ValidaTor: Domain Validation over Tor

Authors: 

Jens Frieß, National Research Center for Applied Cybersecurity ATHENE and Technische Universität Darmstadt; Haya Schulmann, National Research Center for Applied Cybersecurity ATHENE and Goethe-Universität Frankfurt; Michael Waidner, National Research Center for Applied Cybersecurity ATHENE and Technische Universität Darmstadt

Abstract: 

Domain Validation (DV) is the primary method used by Certificate Authorities (CAs) to confirm administrative control over a domain before issuing digital certificates. Despite its widespread use, DV is vulnerable to various attacks, prompting the adoption of multiple vantage points to enhance security, such as the state of the art DV mechanism supported by Let’s Encrypt. However, even distributed static vantage points remain susceptible to targeted attacks. In this paper we introduce ValidaTor, an HTTP-based domain validation system that leverages the Tor network to create a distributed and unpredictable set of validators. By utilizing Tor’s exit nodes, ValidaTor significantly increases the pool of available validators, providing high path diversity and resilience against strong adversaries. Our empirical evaluations demonstrate that ValidaTor can achieve the validation throughput of a commercial CA and has the potential to scale to a validation volume comparable to Let’s Encrypt, while using minimal dedicated infrastructure and only a small fraction (~0.1%) of Tor’s available bandwidth. While unpredictable selection of validators makes ValidaTor fully resistant to targeted attacks on validators, we also show the use of Tor nodes improves path diversity and thereby the resilience of DV to subversion by well-positioned ASes, reducing the number of Autonomous Systems (ASes) capable of issuing fraudulent certificates by up to 27% compared to Let’s Encrypt. Lastly, we show that the chance of subversion by malicious, colluding exit nodes is negligible (≤ 1% even with a quarter of existing exit nodes). We make the code of ValidaTor as well as the datasets and measurements publicly available for use, reproduction, and future research.

NSDI '25 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {306021,
author = {Jens Frie{\ss} and Haya Schulmann and Michael Waidner},
title = {{ValidaTor}: Domain Validation over Tor},
booktitle = {22nd USENIX Symposium on Networked Systems Design and Implementation (NSDI 25)},
year = {2025},
isbn = {978-1-939133-46-5},
address = {Philadelphia, PA},
pages = {1367--1380},
url = {https://www.usenix.org/conference/nsdi25/presentation/friess},
publisher = {USENIX Association},
month = apr
}

Presentation Video