DupLESS

Server-Aided Encryption for Deduplicated Storage

Mihir Bellarel Sriram Keelveedhit Thomas Ristenpart?

lUniversity of California, San Diego 2University of Wisconsin-Madison

D e d U p | | Cat 1ION Avoid storing multiple copies of the same data

Deduplication

happens here

Storage service

7

[SFESEEEERTEINN

Crr
FEEN

————
| BFFFFFENER

G

Store f iff new

Savings after n uploads

Used in outsourced storage services gi L No dedup
Dropbox ;. 0gie Drive Dedup

n - size of f
1-size of f

Savings of 50% in enterprise networks [MB11]

Our goals

Untrusted
Storage service

1

LT)
| EEEERERERRERAT

=

ST

ey e ey e e e e e e

Compromis

ol

Store C iff new

1. Secure deduplication: Dedup + Strong security against untrusted storage

2. Compromise resilience: Meaningful security under client compromise

Overview
DupLESS (DuplicatelLess Encryption for simple storage)

First solution to achieve secure deduplication
with compromise resilience

DupLESS Client Storage service
o Shared semi-trusted server
'.::: rd - ===

A
v

Server-aided encryption

* Can be deployed transparently over existing systems
* Implementations over Dropbox, Google Drive
* Modest performance overhead over plaintext dedup

» Storage savings match plaintext dedup

Current approaches

Attempt 1: Client specific keys

[GSMBO03], [KRS*03], [KPR11]

Untrusted
Storage service

=

LI

ST

| REERERRRRRERDD

-

Store C iff new
A and Cg different

Deduplication cannot work

Attempt 2: Network-wide key

[BBOO7], [RS06]

Untrusted
Storage service

==

1003
L
1]

111

Store . iff new

No compromise resilience
All data is insecure even if one client is compromised

Attempt 3: Convergent Encryption

g To encrypt message m: To decrypt ciphertext ¢

Alice

\4

-

.

|
ol

~
7

1 2 [DCSO2]

1

H: Hash fn. -----------------
€ = (E,D): Enc. scheme ----

-->SHA256

* CTR[AES128]

Attempt 3: Convergent encryption

[ABC*02], [SGLMO08], ...

Untrusted
Storage service

=

1

LI

| AR RTETTRAREE

' sxwnranaaaginn

-

Store C iff new

v" Deduplication: Everyone encrypting f gets C1
v' Compromise resilience: No system-wide secret

Attempt 3: Convergent encryption

Brute force attacks: The dirty secret of convergent encryption

If m comes from S = {m,,m,, ..., m,}
attacker can recover m from ¢ « E(H(m), m)

BruteForceg(c)

Form; € S do
m' < D(H(m;), c)
If m; = m'then return m;

Attack runs in time proportional to |S|

i
Security only when |S| too large to exhaust <----- Unpredictable

Real files are often predictable!
Message-Locked encryption [BKR13]

* Generalizes convergent encryption

e Captures properties needed for secure deduplication

Thm: Brute-force attacks exist for all message-locked encryption schemes

State of the art

Client specific Network Convergent
keys wide key encryption

Deduplication N Y Y

“eationce. Y N Y
f

atackrestionce Y Y N

DupLESS: First to achieve all three properties!

Property

Server-aided encryption

Our key insight: Server-aided encryption

File server

==
N
=

| AR TERRANE

Store C iff new

F: A pseudorandom function (PRF)
Examples: AES128, HMAC[SHA256]

Deduplication: Any client encrypting f produces same C*

C?ciphertexts cannot be dedup’ed, but they are tiny

Dealing with attacks

Authenticate

clients File server

|

(/]

77117

HETEn)

-

—KeyServer

111111]

i

Store C iff new

Online
bruteforce
Attack type Reason for security Best attack
External attacks Authenticating clients Break encryption (very hard)
Client compromise KS interaction overhead Online brute-force (slow)

_ Obliviously evaluating F Brute-force attacks

Oblivious PRF (OPRF) protocol INR97]

F: A Pseudorandom function (PRF)

KeyServer Client

H({f)
VK

v

A

\ 4

v

A

F(Ks, H(f))

Verifiable OPRF: Client can verify K = F (K, H(f))

Security, informally:

1. Fisa PRF (when not given VK)

2. Server learns nothing, client learns only K

3. Client can detect when server does not return K

Oblivious PRF protocol [NR97]

Securely evaluate AES circuit? Too slow!

Oblivious PRFs from
Blind Signatures from RSA-FDH [C82, BNPSO09]

Server signs messages with
Obliviousness through blinding

e Verifiable
* Single round
* KeyServer: 1 RSA exponentiation

e C(lient: 2 RSA exponentiations + 1 inverse

Client-KS protocol

KeyServer

CERT;, K

Standard protocol

TLS 2way auth handshake
+ OPRF query & response over secure channel

4 rounds for each query

Optimized protocol

Session initialization

TLS 2way auth handshake

Session key sent over secure channel

Making a query
Client sends OPRF input

KeyServer performs checks, returns OPRF output

Assume PKI with trusted CA

Client
CERT., VK

— QOver UDP

Preventing query forgery
Per session keys + sequence numbers + MAC

1 round for each query

KS performance

Naive HTTPS based 384ms
Initialization 278 ms
Query response (Low load) 83 ms

Query response (Heavy load) 118 ms

Ping times 78 ms
KS THROUGHPUT
- -Percentage of queries replied
100 100 100 10
78\
58\
40
400 800 1600 3200 6400 12800 25600 Queries

. per second
KS located on an Amazon EC2 mlLarge instance.

Heavy load = 3k queries per second

Rate limiting SPEED

LIMIT
Goal: Slow down online brute-force trials 6 5

from attacker controlled clients

Strategy: Limit clients to g queries per epoch
One epoch lasts T units of time

Setting bound ¢

el

Too low Too high
Normal usage affected Attacks not slowed down

Setting epoch duration 7
* Must handle bursty workloads
* Systems exhibit periodic patterns, Eg: 1 week

Randomized encryption when KS unavailable
e Availability not affected by bad parameter choices

Rate limiting can slow down brute-force attacks by 4000x

DupLESS system design

DupLESS (Duplicateless Encrypt|on for simple storage)

e e

-

\

KeyServer

« - - = DupLESS

KeyServer S ice (SS
Module [torage service (SS)

4
4

i B SR

»

Simple file system API
put, get, list, delete,
Rate limiting search, mkdir, move ‘

e
LIy

| JETERFXINARE
J/ T

Implement API over encrypted data
Encrypt and decrypt files

Handle file names and paths

Run Transparently : ¢« | ow overhead

 Works when KS is down
* No client-side state

A put query in DupLESS

p: Path
f: File name
m: Contents Client-KS

. protocol KeyServer < .
Client Module torage service

KeyServer

e
1]

DT
AT

A 4

Put (p, f,m): C,/Cs0: C*
Cp/Cr1: C?
1 Derive key K for m from KeyServer

Deterministic

Cp < DAE(K,, p); Cr < DAE(Ky, f)---mmmmmmmmmmmmme " authenticated

2
3 If not shouldDedup(p, f, m) then pick K at random encryption [RS07]
4 |

C1<—E(K,m);C2<—E(KA,K) |
el > Dedup heuristics
5 PutSS (Cp, Cr0,C1), PutSS (Cp, Cr1,C?) e.g. file length

Performance: Latency

DupLESS client

* Written in Python, command-line interface

* Dropbox and Google Drive can work as storage service

Put

ol6 |- | I T]
- DupLESS

------- Convergent Encryption

— Dropbox

2{] 24 28 2]2 216
Overhead*® 16% 14%

X-axis: File size (KB) Y-axis: Time (ms)

= = = DupLESS
Dropbox

Overhead* 10% 5%

* Overhead of DupLESS over Dropbox

Bandwidth overhead

DupLESS bandwidth overhead

) 16% <1%
compared to plain Dropbox

Storage overhead

DupLESS storage overhead

compared to dedup over plaintexts -

Amazon AMI dataset, total size: 2035 GB

g -
- ~

Conclusion

p KeyServer

e = = = DupLESS

\ 4

Encrypted deduplication with the aid of a KeyServer

* First solution to provide secure deduplication + compromise resilience
* Can be deployed transparently over existing systems

* Implementations over Dropbox, Google Drive
* Nominal performance overhead over plaintext dedup

» Storage savings match plaintext dedup

Future work

* Supporting keyword search

* Defense in depth at the KeyServer

* Combine DoS prevention and rate-limiting

e Support complex file-systems

* NFS, CIFS, etc.

* Exploring dedup heuristics

* Rules on which files to select for dedup

DupLESS

Server-Aided Encryption for Deduplicated Storage

Mihir Bellarel Sriram Keelveedhi? Thomas Ristenpart?

Thank you!

Paper available at
eprint.iacr.org/2013/429.pdf

Code available at
cseweb.ucsd.edu/users/skeelvee/dupless

lUniversity of California, San Diego 2University of Wisconsin-Madison

http://eprint.iacr.org/2013/429.pdf
http://cseweb.ucsd.edu/users/skeelvee/dupless/

