HC3-S.

� �� �
 	� 
� ��
��������

Pipeline 1
(1x V100)

Pipeline 2
Partition 1
(12x P4)

Pipeline 2
Partition 2

(6x 1/2 V100)

Figure 12: An example timeline serving the FCN model on HC3.
Each row represents a vGPU, and each box corresponds to a batched
inference. The highlighted pairs of boxes denote the same batches
across the partitions within a pooled pipeline.

lacks resource usage tracking which leads to batches being
scheduled onto servers with saturated network links, caus-
ing bloated transfer delays. For example, for EfficientNet-B8,
where PPipe achieves 99% SLO attainment at 1.0 load factor,
the reactive scheduler only manages a 0.35 load factor. With
10 Gbps effective bandwidth, feature map transfer between
the first and second partition should take 5.1 ms, but the reac-
tive scheduler leads to transfer times of 18.9 ms on average
and 35.7 ms at the 99% percentile, resulting in excessive re-
quest drops at the second partition in order for the remaining
requests to meet their SLOs.

7.5 Microscopic Analysis

In this section, we provide a microscopic analysis of PPipe,
using the FCN model served on the HC3-S cluster testbed on
Google Cloud as an example, where PPipe achieves a load
factor of 0.95 under 99% SLO attainment.
Plan structure. Figure 11 shows the partitioning plan gener-
ated by PPipe’s MILP solver for cluster HC3-S, which con-
sists of 4× V100 and 12× P4 GPUs. The inference latency
of the FCN model on the fastest GPU (NVIDIA L4) is 6.66
ms, establishing an SLO of 33.3 ms under an SLO scale of 5.
The resulting plan comprises two pipelines, one with a single
partition and the other with two partitions.

The first pipeline consists of a single V100 GPU, perform-

2 4 5 6 8 10
0.0

0.5

1.0

Lo
ad

 Fa
ct

or
 a

t
99

%
 A

tta
in

m
en

t

(a) SLO scale.
2:14 4:12 8:8 12:4

NP PPIPE

(b) GPU ratio.
20% 40% 60%

(c) MILP margin.

Figure 13: Sensitivity of PPipe to various factors. Results are aver-
aged over 18 DNNs on HC1-S.

ing inference with a batch size of 2, where each batched
inference takes 12.3 ms. The theoretical throughput of this
pipeline is (2× 1/0.0123) = 162 requests per second. The
second pipeline consists of two partitions, with 12 P4 and 3
V100 GPUs respectively, with 1.4 ms of feature map trans-
fer time in between. Employing batch size unification (§5.3),
both partitions perform batch size 1 inference. To achieve
such a unified batch size, PPipe divides the three V100s in the
second partition into six virtual GPUs using NVIDIA MPS.
Furthermore, we observe that the two partitions yield similar
throughputs of 1082 and 1050 requests per second respec-
tively, resulting in a total throughput of 1050 (the minimum
of the two). This shows PPipe’s ability to balance resource
allocation between partitions to achieve matched throughput.
Runtime behavior. Figure 12 shows an example timeline of
the DNN inference on each virtual GPU. We observe that
PPipe performs inference back-to-back in pipeline 1, as well
as pipeline 2 partition 2, fully using their GPUs. Note that
pipeline 2 partition 1 experiences underutilization, due to
the fact that it was provisioned with slightly higher serving
throughput than partition 2 (Figure 11). Furthermore, the fig-
ure showcases that PPipe’s pool-based pipeline allows a batch
to be processed by any GPU within each partition, allow-
ing different partitions to use different numbers of GPUs to
accommodate different per-partition inference latencies.

7.6 Sensitivity Analysis

In this section, we study PPipe’s sensitivity to various factors,
on the cluster HC1-S testbed deployed on Google Cloud.
Varying SLO scales. Our main evaluation, which follows Al-
paServe [34], uses 5x the inference latency as the SLO and
shows significant performance improvement. We further eval-
uate PPipe considering various SLO scales ranging from 2x
to 10x, as shown in Figure 13a. Although 2x and 10x SLOs
are less used in practice, we include them to illustrate and val-
idate PPipe’s expected behavior relative to the baselines. With
an SLO scale of 2, PPipe shows no improvement over NP, as
such stringent SLOs render the utilization of low-class GPUs
impractical for either NP or PPipe. Consequently, PPipe re-
sorts to running entire DNNs on high-class GPUs, essentially
falling back to NP. Conversely, as the SLO scale increases
to 10, PPipe’s improvement over NP becomes marginal, due
to the fact that more DNNs can now meet the SLO running

690    2025 USENIX Annual Technical Conference USENIX Association



100 1k 10k 100k
GPU Instances

0

2

4

M
IL

P 
Ru

nt
im

e 
(s

)

(a) Varying GPU instances.

2 3 4
GPUs Type Count

0

30

60

90

M
IL

P 
Ru

nt
im

e 
(s

)

(b) Varying GPU types.

Figure 14: Scalability of PPipe’s MILP-based control plane.

entirely on low-class GPUs, and hence the low-class GPUs
can be utilized in NP, thereby narrowing the gap between NP
and PPipe.
Varying GPU ratios. In Figure 13b, we evaluate PPipe un-
der varying ratios of high-class (NVIDIA L4) to low-class
(NVIDIA P4) GPUs, which shows that PPipe attains more im-
provements over NP on clusters with fewer high-class GPUs.
For instance, with a high-low ratio of 2:14, PPipe achieves
a 64.03% higher load factor; as the percentage of high-class
GPUs increases, PPipe’s improvement diminishes, reaching
5.64% at a high-low ratio of 12:4.
Varying SLO margin size. As discussed in §7.1, a 40% margin
was subtracted from the SLO in the MILP formulation of both
PPipe and NP. The impact of the margin size is two-fold — a
larger margin size reduces the ideal-case serving capacity (i.e.,
what load factor 1.0 signifies), but increases the load factor
achievable under 99% SLO attainment in practice. Figure 13c
shows that under varying margin sizes, PPipe’s load factor
increases with larger margin sizes, but plateaus as the margin
size increases beyond 40%. Furthermore, PPipe achieves the
highest gain of 52.8% over NP under the margin size of 40%,
but also maintains a relatively high improvement over NP at
20% and 60% margin sizes, of 24.9% and 16.4% respectively.
Varying GPU types and counts. We analyze how the runtime
of PPipe’s MILP-based control plane scales with the number
of GPU instances and types in a cluster. First, we scale up the
HC1-L cluster (Table 1) from 100 to 100k GPUs. Figure 14a
shows that the MILP runtime remains nearly constant. This is
because adding more GPU instances does not introduce ad-
ditional MILP variables, and the problem’s complexity stays
unchanged. Second, as the GPU types increase to 3 and 4, Fig-
ure 14b shows the MILP runtime increases to 35.3 and 77.0
seconds, indicating the number of GPU types has a higher
impact on MILP runtime. However, the increased runtime
remains insignificant compared to the interval between MILP
re-executions, which occurs on an hourly scale [28, 68].

8 Related Work

Pipelined partitioned DNN serving. Several works on DNN
serving exploit pipeline parallelism for different scenarios and
objectives. AlpaServe [34] improves serving throughput by
employing pipeline parallelism to facilitate multiplexing of
GPUs across multiple DNNs, but it does not take advantage
of heterogeneous GPUs. Another line of works specialize

in serving RNN or transformer-based models [16, 58] in a
pipelined fashion. These works do not consider heterogeneous
GPU clusters either. Finally, DART [55] partitions DNNs
onto a chain of CPUs and GPUs. However, it does not scale
to large GPU clusters, as it will generate as many partitions
as the number of GPUs in the cluster, resulting in frequent
transfer of feature maps which is costly.
Whole DNN serving on heterogeneous clusters. Such works
typically focus on serving multiple DNNs concurrently, and
study the placement of whole DNNs on servers with the goal
of either minimizing the cost of cloud VMs [30, 45, 60], or
maximizing the throughput of on-premise clusters [28, 31].
Furthermore, several works study serving video analytics ap-
plications that utilize multiple DNNs forming a Directed
Acyclic Graph (DAG) [11, 24, 27]. None of above works
exploits the diversity across the layers within a DNN.
Whole DNN serving, homogeneous clusters. Several works
focus on model serving on homogeneous clusters [12, 20, 34,
47, 62]. However, these works lack resource allocation mech-
anisms that leverage DNN partitioning or GPU heterogeneity.
Model parallel DNN training. Various works exploit tensor
or pipeline parallelism (or both) in model training [14, 25, 29,
32, 39, 43, 52, 56, 67]. Compared to inference, training has a
different set of scenarios and requirements, e.g., no need to
meet SLOs or tackle non-deterministic request arrivals.

9 Conclusion

In this paper, we presented PPipe, a system for making effec-
tive use of mixed GPUs on heterogeneous clusters in serving
video analytics applications. The key innovation of PPipe is
three-fold: pool-based pipelined model inference, an MILP-
based control plane that prescribes optimal pipeline plans, and
a data plane that performs resource reservation-based adaptive
batching to handle runtime dynamics due to asynchronous
and bursty request arrivals. Evaluation results on production
workloads show that PPipe achieves 32.2%–75.1% higher
serving throughput compared to various baselines. In future
work, we will explore extending PPipe to support transformer-
based models, for instance, by partitioning them across high-
and low-class GPUs. This would improve the utilization of
low-class GPUs and enhance the overall serving throughput,
while still meeting SLO requirements.

Acknowledgments

We thank the anonymous reviewers and our shepherd Pu-
rushottam (Puru) Kulkarni for their helpful comments. This
work is supported in part by NSF grants 2112778, 2211459,
and 2415216.

USENIX Association 2025 USENIX Annual Technical Conference    691



References

[1] The most surveilled cities in the world.
https://www.usnews.com/news/cities/articles/
2020-08-14/the-top-10-most-surveilled-
cities-in-the-world, Last accessed, April 1, 2024.

[2] This is the most heavily surveilled city in the
US: 50 CCTV cameras per 1,000 citizens.
https://cybernews.com/editorial/this-is-
the-most-heavily-surveilled-city-in-the-
us-50-cctv-cameras-per-1000-citizens/, Last
accessed, April 1, 2024.

[3] One Legacy of Tiananmen: China’s 100 Million Surveil-
lance Cameras. https://www.wsj.com/articles/BL-
CJB-22562, Last accessed, December 1, 2021.

[4] One Surveillance Camera for Every 11 Peo-
ple in Britain, Says CCTV Survey. https:
//www.telegraph.co.uk/technology/10172298/
One-surveillance-camera-for-every-11-
people-in-Britain-says-CCTV-survey.html,
Last accessed, December 1, 2024.

[5] A World With a Billion Cameras Watching You Is
Just Around the Corner. https://www.wsj.com/
articles/a-billion-surveillance-cameras-
forecast-to-be-watching-within-two-years-
11575565402, Last accessed, December 6, 2019.

[6] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. Batch: Machine learning inference serving on
serverless platforms with adaptive batching. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15,
2020.

[7] Azure Private Multi-access Edge Compute (MEC), 2023.
https://azure.microsoft.com/en-us/solutions/
private-multi-access-edge-compute-mec.

[8] Azure Cognitive Service for Vision. https:
//azure.microsoft.com/en-us/products/
cognitive-services/vision-services/.

[9] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and
Han Hu. Gcnet: Non-local networks meet squeeze-
excitation networks and beyond. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0, 2019.

[10] Nvidia Corporation. NVIDIA TensorRT, 2017. https:
//developer.nvidia.com/tensorrt.

[11] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: Latency-aware provisioning and scal-
ing for prediction serving pipelines. In Proceedings of

the 11th ACM Symposium on Cloud Computing, SoCC
’20, page 477–491, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[12] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency online prediction serving system. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 613–627, Boston,
MA, March 2017. USENIX Association.

[13] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong
Han, Guiguang Ding, and Jian Sun. Repvgg: Making
vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13733–13742, 2021.

[14] Yifan Ding, Nicholas Botzer, and Tim Weninger. Hetseq:
Distributed gpu training on heterogeneous infrastructure.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 35(17):15432–15438, May 2021.

[15] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi,
Qingming Huang, and Qi Tian. Centernet: Keypoint
triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 6569–6578, 2019.

[16] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[17] Inc Global Industry Analysts. Intelligent video analytics
- global strategic business report, October 2024.

[18] Google Distributed Cloud Edge, 2023. https:
//cloud.google.com/distributed-cloud/edge/
latest/docs/gpu.

[19] GPU Performance Background User’s Guide,
2023. https://docs.nvidia.com/deeplearning/
performance/dl-performance-gpu-background/
index.html.

[20] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving {DNNs} like clockwork: Performance
predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 443–462, 2020.

[21] Gurobi Optimization, LLC. Gurobi Optimizer, 2008.
https://www.gurobi.com/solutions/gurobi-
optimizer/.

692    2025 USENIX Annual Technical Conference USENIX Association

https://www.usnews.com/news/cities/articles/2020-08-14/the-top-10-most-surveilled-cities-in-the-world
https://www.usnews.com/news/cities/articles/2020-08-14/the-top-10-most-surveilled-cities-in-the-world
https://www.usnews.com/news/cities/articles/2020-08-14/the-top-10-most-surveilled-cities-in-the-world
https://cybernews.com/editorial/this-is-the-most-heavily-surveilled-city-in-the-us-50-cctv-cameras-per-1000-citizens/
https://cybernews.com/editorial/this-is-the-most-heavily-surveilled-city-in-the-us-50-cctv-cameras-per-1000-citizens/
https://cybernews.com/editorial/this-is-the-most-heavily-surveilled-city-in-the-us-50-cctv-cameras-per-1000-citizens/
https://www.wsj.com/articles/BL-CJB-22562
https://www.wsj.com/articles/BL-CJB-22562
https://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec
https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services/
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services/
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://cloud.google.com/distributed-cloud/edge/latest/docs/gpu
https://cloud.google.com/distributed-cloud/edge/latest/docs/gpu
https://cloud.google.com/distributed-cloud/edge/latest/docs/gpu
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.gurobi.com/solutions/gurobi-optimizer/


[22] Junjun He, Zhongying Deng, Lei Zhou, Yali Wang, and
Yu Qiao. Adaptive pyramid context network for seman-
tic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7519–7528, 2019.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2016.

[24] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan.
Scrooge: A cost-effective deep learning inference sys-
tem. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 624–638, New York, NY,
USA, 2021. Association for Computing Machinery.

[25] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline paral-
lelism. In Advances in Neural Information Processing
Systems, volume 32, 2019.

[26] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, pages 253–266, 2018.

[27] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–16, 2019.

[28] Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean
Wu, Hsien-Hsin S. Lee, and Xuan Zhang. Hercules:
Heterogeneity-aware inference serving for at-scale per-
sonalized recommendation. In 2022 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 141–154, 2022.

[29] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng,
Wei Dai, Garth A Gibson, and Eric P Xing. Strads: A
distributed framework for scheduled model parallel ma-
chine learning. In Proceedings of the Eleventh European
Conference on Computer Systems, pages 1–16, 2016.

[30] Baolin Li, Rohan Basu Roy, Tirthak Patel, Vijay Gade-
pally, Karen Gettings, and Devesh Tiwari. Ribbon: Cost-
effective and qos-aware deep learning model inference
using a diverse pool of cloud computing instances. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

[31] Baolin Li, Siddharth Samsi, Vijay Gadepally, and De-
vesh Tiwari. Kairos: Building cost-efficient machine
learning inference systems with heterogeneous cloud
resources. In Proceedings of the 32nd International Sym-
posium on High-Performance Parallel and Distributed
Computing, pages 3–16, 2023.

[32] Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang.
Amp: Automatically finding model parallel strategies
with heterogeneity awareness. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Sys-
tems, volume 35, pages 6630–6639. Curran Associates,
Inc., 2022.

[33] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin
Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized
focal loss: Learning qualified and distributed bounding
boxes for dense object detection. Advances in Neural In-
formation Processing Systems, 33:21002–21012, 2020.

[34] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 23), pages 663–679, Boston, MA, July 2023.
USENIX Association.

[35] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 11976–11986, 2022.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440, 2015.

[37] Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou,
Yudong Wang, Yanyi Liu, Shilong Zhang, and Kai Chen.
Rtmdet: An empirical study of designing real-time ob-
ject detectors. arXiv preprint arXiv:2212.07784, 2022.

[38] Multi-Process Service, 2023. https://
docs.nvidia.com/deploy/mps/index.html.

[39] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

USENIX Association 2025 USENIX Annual Technical Conference    693

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html


[40] NVIDIA Hopper Architecture, 2023. https:
//www.nvidia.com/en-us/data-center/
technologies/hopper-architecture/.

[41] OpenMMLab Open Platform. https:
//platform.openmmlab.com/home/.

[42] OpenVINO Model Zoo. https://docs.openvino.ai/
2023.2/model_zoo.html.

[43] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T
Nguyen, Seungmin Lee, Jaesik Choi, Sam H Noh, and
Young-ri Choi. Hetpipe: Enabling large dnn training
on (whimpy) heterogeneous gpu clusters through inte-
gration of pipelined model parallelism and data paral-
lelism. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 307–321, 2020.

[44] Heyang Qin, Syed Zawad, Yanqi Zhou, Lei Yang, Dong-
fang Zhao, and Feng Yan. Swift machine learning model
serving scheduling: A region based reinforcement learn-
ing approach. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[45] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less in-
ference serving. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 397–411. USENIX
Association, July 2021.

[46] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[47] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 322–337, New York, NY, USA,
2019. Association for Computing Machinery.

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–9, 2015.

[49] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In

Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6105–6114. PMLR, 09–15
Jun 2019.

[50] Mingxing Tan, Ruoming Pang, and Quoc V Le. Ef-
ficientdet: Scalable and efficient object detection. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10781–10790,
2020.

[51] Torchvision Models and Pretrained Weights. https:
//pytorch.org/vision/stable/models.html.

[52] Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-
Yeon Lee, Goeun Kim, Dongseob Kim, Youngtaek Kim,
Mohd Muzzammil, and Myeongjae Jeon. Metis: Fast
automatic distributed training on heterogeneous gpus. In
2024 USENIX Annual Technical Conference (USENIX
ATC 24), pages 563–578, 2024.

[53] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He. Non-local neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7794–7803, 2018.

[54] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. {MLaaS} in the wild: Workload analysis
and scheduling in {Large-Scale} heterogeneous {GPU}
clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
945–960, 2022.

[55] Yecheng Xiang and Hyoseung Kim. Pipelined data-
parallel cpu/gpu scheduling for multi-dnn real-time in-
ference. In 2019 IEEE Real-Time Systems Symposium
(RTSS), pages 392–405. IEEE, 2019.

[56] Xiaodong Yi, Shiwei Zhang, Ziyue Luo, Guoping Long,
Lansong Diao, Chuan Wu, Zhen Zheng, Jun Yang, and
Wei Lin. Optimizing distributed training deployment
in heterogeneous gpu clusters. In Proceedings of the
16th International Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’20, page
93–107, New York, NY, USA, 2020. Association for
Computing Machinery.

[57] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng
Zhang, Stephen Lin, and Han Hu. Disentangled non-
local neural networks. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XV 16, pages 191–207.
Springer, 2020.

694    2025 USENIX Annual Technical Conference USENIX Association

https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://platform.openmmlab.com/home/
https://platform.openmmlab.com/home/
https://docs.openvino.ai/2023.2/model_zoo.html
https://docs.openvino.ai/2023.2/model_zoo.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


[58] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for {Transformer-Based} generative
models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
521–538, 2022.

[59] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

[60] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for Cost-
Effective, SLO-Aware machine learning inference serv-
ing. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, Renton, WA, July
2019. USENIX Association.

[61] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue
Zhang, Xiaogang Wang, Ambrish Tyagi, and Amit
Agrawal. Context encoding for semantic segmentation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7151–7160, 2018.

[62] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 787–808, Boston,
MA, April 2023. USENIX Association.

[63] Richard Zhang, Phillip Isola, and Alexei A Efros. Color-
ful image colorization. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part III 14,
pages 649–666. Springer, 2016.

[64] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei,
and Stan Z Li. Bridging the gap between anchor-based
and anchor-free detection via adaptive training sample
selection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9759–9768, 2020.

[65] Wuyang Zhang, Zhezhi He, Luyang Liu, Zhenhua Jia,
Yunxin Liu, Marco Gruteser, Dipankar Raychaudhuri,
and Yanyong Zhang. Elf: accelerate high-resolution mo-
bile deep vision with content-aware parallel offloading.
In Proceedings of the 27th Annual International Con-
ference on Mobile Computing and Networking, pages
201–214, 2021.

[66] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 724–739, 2021.

[67] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 559–578, 2022.

[68] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for
goodput-optimized large language model serving. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 193–210, 2024.

[69] Chenchen Zhu, Yihui He, and Marios Savvides. Feature
selective anchor-free module for single-shot object de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 840–
849, 2019.

USENIX Association 2025 USENIX Annual Technical Conference    695



Appendix

A.1 Mathematical Representation of Basic
MILP Formulation

As shown in Table 3, the MILP formulation takes as input
the cluster configuration, the latency SLO, and profiling in-
formation of the target DNN model. For the convenience of
formulating mathematical constraints, the raw inputs are fur-
ther processed and transformed into different representations.
Table 4 lists both output decision variables and intermediate
decision variables that will only be used inside the MILP for-
mulation. The MILP solution outputs the partition points for
each pipeline, as well as the batch size and number of GPUs
used by each partition. The MILP formulation maximizes the
total inference throughput across all pipelines in the cluster:

maximize ∑l xl (1)

The optimization is under the constraint that inference la-
tency of each pipeline does not exceed the latency SLO, and
the total number of GPUs allocated across partitions does not
exceed the cluster configuration. The constraints are formally
formulated below.

Table 3: Inputs to the MILP formulation (top) and values derived
from inputs (bottom).

Input Description

Nk GPU count of GPU class k
T The latency SLO

Lkbi The inference latency of layer i under batch size b on
GPU class k

Si The output feature map size of layer i under batch size 1

Dl Number of partitions in pipeline l
Gk A list of tuples (l,d) indicating GPU class k is used for

partition d of pipeline l
M Number of layers in the DNN model

Cldbi j The inference latency of DNN partition consisting of
layers i to j (exclusive) with batch size b on GPU class
associated with (l,d)

Xldbi j The inference throughput of DNN partition consisting
of layers i to j (exclusive) with batch size b on a single
GPU associated with (l,d)

Yb j The transfer latency of the feature map of layer j− 1
with batch size b

Table 4: Output (top) and intermediate (bottom) decision variables
in the MILP formulation.

Variable Description

pldbi j ∈ {0,1} Whether partition d in pipeline l spans from
layer i to j (exclusive) and runs at batch size b

gldbi j ∈ N Number of GPUs used by partition d in
pipeline l

tld ∈ R≥0 Inference latency of partition d in pipeline l
xld ∈ R≥0 Inference throughput of partition d in pipeline l
nld ∈ R≥0 Transfer latency between partition d and parti-

tion d +1 in pipeline l
xl ∈ R≥0 Inference throughput of pipeline l

∑bi j pldbi j = 1 ∀l,d (2)

pldbi j = 0 ∀l,d,b, i ≥ j (3)

∑bi pldbi j = 1 → ∑b′ j′ pld′b′i′ j′ = 1 ∀l,d′ = d +1, i′ = j (4)

∑b j pldbi j = 1 ∀l,d = 0, i = 0 (5)

∑bi pldbi j = 1 ∀l,d = Dl −1, j = M
(6)

pldbi j = 0 → gldbi j = 0 ∀l,d,b, i, j (7)

pldbi j = 1 → gldbi j ≥ 1 ∀l,d,b, i, j (8)

∑bi j,(l,d)∈Gk
gldbi j ≤ Nk ∀k (9)

tld = ∑bi j Cldbi j · pldbi j ∀l,d (10)

xld = ∑bi j Xldbi j ·gldbi j ∀l,d (11)

nld = ∑bi j Yb j · pldbi j ∀l,d (12)

∑d tld +∑d nld ≤ T ∀l (13)

xl = mind xld ∀l (14)

Equations (2)–(6) ensure DNN partitions are well formed,
i.e., partitions cannot be empty, the last and first layers in
adjacent partitions must also be adjacent, and the first parti-
tion within a pipeline must start with the first layer, while the
opposite applies to the last partition. Equation (9) represents
the constraint on the total GPU count. Equations (10)–(12)
calculates for each partition the inference latency, inference
throughput, and transfer latency, respectively. Finally, Equa-
tion (13) enforces the latency SLO constraint.

The formulation can be easily scaled to the case of multiple
DNN models, where each DNN model has its own set of deci-
sion variables and constraints, with the additional constraint
that the total number of GPUs allocated to all DNN models
does not exceed the cluster configuration.

696    2025 USENIX Annual Technical Conference USENIX Association



A.2 Mathematical Representation of MILP
Formulation with Batch Size Unification

Table 5: Inputs to the MILP formulation (with batch size unification)
(top) and values derived from inputs (bottom).

Input Description

Nk GPU count of GPU class k
T The latency SLO

Lkvbi The inference latency of block i under batch size b on
virtual GPU of size 1/v and GPU class k

Si The output feature map size of block i under batch
size 1

Dl Number of blocks in pipeline l
Gk A list of tuples (l,d) indicating GPU class k is used for

partition d of pipeline l
M Number of layers in the DNN model

Cldvbi j The inference latency of DNN partition consisting of
blocks i to j (exclusive) with batch size b on 1/v virtual
GPU of GPU class associated with (l,d)

Xldvbi j The inference throughput of DNN partition consisting
of blocks i to j (exclusive) with batch size b on 1/v
virtual GPU of GPU class associated with (l,d)

Yb j The transfer latency of the feature map of block j−1
with batch size b

Table 6: Output (top) and intermediate (bottom) decision variables
in the MILP formulation with batch size unification.

Variable Description

pldvbi j ∈ {0,1} Whether partition d in pipeline l spans from
block i to j (exclusive) and runs at batch size b
on 1/v virtual GPU

gldvbi j ∈ N Number of virtual GPUs used by partition d
in pipeline l

tld ∈ R≥ 0 Inference latency of partition d in pipeline l
xld ∈ R≥0 Inference throughput of partition d in

pipeline l
nld ∈ R≥0 Transfer latency between partition d and par-

tition d +1 in pipeline l
xl ∈ R≥0 Inference throughput of pipeline l

The inputs and decision variables to the MILP formulation
with batch size unification (Table 5 and Table 6) are similar to
that of the basic MILP formulation (§A.1), with the exception
that both the model profiling inputs and decision variables
now include an additional dimension representing virtual
GPUs, and that the profiling inputs are for blocks instead of
layers, and the same applies to the last two dimensions of the
output decision variables. The MILP formulation optimizes
for the same throughput objective:

maximize ∑l xl (15)

The optimization is under a similar set of constraints as
shown below.

∑vbi j pldvbi j = 1 ∀l,d (16)

pldvbi j = 0 ∀l,d,v,b, i ≥ j
(17)

∑vi pldvbi j = 1 → ∑v′ j′ pld′v′bi′ j′ = 1

∀l,b, d′ = d +1, i′ = j (18)

∑vb j pldvbi j = 1 ∀l,d = 0, i = 0
(19)

∑vbi pldvbi j = 1

∀l,d = Dl −1, j = M (20)

pldvbi j = 0 → gldvbi j = 0 ∀l,d,v,b, i, j
(21)

pldvbi j = 1 → gldvbi j ≥ 1 ∀l,d,v,b, i, j
(22)

∑vbi j,(l,d)∈Gk
gldvbi j/v ≤ Nk ∀k (23)

tld = ∑vbi j Cldvbi j · pldvbi j ∀l,d (24)

xld = ∑vbi j Xldvbi j ·gldvbi j ∀l,d (25)

nld = ∑vbi j Yb j · pldvbi j ∀l,d (26)

∑d tld +∑d nld ≤ T ∀l (27)

xl = mind xld ∀l (28)

The major differences lie in Equations (18) and (23). In
Equations (18), the dimension b is not summed over, which
enforces that the same batch size used by the first partition will
also need to be used by the next partition. In Equations (23),
the decision variable g represents the count of virtual GPUs,
thus, dividing it by v gives us the number of physical GPUs
that the partition uses (note that v is not a decision variable
and such divisions are allowed in MILP).

USENIX Association 2025 USENIX Annual Technical Conference    697



A.3 The Resource Reservation-Based Adap-
tive Batching Algorithm

Algorithm 1 shows the pseudocode for the resource
reservation-based adaptive batching algorithm, which was
explained in §5.4. To recap, the algorithm first identifies a
pooled pipeline that can complete a batched inference at the
pipeline’s unified batch size bsi with the shortest waiting time
(lines 4–8). It then searches for the largest batch size that can
satisfy the SLO (lines 9–14).

The two supporting functions used by §5.4, probe() and
reserve(), is shown in Algorithm 2. The helper function
earliestSlot(res, t, l) returns the earliest time (no ear-
lier than t) when a list of resources res are free for duration
l. First, since feature map transfer requires the network re-
sources on both sending and receiving sides to be available at
the same time, we use earliestSlot(res, t, l) to find
the earlist available transfer slot that works for both the last
GPU’s uplink and current GPU’s downlink (lines 12–14). Af-
ter reserving the two links for feature map transfer, we update
current time t and then find and reserve the earliest available
inference time slot for the current GPU (lines 15–16).

Algorithm 1: Resource reservation-based adaptive
batching.

1 Inputs: q (pending requests sorted by arrival);
2 pooled_pipelines (pooled pipelines in the cluster);
3 while true do

// choose the pooled pipeline
4 p∗ = nil, t∗ = ∞;
5 for p in pooled_pipelines do
6 r = probe(p, p.bs);
7 if waitTime(r) < t∗ then
8 t∗ = waitTime(r), p∗ = p;

// choose the pipeline path and batch size
9 bs∗ = nil, path∗ = nil,resv∗ = nil;

10 for bs = p∗.bs down to 0 do
11 path,resv = probe(p∗, bs);
12 if finishTime(resv) ≤ q[0].deadline then
13 bs∗ = bs, path∗ = path,resv∗ = resv;
14 break;

// perform request drop, wait, or dispatch
15 if bs == 0 then
16 drop q[0];
17 else if q.length < bs then
18 wait for more requests till requests in q are about to

miss deadline;
19 else
20 reserve(r);
21 dispatch first bs requests in q according to r;

Algorithm 2: Resource reservation functions.
1 function probe(pooled_pipeline, bs)
2 Inputs: The assumed selected pooled pipeline and the

batch size;
3 Outputs: The optimal pipeline path and the resources

that need to be reserved;
4 tg = now(), path = [], resv = [];
5 for partition in pooled_pipeline do
6 ln = calcNetLat(partition, bs);
7 li = calcInferenceLat(partition, bs);

8 t∗ = ∞, r∗ = [];
9 for gpu in partition do

10 t = tg, r = [];
// est. time to transfer feature map

11 if not first partition then
12 u = lastGpu.netUL, d = gpu.netDL;
13 t = earliestSlot([u, d], t, ln);
14 r += [{u, t, ln}, {d, t, ln}], t += ln;

// est. time to finish inference
15 t = earliestSlot([gpu], t, li);
16 r += [{gpu, t, li}], t += li;
17 if t < t∗ then
18 t∗ = t, r∗ = r, gpu∗ = gpu;

19 tg = t∗, lastGpu = gpu∗;
20 path += gpu∗, resv += r∗;

21 return (path, resv); // resource usage

22 function reserve(resv)
23 for {res, start, dur} in resv do
24 markReserved(res, start, dur);

698    2025 USENIX Annual Technical Conference USENIX Association


	Introduction
	Motivation and Key Idea
	Prelude to PPipe: Basic MILP Formulation
	Challenges in Developing a Working System
	PPipe Design
	Architecture Overview
	DNN Pre-Partitioning
	Batch Size Unification
	Resource Reservation-Based Adaptive Batching

	Implementation
	Evaluation
	Methodology
	End-to-end Results
	Testbed Results
	Ablation Study: Benefit of Resource Reservation
	Microscopic Analysis
	Sensitivity Analysis

	Related Work
	Conclusion
	Mathematical Representation of Basic MILP Formulation
	Mathematical Representation of MILP Formulation with Batch Size Unification
	The Resource Reservation-Based Adaptive Batching Algorithm


