
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

ValidaTor: Domain Validation over Tor
Jens Frieß, National Research Center for Applied Cybersecurity ATHENE

and Technische Universität Darmstadt; Haya Schulmann, National Research Center
for Applied Cybersecurity ATHENE and Goethe-Universität Frankfurt;

Michael Waidner, National Research Center for Applied Cybersecurity ATHENE
and Technische Universität Darmstadt

https://www.usenix.org/conference/nsdi25/presentation/friess

ValidaTor: Domain Validation over Tor

Jens Frieß§‡, Haya Schulmann§†, and Michael Waidner§‡

§National Research Center for Applied Cybersecurity ATHENE
‡Technische Universität Darmstadt †Goethe-Universität Frankfurt

Abstract
Domain Validation (DV) is the primary method used by Cer-
tificate Authorities (CAs) to confirm administrative control
over a domain before issuing digital certificates. Despite its
widespread use, DV is vulnerable to various attacks, prompt-
ing the adoption of multiple vantage points to enhance se-
curity, such as the state of the art DV mechanism supported
by Let’s Encrypt. However, even distributed static vantage
points remain susceptible to targeted attacks. In this paper
we introduce ValidaTor, an HTTP-based domain validation
system that leverages the Tor network to create a distributed
and unpredictable set of validators. By utilizing Tor’s exit
nodes, ValidaTor significantly increases the pool of available
validators, providing high path diversity and resilience against
strong adversaries.

Our empirical evaluations demonstrate that ValidaTor can
achieve the validation throughput of a commercial CA and
has the potential to scale to a validation volume comparable to
Let’s Encrypt, while using minimal dedicated infrastructure
and only a small fraction (~0.1%) of Tor’s remaining available
bandwidth. While unpredictable selection of validators makes
ValidaTor fully resistant to targeted attacks on validators, we
also show the use of Tor nodes improves path diversity and
thereby the resilience of DV to subversion by well-positioned
ASes, reducing the number of Autonomous Systems (ASes)
capable of issuing fraudulent certificates by up to 27% com-
pared to Let’s Encrypt. Lastly, we show that the chance of
subversion by malicious, colluding exit nodes is negligible
(≤ 1% even with a quarter of existing exit nodes).

We make the code of ValidaTor as well as the datasets and
measurements publicly available for use, reproduction, and
future research.1

1 Introduction
Digital public key certificates associated with Internet do-

mains are fundamental to Internet security. These certificates
include crucial information such as the domain name and the

1https://github.com/jenfrie/tova

public validation key corresponding to the domain owner’s
private key, ensuring the authenticity of communicating par-
ties and enabling secure connections. The correct issuance
of certificates is critical, as any compromise could allow an
adversary to impersonate a legitimate service and intercept
sensitive communications.

Certificate Authorities (CAs) use Domain Validation (DV)
to verify domain ownership before issuing a certificate. This
process typically involves generating a random challenge-
response pair, and having the domain owner place the re-
sponse at the challenged location under the target domain,
e.g., in a DNS TXT record or an HTTP-hosted .txt file. The
CA validates the domain by querying for the challenge and
checking that the obtained response matches the challenge. If
the CA receives the correct response, the domain owner has
successfully demonstrated control over the domain, and the
CA issues a signed certificate for the domain with the public
key provided by the domain owner.

Although the Public Key Infrastructure (PKI) security relies
on the correctness of DV for checking control over domains,
the DV procedure itself remains vulnerable. The challenge-
response process of DV is conducted over unencrypted and
unauthenticated channels and heavily relies on the Domain
Name System (DNS) RFC1035 and the Border Gateway Pro-
tocol (BGP) RFC4271. Both are largely unprotected and
vulnerable to hijacking attacks [1, 2], and adversaries have
launched such attacks, e.g., to steal cryptocurrency [3–5].

The attacks and the importance of certificate security trig-
gered research efforts to identify vulnerabilities in the DV pro-
cedure and to develop a more secure design. Initially, vanilla
DV was performed with a single request to the target domain.
However, it was shown that an adversary could manipulate the
challenge request of a CA, causing it to be executed against
servers that the adversary controls [6]. As a result, the largest
CA, Let’s Encrypt, developed MultiVA, which uses additional
vantage points [7]. During the validation process a number of
vantage points independently send a challenge to the target
domain. MultiVA became an official market standard with
Automated Certificate Management Environment (ACME) in

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1367

https://github.com/jenfrie/tova

RFC8555. The use of multiple vantage points aims to increase
security despite being conducted over unprotected channels
since it is assumed that a realistic adversary cannot control
multiple vantage points and it is more difficult to attack them
concurrently than a single vantage point.

The MultiVA was also extensively validated in the research
community [7, 8]. Simulations have shown that the average
resilience of a customer domain against issuance of fraud-
ulent certificates is 88.6% [9], reflecting the percentage of
adversarial ASes that cannot intercept communication via
same-prefix BGP hiijacks to a sufficient number of vantage
points to complete DV successfully. However, the analysis
of [9] excluded a number of attack vectors, such as sub-prefix
hijacks, as well as attacks against the DNS resolvers. Another
important aspect that was not considered in these simulations
is the dependency between DNS and the inter-domain rout-
ing infrastructures, which further increases the attack surface:
DNS cache poisoning can be leveraged to facilitate BGP hi-
jacks [10]. Indeed, [11] exploited a property in the software
of many popular DNS resolver implementations to force all
the vantage points to query one specific nameserver of the
adversary’s choice. This reduced the distributed defense to
just one weak link, the nameserver. By hijacking the prefix of
the nameserver, the adversary could intercept communication
with all the vantage points. This shows that fixed vantage
points, i.e., always at the same IP address or on the same IP
prefix, allow the adversary to launch targeted attack against
them in advance, before initiating the domain validation pro-
cess. Both these issues were exploited in [11] to subvert DV
from multiple vantage points, indicating that merely increas-
ing the number of vantage points does not suffice to fully
prevent targeted attacks.

A resilience of 88.6% offered by MultiVA [9] against inter-
ceptions for a critical building block like PKI is arguably not
sufficient. Ideally we should achieve a 100% resilient PKI.
Furthermore, 88.6% resilience considers only BGP hijacks,
but does not account for other common attack vectors tar-
geting the validators and connected infrastructure, e.g., DNS
cache poisoning or infiltration of on-path routers.

The main problem, as pointed out by [11], is that current
vantage points are static. In addition to being distributed, the
vantage points’ selection needs to be unpredictable. If the
adversary does not know the addresses of the vantage points
involved in a given validation, it cannot attack them.

Therefore, to improve security, the validators should be
selected at random from the set of vantage points. The pool
of vantage points should be large enough that it is infeasible
to hijack any significant fraction. With a dedicated deploy-
ment, such as that of Let’s Encrypt, generating such a large
pool is not practical since it would require setting up a sig-
nificant amount of geographically distributed infrastructure,
prohibitively increasing the costs. In fact, scalability and cost
are a major inherent limitation of any dedicated infrastructure.

Contributions. Motivated by the limitations in the existing

domain validation mechanisms, we aim to design a system
that resolves them. We develop a novel approach for dis-
tributed domain validation using Tor [12], dubbed ValidaTor.
With over 2,200 Tor exit nodes, located across 280 unique
BGP origins and 1,221 unique IP addresses, our design sub-
stantially increases the scale of the distributed infrastructure
available to DV. This is a huge improvement compared to the
7 BGP origins currently used by Let’s Encrypt. It allows a
randomized selection of a configurable number of validators,
effectively preventing BGP hijack attacks for subverting vali-
dation. We perform extensive evaluations to demonstrate the
security and performance of our proposal based on real-world
measurements and simulations. Our contributions:

• Conceptually, we offer a novel use of the Tor network
to address practical limitations in DV. Our design and imple-
mentation of ValidaTor resolves the scalability of massively
distributed DV and enhances its resilience.

• We propose a path overlap metric to capture the diversity
of paths taken from validators to target domains through the
BGP network, allowing for easy comparison of DV deploy-
ments with regard to threats from well-positioned ASes.

• Our experimental evaluations show that ValidaTor de-
creases average path overlap by ~50% compared to Let’s
Encrypt’s MultiVA, translating to a reduction of 21% with 3
validators (up to 27% with 7 validators) in potential fraudulent
certificates from well-positioned ASes. Combined with the
resistance to BGP hijacks through unpredictable selection of
validators, this significantly hardens DV against subversion.

• We show that with our selection method the chance of
an attacker controlling validation with malicious Tor nodes is
negligible, amounting to less than 1% even when controlling
a quarter of all existing Tor nodes.

• We demonstrate a validation rate of up to 11.9 validations
per second with 5 validators and estimate that, even at the
scale of the entire Web PKI, Tor’s remaining bandwidth would
only be taxed by 0.11%. The median duration for a single
validation in this case is ~2 seconds, with at least 95% of all
validations under 6 seconds. This is comparable with the use
of the certbot ACME client.

• We design ValidaTor so that it enables easy adoption
and requires no changes to the existing infrastructure of the
CAs, which is critical to motivate deployment and avoid mis-
configuration. We make our prototype and the collected data
available for public use.

Ethical considerations. We ensure that the design of Val-
idaTor is ethical, does not burden the Tor network and does
not interfere with the connections of other Tor clients. As de-
tailed in Section 6.4, the expected network load on Tor from
a full switch to ValidaTor by the entire Web, is 635 MBit/s,
around 0.1% of the remaining available bandwidth. We also
take extensive measures to ensure that our experiments follow
the ethical guidelines for network measurements [13, 14].

Organization. We review Related Work in Section 2 and
provide an overview of Tor network in Section 4. The design

1368 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and implementation of ValidaTor are given in Section 5. We
provide experimental evaluations in Section 6 and security
analysis against different attack vectors is in Section 7. We
conclude our paper in Section 9.

2 Related Work
Security of DV mechanisms in CAs have been extensively

studied. We review existing literature related to DV:
Vulnerabilities in DV. Domain validation mechanisms are

susceptible to various attacks that can undermine the security
of digital certificates. In [15], the authors outline general secu-
rity considerations for CAs, highlighting potential weaknesses
in various validation methods. Compromised or maliciously
configured DNS servers can be exploited to redirect validation
requests to attacker-controlled servers [16]. Hijacking the DV
process is easy against a vanilla DV, where a single validator
communicates with a single server in the target domain.

Such attacks can also be extended to MultiVA, where the
validation nodes are either fixed, predictable or the set of pos-
sible validators is small, allowing the adversary to attack them
all in advance. [11] showed that in those cases adversaries can
force all the DV nodes to run the validation against a server
of the attacker’s choice.

These methods allow attackers to pass validation checks
and obtain certificates for domains they do not own, posing a
serious risk to web security. Furthermore, [17] demonstrated
specific attacks on DV mechanisms, including DNS hijacking
and email-based validation exploits, which can be used to
fraudulently obtain certificates for domains not owned by the
attacker. [18] described man-in-the-middle (MitM) attacks
and cache poisoning as significant threats to the integrity of
domain validation and [6] demonstrated vulnerability of pop-
ular CAs to cache poisoning, allowing adversaries to issue
fraudulent certificates. These studies underline the necessity
for rigorous validation protocols to mitigate the risks of do-
main spoofing and unauthorized certificate issuance.

Measurements of DV. Empirical evaluations of CA prac-
tices have been crucial in assessing the real-world effective-
ness of DV and impact of attacks on DV mechanisms. [19]
performed a large-scale analysis of HTTPS traffic to assess
the security of DV implementations across various CAs. Their
findings revealed inconsistencies in how CAs implement and
enforce DV protocols, highlighting potential security gaps.

[20] measured the adoption of security enhancements such
as DNS Security Extensions (DNSSEC) and found that de-
spite increased awareness, adoption rates remain low. This
indicates a persistent vulnerability in the DV ecosystem due
to the reliance on insecure DNS infrastructure. Similarly, [21]
evaluated the adoption of DNSSEC by CAs, finding that while
adoption rates were increasing, significant gaps remained in
ensuring consistent and secure validation processes across
the board. Additionally, [22] evaluated the security of email-
based DV methods, showing that attackers can exploit weak
email configurations to intercept validation emails, further

emphasizing the need for robust security measures.
Improvements to DV. In response to identified vulnerabil-

ities and attacks, various improvements to DV protocols have
been proposed. [23] presented enhanced validation methods
leveraging DNSSEC to provide cryptographic guarantees of
domain ownership, although its adoption and security still
remain a challenge [24]. [25] suggested a multi-factor vali-
dation approach that combines DNS-based validation with
additional verification steps such as HTTP-based challenges
and validation token usage.

Recently, [26] proposed ADDVent: the idea is to inflate the
infrastructure available to DV by crowdsourcing web clients
over an advertisement network. This approach is expensive
due to the involved costs of advertisement network. Another
issue is the trust required in the advertisement network - a
malicious network can subvert the security of DV.

Despite significant research efforts in the area of DV, the
limitations to deployment of distributed DV introduced by
the need for dedicated infrastructure has so far not been ad-
dressed. Nevertheless, the limited number of vantage points
performing validation and their fixed location played a major
role in attacks against DV, exposing the PKI to fraudulent
certificates. In this work we aim to resolve these limitations
by designing ValidaTor: DV based on Tor.

3 Tor vs. Other Proxies
Since ValidaTor leverages the Tor network first and fore-

most as a massively distributed set of proxies, it is worth
discussing alternative solutions that offer the same capabil-
ities for randomized, distributed DV, without some of the
constraints incurred by Tor.

Dedicated volunteer networks. RIPE Atlas [27] and
NLNOG RING [28] are examples of volunteer-run multi-
perspective systems. The former is the RIPE NCC’s global
Internet connectivity measurement network, consisting of
volunteer-hosted probes that can be triggered to ping an arbi-
trary destination. The latter is a collective of machines exclu-
sively hosted by network operators, made available to partici-
pants for testing network connectivity.

In a similar manner, a distributed network of nodes used
exclusively for DV could be created. However, whereas in the
above use cases there is little incentive for malicious behavior,
with DV there is a strong incentive specifically for adversaries
to volunteer and control the validation nodes, acting benignly
until an opportunity for a high-value certificate presents itself.
It is thus risky to allow such a volunteer network to be open
to public participation.

A dedicated network would likely only be feasible if (a)
participation is restricted to CAs (similar to NLNOG’s focus
on network operators) or (b) the network implements suffi-
cient monitoring and maintenance to guard against malicious
participants; something Tor already does. In any case, Valida-
Tor could be readily deployed now and incrementally moved
to a dedicated network, when such efforts get off the ground.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1369

Proxy providers. Rather than using Tor circuits, requir-
ing a minimum of two hops to reach a proxy node, we could
halve the performance costs2 by using a simple proxy provider.
However, this introduces two problems: (1) all proxies are
under the control of a single entity, thus requiring trust in a
third party. This could potentially be offset by diversifying
proxy providers. (2) We find that the costs are prohibitive and
threaten the economic viability of such a system. Based on a
cost comparison of popular providers, Brightdata [29] offers
the lowest rate at $0.42/GB. This covers only datacenter IPs,
but still provides over 770K IPs across 98 countries. Based
on our projected traffic volume of 317 MBit/s for exit nodes
(see Section 6.4), this would amount to $4.2M/year.

Public VPN providers. The same considerations apply to
VPN providers. These typically offer fewer, but still sufficient
and globally distributed, endpoints. ExpressVPN [30], for ex-
ample, offers 160 endpoints at $100/year, covering 5 devices.
Connecting to all 160 endpoints at once to avoid switching
overhead would thus result in just $3200/year. While this
supposedly covers unlimited bandwidth, with our estimated
traffic of ~1.1 TB/hour, this would likely violate terms of
service. It is questionable whether this traffic load could be
spread among a sufficient number of VPN providers to fall
within a reasonable bandwidth use per provider.

Other anonymity networks. Other solutions, like Nym,
require cryptocurrency payments to route traffic based on vol-
ume. It is also a smaller network than Tor with exit nodes on
the order of a few hundred. I2P’s focus is on services internal
to its overlay network, rather than proxying connections; for
DV we require proxies into the clearnet. The selection of
outproxies is comparatively limited, on the order of 10 to 100
and not intrinsically mapped out like in Tor.

To conclude, the alternatives to DV over Tor are either lim-
ited in their vantage points and capacity, expensive to use, or
pose higher engineering hurdles, which hinders their adop-
tion in the real world. As each alternative comes with its
own unique implementation challenges, we choose Tor as the
most promising candidate to explore in-depth. Tor removes
the financial cost as a barrier to the adoption of massively
distributed domain validation and allows an easy-to-deploy
solution with sufficient capacity.

4 Overview of Tor
Tor (The Onion Router) is a privacy-focused network of

volunteer-hosted “relays” designed to enable anonymous, pri-
vate communication over the Internet by routing users’ re-
quests through multiple encrypted hops, preventing traffic
analysis and censorship [12]. Onion proxies (OPs) are the
entrypoint for client software using Tor, responsible for man-
aging circuits and connections to websites. Onion routers
(ORs) are the relay-components which form the circuits. Each
OR decrypts one layer of encryption to determine the next OR
to forwards the packets to [31]. The exit node is the final node

2We would still need to use HTTPS proxies to protect data in transit.

in a circuit, decrypting the user’s original packet for its final
hop to the destination server. From the server’s perspective,
the traffic appears to originate from the exit node.

Crucially for ValidaTor, all traffic until the exit node is
protected. All unprotected traffic originates at the exit node,
including DNS resolution. ValidaTor can therefore leverage
a large variety of perspectives (~2.2K) using only a single
server. Because the exit node sees the original unencrypted
packet, it also presents the most critical threat. Node selection
is therefore designed to minimize the risk of malicious, collud-
ing exit nodes (see Section 7.5). Lastly, the list of active ORs
is maintained by directory servers. These servers provide
the necessary information for OPs to build circuits, which is
periodically updated and signed to ensure integrity [12].

In this work we leverage the Tor nodes as an overlay to gain
two critical benefits: first, we obtain a distributed infrastruc-
ture for DV with a large number of potential validator nodes
which supports unpredictable selection. Second, the DV com-
munication protocol benefits from security on the network
layer making it impossible for any adversary before the exit
node to observe the validation requests to the domains.

5 ValidaTor: Design & Implementation
We explain the limitations in existing DV mechanisms, and

discuss how we resolve them with our proposal, ValidaTor,
which uses Tor as an overlay to validate control over domains.
We present the design and the implementation of ValidaTor,
and provide motivation for different architectural choices.

5.1 Resolving Limitations in DV
The central problem with DV is that it is, by necessity,

unauthenticated and thus vulnerable to manipulation by a
Man-in-the-Middle (MitM) adversary. Successive improve-
ments to DV, as laid out in Sections 1 and 2, have therefore
focused on increasing the difficulty and resources required to
mount a successful attack, and limiting an attacker’s degree
of influence on the process as a whole.

With vanilla DV, an attacker needs to target only a single
server or intercept only a single communication path. With
MultiVA this is increased to 3 or 4 servers and previous re-
search has worked towards optimizing the distribution of these
vantage points. Nonetheless, there are several ways in which
the remaining attack surface can be further reduced and the
use of Tor can address all of these by routing DV requests
through a random set of exit nodes:

Dynamic validators. A static set of validators is vulner-
able to targeted attacks. Adversaries can plan and prepare
ahead of time, knowing exactly where their targets are. The
same applies for a random but small set of validators, which
could still be exhaustively targeted. Tor provides access to a
large number of endpoints, allowing a vast number of possible
combinations to be chosen from for each validation at random.
This unpredictability means an attacker needs to be prepared
to attack a significant fraction of these endpoints to have a

1370 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

webserver

worker
worker

...
worker

app
app
...

app

circuit
management

daemon

proxy

client
...

client

client

tor
container

guard nodeexit node
dns resolver

target
nameserver

target
webserver

tor network

......
guard nodeexit node...

dns resolver

Figure 1: Container design and domain validation request flow.

realistic chance of hijacking DV. The size and distribution of
the Tor network makes this prohibitively difficult.

Path diversity. A lack of diversity in the paths from val-
idators to target domains results in more choke points in the
network, where an attacker has a larger degree of influence.
Whether an adversary is already on-path or uses routing hi-
jacks to gain an on-path position, an attacker’s influence in
the BGP network is topologically constrained. Thus, reducing
the overlap of validation paths reduces the set of remaining
potential adversaries. The diverse set of endpoints offered by
Tor allows validators to be selected with a significantly higher
degree of distribution.

Denial-of-Service. Blocking DV by on-path adversaries
can lead to denial-of-service for certificate issuance. As Tor is
already set up to circumvent censorship through its distributed
nature, Tor-based DV benefits from this as well.

5.2 Design
The core idea behind our design of ValidaTor is to select

a random set of Tor exit nodes for each validation to act as
validators. The nodes involved in any given validation are
selected such that they are highly distributed in the BGP
network to limit the degree of path overlap.

Component interactions. To implement a proof-of-
concept for the ValidaTor server we construct a containerized
environment using Docker, containing the following compo-
nents: the Tor service, a custom circuit management service,
a webserver and Python Flask application for handling the
validation logic, i.e., triggering requests to target domains and
aggregating the results.

As outlined in Figure 1, a validation applicant first sends
a validation request to the webserver (see below for further
details). A worker process then runs Flask application’s vali-
dation logic, which triggers multiple web requests to the target
domain through Tor’s SOCKS5 proxy. The application also
sends control instructions to the Tor daemon to assign the
resulting streams to a random set of circuits, whose exits are
ensured to be sufficiently distributed. The circuits are built
and managed in parallel by the circuit management service
(discussed in detail in Section 5.3), which likewise communi-
cates with the Tor daemon through control instructions. Once
streams are assigned to circuits, the Tor proxy forwards each
request to its guard node, which then forwards it to the exit

node. Each exit node resolves the target domain through its
DNS resolver and subsequently queries the challenge resource
at the resolved IP address. The responses from the target web-
server are then returned via the Tor circuit to the application,
which aggregates them and produces the reply that the con-
tainer’s webserver sends back to the client.

Validation. We implement our proof-of-concept ValidaTor
as a web service that CAs and other clients can use to validate
a domain by specifying the .txt resource to be challenged
(as used by the ACME standard RFC8555 [32]), the target do-
main, and the protocol with which to send the request (either
HTTP or HTTPS). The service then attempts to retrieve the re-
source via an initial k exit nodes. If the content of the resource
(e.g., in ACME, a 43 character random alphanumeric string)
does not match across all k requests, the system attempts to
tie-break with additional exit nodes up to a maximum of n. If
at least k responses contain the same content, this content is
returned, otherwise an error.

This mimics the k-out-of-n validation scheme used by Let’s
Encrypt, where initially 3 out of 4 validation servers attempt
to retrieve a specific .txt resource, and only if these do not
receive the same result the 4th server is used. Then, if at
least 3 out of the 4 results match the expected response, the
validation is completed successfully.

5.3 Constructing Circuits
This section details the challenges in managing DV over

Tor and how we construct and assign circuits to ensure both
randomization and distribution for each validation.

Manual stream assignment. During regular client opera-
tion, the Tor service maintains a handful of circuits, constructs
new circuits based on demand, i.e., the amount of requests
sent through its SOCKS5 proxy, and rebuilds circuits every 10
minutes. A key feature of Tor to protect from profiling is that
requests to domains are sent through different circuits. For our
purposes such protection does not play a role. It is, however,
critical that all n requests to the same domain are sent through
different circuits (specifically, different exit nodes) so that we
validate a domain from at least k perspectives.

We therefore configure Tor to allow us to choose which
circuits to attach which requests (so-called “streams”) to. This
can be done in Python through Tor’s official stem library,
which provides an interface to send control messages to the
Tor daemon. This allows us to ensure that requests for the
same domain, i.e., that are part of the same validation, are
sent through different circuits.

Choice of exit nodes. In establishing the circuits, we en-
sure (a) sufficient distribution of the exit nodes of the circuits
used for a given validation, and (b) that exit nodes are chosen
uniformly at random. As such, we cannot rely on Tor’s relay
selection algorithm, which is focused on anonymity and ef-
fective load balancing. Multiple requests to the same domain
would be routed through the same circuit and there is no guar-
antee that a new circuit will use an exit node with a different

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1371

IP address, let alone an exit node in a different network. Exit
nodes are also selected based on available bandwidth, which
would reduce the unpredictability of validator selection. We
therefore build circuits manually using stem. We begin by
selecting randomly among all nodes marked with the EXIT
flag. This flag is assigned to relays that allow their use as an
exit node and have been monitored by Tor for some time. We
exclude nodes that have been flagged as BADEXIT, which is
assigned to exit nodes that behave suspiciously (~2.2K out of
the ~7K total nodes), but additionally impose the requirement
that a selected node’s IP address does not share the same /8
prefix with any of the other already selected nodes, thereby
ensuring distribution in the BGP network. The prefix length
can be adapted to the desired granularity.

Cycling circuits. Constructing a new dedicated circuit for
every request produces unnecessary latency and overhead. By
default, Tor maintains a handful of open circuits and assigns
requests to these based on the target domain. That is, requests
to different domains are routed through different circuits. If
the current pool of circuits does not accommodate this, new
circuits are built on-demand. Circuits are then used for up to
10 minutes, by default, and only cycled after.

Thus, similar to Tor’s regular operation, we maintain a set
of circuits and periodically rebuild these to avoid too many
validations using the same endpoints. However, we maintain
a larger set of concurrent circuits than Tor normally would,
to increase the unpredictability of the endpoints chosen for a
given validation.

A larger pool to select from means a larger number of
possible configurations, as given by the binomial function,
and thus, greater uncertainty for the selection of any particular
configuration. In the opposite extreme, where the number
of concurrent circuits is equal to the number of validators,
there is exactly one configuration. If this “pool” of circuits
is maintained for any significant period of time, an attacker
could identify the validators with a single validation request,
and use this information to potentially manipulate subsequent
validation requests.

Ideally, we would maintain a circuit for every available exit
node. However, we observe that upwards of around 70 - 80
open circuits become unstable, as the Tor daemon strongly
conflicts with our circuit building application, closing circuits
that are not in use, and thus limiting the number of circuits
we can keep open concurrently. Through experimentation we
find that the largest number of circuits that remain stable is
at around 50-60 concurrent circuits. We then rebuild circuits
every 3 minutes. This can be configured to match the desired
trade-off between network overhead and circuit “freshness”.

Validation queries for a given domain can then efficiently
be assigned to a random subset of circuits (which, as noted
above, are already ensured to be distributed).

2-Hop circuits. Another reason to build circuits manually
is that Tor by default builds circuits with 3 hops. We do not
require anonymity, hence we can increase performance by

building our own circuits and reducing the number of hops.
Ideally, our Tor client would connect directly to each exit
node. However, exit nodes need to be configured explicitly
to allow 1-hop circuits; the default configuration is to refuse
these. As this would limit our choice of endpoints from which
to validate, we opt for building 2-hop circuits.

Choice of entry nodes. Since anonymity is not of vital
concern, we optimize our entry nodes for performance. Con-
veniently, Tor assigns the GUARD flag to nodes that have been
active for at least 8 days and have been independently mea-
sured to confirm their otherwise self-reported available band-
width. This indicates that these nodes are particularly suitable
as entry nodes.

To maintain a degree of load balancing across the network
we randomly select an entry node from among the ~2.5K
nodes marked GUARD and FAST. However, we weigh each
node by its advertised bandwidth and IP prefix overlap with
our own IP address, in order to favor shorter network paths as
well as high-throughput nodes.

5.4 Challenge Methods
While both HTTP and HTTPS requests can be sent through

the Tor network, thereby allowing for HTTP-based domain
validation, Tor currently supports DNS only partially, i.e., for
the resolution of domain names via A and AAAA records and
reverse-lookup of IP addresses via PTR records. This allows
domains to be resolved by the exit node.

Crucially, DNS TXT records, used for DNS-based domain
validation, are currently not supported. Our proposed sys-
tem is thus limited to HTTP-based validation until Tor adds
support for DNS TXT records. However, since HTTP-based
validation is the default for common ACME implementations,
we argue that this is not a severe limitation.

5.5 Easy Adoption
Proposals which require substantial changes to the

existing infrastructure take decades to deploy, for in-
stance, DNS Security Extensions with DNSSEC RFC9364.
Therefore, to facilitate their adoption, new mechanisms
should require minimal changes. Our design follows this
principle, requiring only to patch ACME’s request for
the target resource (e.g., http://example.com/.well-
known/acme-challenge/random) with a request to Valida-
Tor (e.g., https://validator.com/http/example.com/
.well-known/acme-challenge/random). If ValidaTor as-
serts that the responses match, ACME receives the same file
content as from the original request and continues operat-
ing unchanged. If ValidaTor finds differing responses, it will
return an error, causing ACME to fail the validation.

6 Performance Evaluation
In this section we validate the time required for validation

and the throughput with ValidaTor. We then show how to use
parallelization to further scale the system. Lastly, we discuss

1372 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the implications on bandwidth usage and from blocking of
Tor traffic.

6.1 Single Container
For our initial evaluation we run our Docker container on a

virtual server with 24 cores, allowing a certain degree of par-
allel processing of validation requests, using an equivalent 24
workers for the webserver in the container. Once the container
is running and the 50 Tor circuits have been built, we trigger
validation procedures via HTTPS requests to the webserver
in the container. We run 80 querying threads in parallel, each
continuously submitting a domain to validate and waiting for
the response. We select the top 10k Tranco [33] domains that
host a webserver and request the /robots.txt document to
simulate an ACME query.

This initial evaluation provides a baseline performance
benchmark for different numbers of validators. We test three
different scenarios: 3-out-of-4 (equivalent to Let’s Encrypt),
5-out-of-7, and 7-out-of-9, to provide an intuition as to the im-
pact of the number of validators on performance and security.
We note here that we observe no disagreement among the val-
idator results across all of our tests. As such, each validation
produces exactly k requests.

We note the resulting hardware requirements derived from
docker stats for interested readers in the Appendix A.

Validation duration. Figure 2 shows the distribution of the
duration of each validation. This refers to the time between
the server receiving a validation request from an applicant
and receiving the last validator response necessary to produce
a verdict. While the spread increases as k increases, a client
can still expect their validation request to complete within
around 20 seconds, even with k = 7.

We compare the duration of certificates issuance to cert-
bot [34]. Certbot is a popular open source ACME client by
the Electronic Frontier Foundation (EFF) for automatically
requesting certifcates from Let’s Encrypt via the ACME pro-
tocol. When measuring certbot, we start a manual DV proce-
dure, place the created challenge value on our webserver, start
our timer, and then trigger certbot to begin the validation. We
stop our timer when certbot exits. We find that for k = 3 the
median duration is comparable to that observed when using
certbot, and can be further improved with parallelization, as
shown by the multi-container tests.

Since obtaining a certificate is an occasional process, and
tools like certbot can often be used to complete the validation
process without the user’s interactive involvement, we con-
sider the additional latency incurred by the use of Tor circuits
to be negligible for the end user.

Validation throughput. Table 1 shows the validations per
second we achieve with our prototype implementation. In-
creasing k leads to an expected decrease in throughput, as
more resources are required for each individual validation.
However, ValidaTor can also easily be scaled horizontally to
accommodate higher validation throughput. By further opti-

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
seconds

k=5,c=10
k=5,c=3
k=3,c=1
k=5,c=1
k=7,c=1

va

lid
at

or
s

Figure 2: Validation duration with k validators and c containers.

mizing the implementation and parallelizing the deployment,
it is thus feasible to scale the system to match even the rate of
~65 certificates Let’s Encrypt issued on average per second
on peak days in late 2024 [35].

containers k validations / s
1 3 2.7
1 5 2.1
1 7 1.6

containers k validations / s
3 5 6.5

10 5 11.9

Table 1: Validation throughput.

6.2 Scaling
We extend the Tor proxy and circuit management system

in ValidaTor to handle multiple validation requests in parallel,
assigning each request to a different circuit. As we next show,
this parallelization improves the throughput and efficiency of
the validation process.

To further scale the throughput of ValidaTor we conduct
two additional experiments. For the first we deploy c = 3
instances of our container on the same VM, each running 24
workers, building 50 circuits and using k = 5 validators per
domain. We use 200 client processes to issue the validation
requests and load-balance them among the containers.

For the second scaling experiment we increase paralleliza-
tion even further, deploying c = 10 containers, using 20 cores
each (on a sufficiently capable server), building 15 circuits
each (for the same total of 150 circuits), and also using k = 5
validators per domain. We load-balance the same 200 client
processes among the containers.

The 3-container deployment achieves the expected, roughly
3x increase over the single-container deployment at 6.5 val-
idations per second. The 10-container deployment does not
quite match its expected throughput, but nonetheless increases
throughput to 11.9 validations per second.

The increase in performance over the single container is
due to parallelization of the Tor daemon (with a separate in-
stance in each container), which mediates the control requests
required to manually assign web requests to Tor circuits. This
demonstrates encouraging evidence that such a system can be
scaled horizontally to production-grade performance through
sufficient parallelization.

6.3 Blocking of Tor Traffic
As a well-known anonymity network, Tor may sometimes

be discriminated against by networks that seek to prevent
anonymous access, potentially limiting its use for DV. We

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1373

investigate the significance of this using two validation mea-
surements (2025-02-08), one based on the Tranco top 10K
and one sampling 10K domains from Certificate Transparency
logs (accessed via certstream), in order to compare potential
differences between popular and regular domains, both using
a 5-out-of-7 scheme.

We augment our initial implementation to match each
exit node and target IP with the request result obtained by
that node. If traffic is being blocked we expect to see a
ConnectTimeout or ConnectionError. As shown in Fig-
ures 3 and 4, this is the case for around 20% of requests,
regardless of the popularity of the domains. CT-sampled do-
mains show no difference to top Tranco domains. In addition,
Figure 4 shows that all vantage points tend to agree on the re-
sult, i.e. they all either succeed or fail. This strongly suggests
that blocking of Tor traffic is done primarily by the domains
themselves, rather than transit networks. In the latter case,
since the exit nodes are widely distributed, we would expect
to see cases where e.g. only one node fails to connect, be-
cause its request is routed through a blocking AS, whereas
the others are routed differently. This is not the case, however.

ConnectionError ConnectTimeout
error

0

5

10

15

%
 re

qu
es

ts tranco,k=5
ct,k=5

Figure 3: Rates of connection errors.

0 2 4 6
errors

0

25

50

75

%
 v

al
id

at
io

ns tranco,k=5
ct,k=5

Figure 4: Errors per validation.

We further investigate this by mapping the IP addresses
of exit nodes and target servers to their respective AS and
simulating the AS paths taken. We then count how often a
given AS is on-path for requests that ended in a connection
error versus requests that succeeded. If an AS blocks Tor
traffic, we would expect to see all requests routed through it
to produce connection errors. The impact of such an AS on
ValidaTor is significant, if it is implicated in a large number
of validation attempts. However, as we see from the data,
the impact is not significant. For the CT-based measurement,
we see only 10 out of 816 ASes that consistently feature on
the paths of failing requests, with only 4 seen in more than
1 validation round and none of them transit ASes. For the
Tranco-based measurement it is 35 out of 2531 ASes that
consistently produce failures, with each only appearing in 1
validation round and only 8 of them being transit ASes.

These results further solidify the case that blocking of Tor
traffic by transit ASes is a rare occurrence without significant
impact on the performance of ValidaTor. The key source
of validation failures are the destinations of the validation
requests. This means it is within the power of domains to
allow DV traffic from Tor nodes.

6.4 Bandwidth Impact
In January 2025, the Tor network measured an average 347

GBit/s of consumed bandwidth across all relays (98 GBit/s at
exit nodes), a little over a third of the total available advertised
bandwidth of 917 GBit/s (less than a third of the 314 GBit/s
advertised by exit nodes) [36].

The maximum total traffic produced by our container (as
measured by docker stats) was 482MB for 10K validations
and k = 7 (including circuit creation). The average size of
the HTTP response bodies observed in our measurements is
528 bytes, whereas an ACME challenge text file is 43 bytes
in length. Thus, substituting the proper content for the DV
requests, while maintaining the same HTTP headers and Tor
circuit building, results in 482MB−10,000∗528B+10,000∗
43B = 477MB.

As indicated by the steady increase in total traffic and run-
time difference between the k = 3, k = 5 and k = 7 conditions
(shown in Figure 11), the network load scales linearly with
the number of validations and validators. Thus we can fairly
reliably extrapolate to the scale of the entire Web PKI. As an
estimate of the current certificate volume we track certificate
issuances via Certificate Transparency logs (using certstream)
for a period of 15 hours, during which we observe an average
rate of 104 new certificates per second. Since this accounts
only for successfuly validations, we can safely assume at least
twice the number of validation attempts. Thus, we can expect:

208
s

∗ 477MB
10,000

∗8 = 79.4MBit/s

that is, ~11.3MBit/s per validator. For k = 5 and k = 3 we
get similar rates of 11.7MBit/s and 12.7MBit/s, respectively,
matching the expectation that the traffic volume is roughly
linear in the number of validators.

In addition to unsuccessful validation attempts, we need to
account for chasing of redirects, which is often done dur-
ing DV, but is not included in our bandwidth data. Redi-
rects are processed by the web client and thus result in two
or more distinct requests. Assuming for simplicity an av-
erage of 1 redirect per validation, we can expect a rate of
2 ∗ 79.4MBit/s = 158.8MBit/s. This is a conservative esti-
mate, since we observe redirects on only ~ 1

3 of all domains,
with popular Tranco domains using redirects twice as often
as the broader Internet, sampled from CT logs.

Our bandwidth measurement also only covers the data flow-
ing in and out of our server. This includes both request and
response data, but only for the link between our server and
the entry node of our Tor circuit, thus considering only the
ingress load at the entry node. This same data is also transmit-
ted between entry and exit node, adding the same load at both
the entry node egress and the exit node ingress, as well as
between exit node and target server, producing another egress
load at the exit node. Thus, the overall load on the Tor net-
work is 4∗158.8MBit/s = 635.2MBit/s, with 317.6MBit/s
hitting the exit node.

1374 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Thus, we conclude that even at the current volume of the
entire Web PKI and using 7 validators, routing DV traffic
through Tor consumes a negligible amount of the network’s
bandwidth: just 0.11% of Tor’s remaining total bandwidth and
0.15% of the exit nodes’ remaining bandwidth. Furthermore,
ValidaTor containers could be horizontally scaled to the point
where each container has a handful of dedicated Tor exits,
avoiding the need for periodic recreation of Tor circuits and
thus reducing bandwidth usage.

7 Security Analysis
ValidaTor ensures high path diversity by selecting a random

set of exit nodes for each validation request. This randomiza-
tion makes it difficult for attackers to predict and intercept the
validation traffic. We demonstrate experimentally on heuris-
tically derived datasets that path diversity attained with Tor
nodes is significantly higher than that obtained with the dedi-
cated infrastructure of Let’s Encrypt. Additionally, ValidaTor
configures the Tor client to avoid using exit nodes with the
same /8 IP prefix, ensuring that the exit nodes are sufficiently
distributed across the network. This configuration enhances
security by reducing the likelihood that an attacker can control
multiple exit nodes in the same circuit.

7.1 Perspective Diversity
Routing domain validation traffic through the Tor network

allows us to access many more validation perspectives than a
dedicated infrastructure, such as that of Let’s Encrypt.

We create a new domain, trigger validation requests for this
domain using certbot, and observe the IP addresses logged on
our webserver. We repeat this 5 times3, collecting a total of 11
unique IP addresses. Using Tor’s stem library, we obtain all
known relays and filter for those marked with the EXIT flag
and not marked BADEXIT. At the time of our experiments
this list contained 2254 nodes with 1221 unique IP addresses.

To consider the diversity in perspectives with regards to
BGP routing, we need to map IP addresses to ASes. CAIDA
[37] provides a prefix-to-ASN mapping based on BGP origin
announcements collected by the RouteViews project. How-
ever, as pointed out in [9], this underestimates routing diver-
sity when different prefixes are announced through different
paths using the same ASN, as is the case for e.g. AWS data-
centers, which host Let’s Encrypt validators. Multiple unique
origins are thus aggregated under the same ASN. We "de-
aggregate" ASNs by considering each prefix as a unique ori-
gin, if it is announced through a different path, in line with [9].
This is done based on the most recent available route collector
data from RIPE RIS [38] and RouteViews [39].

For the 11 Let’s Encrypt IP addresses we obtain 7 unique
BGP origins (instead of just 2 when considering aggregated
ASNs), whereas for the 1221 Tor exit IP addresses we obtain
280 unique BGP origins (210 with aggregated ASNs).

3Certbot allows a maximum of 5 validation attempts in short succession.
We see no new BGP origins after the first 3 attempts.

7.2 DNS Perspective Diversity
Tor is implemented such that, when proxying an HTTP

request to a given domain through a Tor circuit, the exit node
will take care of resolving that domain to an IP address. As
pointed out in [9], the DNS resolution path is part of the attack
surface for hijacking domain validation. As such, diversifying
validators is only useful if the DNS resolvers used by those
validators are also diversified. It could be possible that many
of the exit nodes use the same few DNS resolvers. While
Tor explicitly encourages the use of default resolvers and
resolvers within an exit node’s network, and discourages the
use of public DNS resolvers to avoid centralization, we aim
to confirm this by measuring the IP addresses of the resolvers
used by exit nodes.

To investigate this we set up a fresh domain with an NS
record pointing to a server under our control and log incoming
DNS requests on port 53 using tcpdump. For Let’s Encrypt
we again trigger 5 validation requests through certbot, for Tor
we send a web request through each of the 2254 exit nodes.
In each case this triggers the attempt to resolve our domain
using our server, allowing us to track which IP addresses the
DNS requests are coming from. By correlating the timeframe
of each request as recorded client-side with the timestamps
of DNS requests received server-side, we match each Tor
exit node IP address with the most likely resolver IP address.
Note that, across all certbot measurements, we never actually
complete the validation process. Therefore, no certificate is
created to be logged in and scraped from Certificate Trans-
parency logs. Thus, our webserver logs are not contaminated
by various Internet scans (see for example [40]).

For Let’s Encrypt we observe 28 unique resolver IP ad-
dresses, corresponding to 9 unique de-aggregated BGP ori-
gins. For Tor we matched 1118 unique resolver IP addresses
to the 1221 unique exit node IP addresses, corresponding to
174 unique deaggregated BGP origins. While we observed
additional IP addresses from another 100 BGP origins, we
could not clearly match these to exit nodes and thus use 174
as a lower bound.

7.3 Path Diversity
To test how well diversity of perspectives translates to di-

versity of BGP paths taken from validators to a target domain
we reconstruct the BGP network at the prefix level from route
collector data and apply the most recently available CAIDA
AS relationships dataset [41]. We map each IP, as observed
in our experiments, to its de-aggregated ASN and calculate
the paths from each source ASN to the observed destination
ASN using the pybgpsim library from [42]. We also consider
the return paths from destination ASN to source ASN, since
these might be different.

Using this method we can recover the transit ASes A for
each path and see how many ASes the paths of a given vali-
dation have in common. That is, how many ASes can inter-
cept what percentage of validators for how many domains?

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1375

0 20 40 60 80 100
% validators intercepted

0.00

0.25

0.50

0.75

1.00

CD
F

of
 o

n-
pa

th
 A

SN
s

AWS30
AWS30 DNS
LE
LE DNS
TOR
TOR DNS

0 20 40 60 80 100
% validators intercepted

0.00

0.25

0.50

0.75

1.00

CD
F

of
 o

n-
pa

th
 A

SN
s

AWS30
AWS30 DNS
LE
LE DNS
TOR
TOR DNS

0 20 40 60 80 100
% validators intercepted

0.00

0.25

0.50

0.75

1.00

CD
F

of
 o

n-
pa

th
 A

SN
s

AWS30
AWS30 DNS
LE
LE DNS
TOR
TOR DNS

Figure 5: Cumulative distribution of the percentage of validators intercepted by each on-path ASN for each domain (k = {3,5,7} from left to right).

In essence, we look at each on-path ASN for each domain
validation and determine the percentage of validators that
transit through this ASN. We plot the resulting cumulative
distribution for each k ∈ {3,5,7} in Figure 5.

For Tor, we use the validator-target pairs as observed in our
experiments. For the Let’s Encrypt comparison, we simulate
the validator-target pairs by truncating to the first 3 pairs
(since Let’s Encrypt does 3-out-of-4 validation, only using the
4th if the first 3 do not agree) and replacing the first validator
with Let’s Encrypt’s main network (23.178.112.0/24, which
is present in every validation attempt triggered with certbot)
and the two other validators with a random selection of 2
out of the remaining 6 BGP origins observed in Section 7.1.
The same substitution process is also used for the AWS30
comparison, an optimally distributed AWS deployment of 30
locations (discussed in detail in Section 8).

As indicated by Figure 5, using Tor exit nodes as validators
significantly decreases the number of ASes in a position to
intercept a large fraction of validators for a large number of
domains. This is particularly true for ASes that can intercept
100% of validators, and thus forge the overall validation result
(reduction of 21%). This number further decreases with ad-
ditional validators (k ≥ 5), as the overlap between validation
paths decreases (reduction of up to 27%). The comparison
with the hypothetical AWS30 deployment shows that such
path diversity can also be achieved with a cloud-based deploy-
ment, albeit at much greater cost.

7.3.1 Path Overlap Metric
While reducing the number of ASes that can intercept all

validators translates directly to fewer threats of fraudulent cer-
tificates, it is important to consider the degree of influence of
individual ASes on validation more generally. The lower the
path overlap between validators, the lower this influence. We
therefore propose a metric that summarizes the overall degree
of path overlap in a single number, for easier characterization
and comparison between deployments.

First, we define the path from a validator i to a domain d
as the set of ASes transited both from validator to domain
and from domain back to validator, denoted Pid . The degree
of overlap between the paths can then be calculated as the
Jaccard distance between the sets:

jaccard(Pid ,Pjd) =
Pid ∩Pjd

Pid ∪Pjd

A value of 0 therefore means the paths of no ASes in
common, whereas a value of 1 means both validators transit

all the same ASes to reach the target domain. To capture
the degree of overlap for a given validation with a group of
k validators, we calculate the pairwise Jaccard distance and
average over the number of possible pairs:

val_overlap(d) =
∑

k
i=1 ∑

k
j=i+1 jaccard(Pid ,Pjd)

k(k−1)
2

Finally, we average the overlaps across all D validations for
a given deployment: overlap(D) = ∑

D
d=1 val_overlap(d)/D.

We calculate this metric for ValidaTor ∀k ∈ {3,5,7}, as
well as the the simulated Let’s Encrypt and AWS30 deploy-
ments for each of our measurements, and compare the results
in Figure 6. We see that the switch to more nodes introduces
the most dramatic decrease in average path overlap (~50%),
with smaller incremental decreases when using additional
validators with the larger Tor pool.

7.4 DNS Path Diversity

To evaluate the diversity of the paths from DNS resolvers
to nameservers, we repeat the same evaluation, but with the
observed resolver and nameserver IP addresses. Specifically,
for ValidaTor, we replace each exit node IP with the matched
DNS resolver IP. For the Let’s Encrypt comparison we again
truncate the validator-target pairs to 3, replace the first exit
node IP with the IP of the DNS resolver of the main Let’s
Encrypt server, and replace the remaining 2 exit node IP ad-
dresses with a random selection of 2 IP addresses from the
observed DNS resolvers (from different BGP origins).

In both scenarios the target IP of each validator-target pair
is replaced with the IP of a random nameserver of the tar-
get domain. These IP addresses were previously collected
by querying the NS records of each domain and then the A
records for each NS result. Due to the randomization we con-
duct 5 rounds for each deployment and average the resulting
path overlap metrics.

The results are also shown (dashed) in Figures 5 and 6.
While Let’s Encrypt’s DNS resolvers show higher path di-
versity than its validation servers, Tor still offers marked im-
provements.

7.5 Malicious Exit Nodes

We consider attacks by malicious Tor exit nodes and show
how to configure the ValidaTor parameters to substantially
decrease the risk of such attacks.

1376 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

k=3 k=5 k=7
validators

0.00

0.25

0.50

0.75

1.00
pa

th
 o

ve
rla

p LE
LE DNS

TOR
TOR DNS

AWS30
AWS30 DNS

Figure 6: Path overlap for Let’s Encrypt, Tor, an optimally distributed AWS
deployment of N = 30 nodes and respective DNS resolvers.

7.5.1 Probability of Fraudulent Validation
Leveraging Tor exit nodes as vantage points for domain

validation introduces the risk of attackers running malicious
nodes to intercept and manipulate the validation process. In
essence, this is similar to the man-in-the-middle threat posed
by BGP hijacks and other routing manipulations. Here, we
model the probability of an attacker successfully manipulating
validation this way and show that is exceedingly small.

Random selection. Due to the k-out-of-n successful query
results required for validation, an attacker would need at least
k of his nodes selected for validating the same domain. With a
fully random selection, i.e., each node having an equal chance
of being selected, the probability of exactly k out of n nodes
being malicious is given by the hypergeometric distribution:

hg(M,N,n,k) =

(M
k

)(N−M
n−k

)(N
n

)
where N denotes the total number of exit nodes in the

Tor network (2293 measured at the time of writing) and M
denotes the number of nodes under the attacker’s control. The
probability for at least k malicious nodes is thus:

p(M,N,n,k) =
n

∑
j=k

hg(M,N,n, j)

This is plotted as dashes in Figure 7 for different k and n.
Accounting for prefix-aware selection. However, the node

selection process is not fully random, since every time a node
is selected, all nodes on the same (configurable) network
prefix are excluded as validators for the same validation to
ensure distribution. This means an attacker would need to
control nodes in at least k different networks to even have
the possibility of using them to validate the same domain,
significantly raising the attacker’s resource requirements.

To simplify the model and give the attacker the highest
chance of success, we assume the attacker’s M nodes are dis-
tributed equally across all networks. Similarly, we assume
that each network contains the same total number of nodes.
While this is not strictly the case in practice, it allows us to
simplify the chance of selecting a malicious node to an av-
erage probability of M

N , regardless of how many nodes have
already been selected. This is because the ratio of malicious to
total nodes remains constant if the same number of malicious
and legitimate nodes are removed from the pool each round.

Accounting for staged selection. The second difference

0 200 400 600 800 1000
malicious nodes

0.0
2.5
5.0
7.5

10.0

%
 p

ro
b.

 fr
au

d.
 v

al
id

at
io

n

k=3,n=4
k=5,n=7
k=7,n=9

hypergeo
hypergeo
hypergeo

Figure 7: Probability of fraudulent validation using compromised exit nodes.

to a simple k-out-of-n selection is that, for efficiency, the se-
lection is done in stages. That is, we begin with a selection of
k validators and only incrementally add additional validators
(up to a maximum of n) if agreement has not yet been reached
with the validators selected thus far. This means, in order to
reach the threshold of k by the nth selection, an attacker would
need at least k− (n− k) of his nodes to be selected among
the first k. Exactly how many malicious nodes are among the
first k then determines how many additional selections are
made and need to also be malicious. With the simplifying
assumptions above, this selection process results in the fol-
lowing probability, that an attacker can control the outcome
of a validation using malicious exit nodes:

p(M,N,n,k) =
k

∑
j=k−(n−k)

(
k
j

)
(

M
N
)k(1− M

N
)k− j

Figure 7 plots this function for different parameters k and
n. While very similar to the hypergeometric distribution,
the more accurate modeling of the selection process works
slightly to the disadvantage of the attacker for k > 3. Over-
all, we see that, given the current number of N = 2293 Tor
exit nodes, the attacker’s probability of success is very small
even when controlling several hundred exit nodes. Note that
we assume for the calculation that the attacker controls M of
the existing N nodes, giving him a stronger advantage than
adding M additional nodes. Second, we see that the risk can
easily and significantly be reduced by simply increasing k.
For example, at M = 700 the attacker’s chance of success can
be reduced from ~10% with k = 3 to ~2.5% with k = 5 and
to less than 1% with k = 7.

Tor has seen malicious actors adding large numbers of
nodes in the past (e.g. ~1000 in 2020 [43]). In this example
the attacker would have an 8.7% chance of having all k = 3 of
their nodes selected to validate their request but only a 0.4%
chance of having all k = 7 of their nodes selected. A possible
mitigation for such attacks could be the temporary increase
of k when the Tor network appears to be under attack. For
example, at k = 9 the attacker’s chance of success falls to
0.05%, despite controlling 1000 out of a total of 3293 nodes.

7.5.2 Additional Countermeasures
The threat of colluding exit nodes threatens the security

of every other application of Tor. The network is therefore
continuously monitored for bad actors by the Tor Project
[44], researchers [45] and other volunteers. Implicated nodes
are either flagged as BADEXIT or removed from the network
consensus, aiding the selection against malicious nodes.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1377

Such monitoring could be further extended in the context
of our validation system. Across our experiments we very
rarely see discrepancies between the results reported by dif-
ferent validators, even when k >= 7. Multiple discrepancies
involving the same exit IP addresses could therefore easily
be detected and flagged, avoiding the use of these exits. Sim-
ilarly on the the client-side, multiple failed validations in a
short period of time could lead to blocklisting of a client’s
account for that domain, as implemented by Let’s Encrypt
with certbot. As such, we can effectively prevent an attacker
from playing the numbers game and simply attempting many
validations until one succeeds.

8 Randomized Distributed DV in the Cloud
Following the comparisons between the Tor network and

Let’s Encrypt’s current MultiVA deployment, it begs the ques-
tion what a cloud deployment would look like that achieves
the same security properties. We begin by fixing the desired
maximum probability of a fraudulent validation at a generous
1%. We then consider the following two scenarios: (a) using
3-out-of-4 validation as is currently done by Let’s Encrypt
(more beneficial if traffic is more expensive than additional
datacenter nodes) and (b) using 7-out-of-9 validation (more
beneficial if nodes are more expensive than traffic). We then
plot the probability of fraudulent validation, as described in
Section 7.5.1, for different numbers of total vantage points N
and vantage points hijackable by an attacker x. The results for
each scenario are shown in Figure 8.

4 6 8 10 12
hijackable vantage points

0
1
2
3
4
5
6

%
 p

ro
b.

 su
cc

es
s

N=10
N=20
N=30
N=40
N=50

4 6 8 10 12
hijackable vantage points

0
1
2
3
4
5
6

%
 p

ro
b.

 su
cc

es
s

N=10
N=20
N=30
N=40
N=50

Figure 8: Probability of fraudulent validation by hijacking cloud vantage
points, using k = 3 (left) and k = 7 (right) validators.

For 3-out-of-4 validation, at least N = 30 vantage points
are required to keep the probability of fraudulent validation
under 1%. However, if, for example, the attacker is assumed
to be able to hijack up to 6 vantage points, at least N = 50
is required. 7-out-of-9 validation naturally remains 100%
secure if the attacker cannot hijack at least 7 vantage points.
However, even with up to 10 compromised vantage points,
the probability of success is still well below 1% at N = 30.

To evaluate the path overlap (see Section 7.3.1), for such a
deployment, we consult the published IP ranges of AWS EC2
networks and select the 30 vantage points with the least pair-
wise overlap between network addresses. We then perform
the same simulation of AS paths for validation requests as
in Section 7.3. For k = 3 we see a path overlap of 0.23, com-
parable to Tor-based validation. For k = 7 we see a slightly
higher overlap of 0.29 (see Figure 6). It is therefore possible

to achieve similar degrees of distribution simply with addi-
tional cloud vantage points. However, an increase from 4 to
30 vantage points and the additional traffic of k = 7 versus
k = 3 validators in this scenario would multiply the costs
many times. Additionally, a lower risk threshold of under 1%
increases the required number of vantage points.

9 Conclusions

Our design of ValidaTor, i.e., DV over Tor, resolves many of
the existing limitations of DV and MultiVA. Leveraging Tor
as a massively distributed set of vantage points from which
to conduct multi-perspective domain validation offers clear
advantages over existing systems:

Randomization. Vantage points can be randomly chosen
from a large set of available nodes, preventing attackers from
knowing in advance which validation nodes to target. This
prevents any type of targeted attack, such as prefix BGP hi-
jacks and DNS cache poisoning.

Resilience to interception and malicious Tor exit nodes.
Tor exit nodes, as well as the DNS resolvers they use, are
more distributed than the vantage points of existing systems.
As we show in our experimental evaluations, this results in a
significant reduction in the number of ASes that can intercept
all vantage points used for a validation of a given domain.
Such ASes can impersonate validation by intercepting the
validation process to obtain fraudulent certificates.

In order to stand a statistically significant chance of fraud-
ulently validating a domain, an attacker needs to control on
the order of several hundreds of Tor nodes. Since Tor has a
vested interest in avoiding such scenarios to protect from, e.g.,
traffic correlation attacks, this is unrealistic to persist. Simply
increasing the number of validators for a given validation
drastically decreases an attacker’s chance of success.

DoS resistance. If individual Tor relays, ASes, or routers
maliciously drop domain validation traffic, the system can
choose new circuits through which to route traffic. Ensuring
the same degree of availability with MultiVA requires a much
larger deployment.

Lightweight load on Tor network. Since domain valida-
tion traffic is lightweight (only querying small text resources,
most often via plain HTTP) and circuit management can be
implemented without overly frequent rebuilding of circuits,
the projected load on the Tor network produced by even a
Let’s Encrypt-scale volume of validation requests is negligi-
ble compared to Tor’s available bandwidth.

Open infrastructure. ValidaTor scales with the expansion
of the Tor network. The more users operate Tor nodes, the
higher the path diversity offered to DV, and the lower load
from DV on individual nodes.

Easy adoption. The validation system requires no addi-
tional infrastructure to be set up for each vantage point. Val-
idaTor integrates seamlessly with the CAs and their existing
infrastructure, and is easy to adopt into existing DV systems.

1378 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements
This work has been co-funded by the German Federal Min-

istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References
[1] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mit-

tal, “Using bgp to acquire bogus tls certificates,” HotPETS’17,
2017.

[2] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal, “Sico: Surgi-
cal interception attacks by manipulating bgp communities,” in
Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, 2019, pp. 431–448.

[3] Sharon Goldberg, “The myetherwallet.com hijack and
why it’s risky to hold cryptocurrency in a webapp,”
https://medium.com/@goldbe/the-myetherwallet-com-
hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-
webapp-261131fad278, 2018.

[4] P. Kacherginsky, “Celer Bridge incident analysis,” 2022.
[Online]. Available: https://www.coinbase.com/de/blog/celer-
bridge-incident-analysis

[5] H. Birge-Lee, L. Wang, G. Cimaszewski, J. Rexford,
and P. Mittal, “Attackers exploit fundamental flaw in
the web’s security to steal 2USD million in cryptocur-
rency,” 2022. [Online]. Available: https://freedom-to-
tinker.com/2022/03/09/attackers-exploit-fundamental-flaw-
in-the-webs-security-to-steal-2-million-in-cryptocurrency/

[6] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner,
“Domain validation++ for mitm-resilient pki,” in CCS ’18: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 2060–2076.

[7] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mit-
tal, “Bamboozling certificate authorities with bgp,” SEC’18:
Proceedings of the 27th USENIX Conference on Security Sym-
posium, pp. 833–849, 2018.

[8] K. Bhargavan, A. Delignat-Lavaud, and N. Kobeissi, “Formal
modeling and verification for domain validation and acme,” in
Financial Cryptography and Data Security: 21st International
Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised
Selected Papers 21. Springer, 2017, pp. 561–578.

[9] G. H. Cimaszewski, H. Birge-Lee, L. Wang, J. Rexford, and
P. Mittal, “How effective is multiple-vantage-point domain
control validation?” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 5701–5718.

[10] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waid-
ner, “Behind the scenes of rpki,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1413–1426.

[11] T. Dai, H. Shulman, and M. Waidner, “Let’s downgrade let’s
encrypt,” CCS ’21: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp.
1421–1440, 2021.

[12] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proceedings of the 13th
conference on USENIX Security Symposium-Volume 13.
USENIX Association, 2004, pp. 21–21.

[13] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications.” in Usenix
Security, vol. 2013, 2013.

[14] C. Partridge and M. Allman, “Ethical considerations in network
measurement papers,” Communications of the ACM, vol. 59,
no. 10, pp. 58–64, 2016.

[15] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu,
“Rfc3647: Internet x. 509 public key infrastructure certificate
policy and certification practices framework,” 2003.

[16] X. Liu, X. Wang, and W. Chen, “Case study of dns server
attacks: Exploits and countermeasures,” in Proceedings of the
2013 ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2013, pp. 79–84.

[17] M. Kranch and J. Bonneau, “Certificate transparency and its
implications for the security of domain validation,” in Proceed-
ings of the 2015 ACM Conference on Computer and Commu-
nications Security, 2015, pp. 241–252.

[18] J. Zhang, M. Wu, K. Sun, and X. Du, “Privacy and security risks
in domain validation for ssl certificates,” Journal of Network
and Computer Applications, vol. 65, pp. 84–96, 2016.

[19] J. Amann, N. Vallina-Rodriguez, C. Kreibich, and N. Weaver,
“Mission accomplished? https security after diginotar,” Pro-
ceedings of the 2017 Internet Measurement Conference, pp.
325–340, 2017.

[20] Q. Scheitle, O. Gasser, and G. Carle, “Measuring the impact
of dnssec on dns and http performance,” in Proceedings of
the 2018 ACM Conference on Internet Measurement, 2018, pp.
1–14.

[21] J. Brian, A. Smith, and S. Zander, “An empirical study of the
security of dnssec in the wild,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 3, no. 1,
pp. 1–25, 2019.

[22] T. Fiebig, Q. Scheitle, O. Hohlfeld, and G. Carle, “Something
from nothing (there): Collecting global ipv6 dns open re-
solvers,” in 2017 IEEE Symposium on Security and Privacy
(SP), 2017, pp. 963–979.

[23] Q. Scheitle, O. Gasser, T. Fiebig, and G. Carle, “Rise of the
botivo: Evaluating the deployment of dane,” in Proceedings of
the 2017 Internet Measurement Conference, 2017, pp. 1–14.

[24] Internet Systems Consortium. (2024) Bind 9 security
release and multi-vendor vulnerability handling, cve-2023-
50387 and cve-2023-50868. Internet Systems Consortium.
[Online]. Available: https://www.isc.org/blogs/2024-bind-
security-release/

[25] H. Birge-Lee, J. Kao, A. Mirian, J. Rexford, and P. Mittal,
“Towards improved domain validation in public key infrastruc-
tures,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018, pp. 644–660.

[26] J. Frieß, H. Schulmann, and M. Waidner, “Crowdsourced dis-
tributed domain validation,” in Proceedings of the 23rd ACM
Workshop on Hot Topics in Networks, HOTNETS 2024, Irvine,
CA, USA, November 18-19, 2024. ACM, 2024, pp. 318–325.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1379

https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://www.coinbase.com/de/blog/celer-bridge-incident-analysis
https://www.coinbase.com/de/blog/celer-bridge-incident-analysis
https://freedom-to-tinker.com/2022/03/09/attackers-exploit-fundamental-flaw-in-the-webs-security-to-steal-2-million-in-cryptocurrency/
https://freedom-to-tinker.com/2022/03/09/attackers-exploit-fundamental-flaw-in-the-webs-security-to-steal-2-million-in-cryptocurrency/
https://freedom-to-tinker.com/2022/03/09/attackers-exploit-fundamental-flaw-in-the-webs-security-to-steal-2-million-in-cryptocurrency/
https://www.isc.org/blogs/2024-bind-security-release/
https://www.isc.org/blogs/2024-bind-security-release/

[27] RIPE NCC. (2024) Ripe atlas. RIPE Network Coordination
Centre. [Online]. Available: https://atlas.ripe.net

[28] J. Snijders. (2024) Nlnog ring. NLNOG. [Online]. Available:
https://ring.nlnog.net/

[29] Bright Data. (2024) Proxy services. Bright Data. [Online].
Available: https://brightdata.com/proxy-types

[30] ExpressVPN. (2024) High-speed, secure & anonymous
vpn service. ExpressVPN. [Online]. Available: https:
//www.expressvpn.com/

[31] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Towards an
analysis of onion routing security,” in International Workshop
on Designing Privacy Enhancing Technologies: Design Issues
in Anonymity and Unobservability. Springer, 2001, pp. 96–
114.

[32] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten,
“Automatic Certificate Management Environment (ACME),”
RFC 8555, Mar. 2019. [Online]. Available: https://www.rfc-
editor.org/info/rfc8555

[33] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czyński, and W. Joosen, “Tranco: A research-oriented top sites
ranking hardened against manipulation,” in Proceedings of
Network and Distributed Systems Security (NDSS) Symposium,
2019.

[34] Electronic Frontier Foundation. (2024) Certbot. Electronic
Frontier Foundation. [Online]. Available: https://certbot.eff.
org/

[35] Let’s Encrypt. (2024) Let’s encrypt stats. Internet Security
Research Group. [Online]. Available: https://letsencrypt.org/
stats/

[36] The Tor Project. (2024) Traffic. The Tor Project. [Online].
Available: https://metrics.torproject.org/bandwidth-flags.html

[37] CAIDA. Routeviews prefix-to-as mappings (pfx2as) for ipv4
and ipv6. [Online]. Available: https://publicdata.caida.org/
datasets/routing/routeviews-prefix2as/

[38] R. NCC. Ris raw data. [Online]. Avail-
able: https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data

[39] University of Oregon, “Route views project,” http://bgplay.
routeviews.org/, 2012.

[40] S. Pletinckx, T.-D. Nguyen, T. Fiebig, C. Kruegel, and G. Vigna,
“Certifiably vulnerable: Using certificate transparency logs for
target reconnaissance,” in 2023 IEEE 8th European Symposium
on Security and Privacy (EuroS&P). IEEE, 2023.

[41] CAIDA. The caida as relationships dataset, 2024-05-01.
[Online]. Available: https://www.caida.org/catalog/datasets/as-
relationships/

[42] M. Brandt and H. Shulman, “Optimized bgp simulator for
evaluation of internet hijacks,” in IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2021.

[43] C. Cimpanu. (2021, May) Thousands of tor exit nodes
attacked cryptocurrency users over the past year. [On-
line]. Available: https://therecord.media/thousands-of-tor-exit-
nodes-attacked-cryptocurrency-users-over-the-past-year

[44] G. Koppen. (2021) Recent rejection of relays. [On-
line]. Available: https://lists.torproject.org/pipermail/tor-
relays/2021-December/020048.html

[45] P. Winter, R. Ensafi, K. Loesing, and N. Feamster, “Identifying
and characterizing sybils in the tor network,” in Proceedings
of the 25th USENIX Security Symposium, 2016.

A Hardware Requirements
Using docker stats, we track the CPU and memory us-

age of our container over the course of the experiments, in
order to give an idea of the hardware required for deploy-
ment at scale. As shown in Figures 9 and 10, respectively,
the container uses an equivalent of 5 - 8 CPU cores and 800 -
1000MB of memory. There is some dependence on the num-
ber of validators used, particularly for CPU usage, but overall
the resource usage is fairly stable, both across time and num-
ber of validators. This allows fairly accurate extrapolation of
the hardware requirements for a large-scale system.

00:00:00

00:16:40

00:33:20

00:50:00

01:06:40

01:23:20

01:40:00

01:56:40

time

0

500

1000

1500

%
 c

pu
 u

sa
ge

k=3
k=5
k=7

Figure 9: CPU usage per ValidaTor container over time.

00:00:00

00:16:40

00:33:20

00:50:00

01:06:40

01:23:20

01:40:00

01:56:40

time

0.0

0.5

1.0

by
te

s

1e9

k=3
k=5
k=7

Figure 10: Memory per ValidaTor container over time.

00:00:00

00:16:40

00:33:20

00:50:00

01:06:40

01:23:20

01:40:00

01:56:40

time

0

2

4

by
te

s

1e8
k=3
k=5
k=7

Figure 11: Cumulative network traffic per ValidaTor container over time.

1380 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://atlas.ripe.net
https://ring.nlnog.net/
https://brightdata.com/proxy-types
https://www.expressvpn.com/
https://www.expressvpn.com/
https://www.rfc-editor.org/info/rfc8555
https://www.rfc-editor.org/info/rfc8555
https://certbot.eff.org/
https://certbot.eff.org/
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://metrics.torproject.org/bandwidth-flags.html
https://publicdata.caida.org/datasets/routing/routeviews-prefix2as/
https://publicdata.caida.org/datasets/routing/routeviews-prefix2as/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
http://bgplay.routeviews.org/
http://bgplay.routeviews.org/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/
https://therecord.media/thousands-of-tor-exit-nodes-attacked-cryptocurrency-users-over-the-past-year
https://therecord.media/thousands-of-tor-exit-nodes-attacked-cryptocurrency-users-over-the-past-year
https://lists.torproject.org/pipermail/tor-relays/2021-December/020048.html
https://lists.torproject.org/pipermail/tor-relays/2021-December/020048.html

	Introduction
	Related Work
	Tor vs. Other Proxies
	Overview of Tor
	ValidaTor: Design & Implementation
	Resolving Limitations in DV
	Design
	Constructing Circuits
	Challenge Methods
	Easy Adoption

	Performance Evaluation
	Single Container
	Scaling
	Blocking of Tor Traffic
	Bandwidth Impact

	Security Analysis
	Perspective Diversity
	DNS Perspective Diversity
	Path Diversity
	Path Overlap Metric

	DNS Path Diversity
	Malicious Exit Nodes
	Probability of Fraudulent Validation
	Additional Countermeasures

	Randomized Distributed DV in the Cloud
	Conclusions
	Hardware Requirements

