Skip to main content
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • Registration Information
  • Registration Discounts
  • At a Glance
  • Calendar
  • Technical Sessions
  • Birds-of-a-Feather Sessions
  • Poster Session
  • Sponsorship
  • Workshops
  • Activities
  • Hotel and Travel Information
  • Services
  • Students
  • Questions
  • Help Promote!
  • Flyer PDF
  • For Participants
  • Call for Papers
  • Past Symposia
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Tweets by USENIXSecurity
  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy
Tweet

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

Authors: 

Mihir Bellare and Sriram Keelveedhi, University of California, San Diego; Thomas Ristenpart, University of Wisconsin-Madison

Abstract: 

Cloud storage service providers such as Dropbox, Mozy, and others perform deduplication to save space by only storing one copy of each file uploaded. Should clients conventionally encrypt their files, however, savings are lost. Message-locked encryption (the most prominent manifestation of which is convergent encryption) resolves this tension. However it is inherently subject to brute-force attacks that can recover files falling into a known set. We propose an architecture that provides secure deduplicated storage resisting brute-force attacks, and realize it in a system called DupLESS. In DupLESS, clients encrypt under message-based keys obtained from a key-server via an oblivious PRF protocol. It enables clients to store encrypted data with an existing service, have the service perform deduplication on their behalf, and yet achieves strong confidentiality guarantees. We show that encryption for deduplicated storage can achieve performance and space savings close to that of using the storage service with plaintext data.

Sriram Keelveedhi, University of California, San Diego

Mihir Bellare, University of California, San Diego

Thomas Ristenpart, University of Wisconsin-Madison

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {180368,
author = {Sriram Keelveedhi and Mihir Bellare and Thomas Ristenpart},
title = {{DupLESS}: {Server-Aided} Encryption for Deduplicated Storage},
booktitle = {22nd USENIX Security Symposium (USENIX Security 13)},
year = {2013},
isbn = {978-1-931971-03-4},
address = {Washington, D.C.},
pages = {179--194},
url = {https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bellare},
publisher = {USENIX Association},
month = aug
}
Download
Bellare PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or register to post comments
  • Privacy Policy
  • Contact Us

© USENIX
EIN 13-3055038