Skip to main content
  • Conferences
  • Students
Sign in
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner
Industry Partner

USENIX ATC '15 button

Get more
Help Promote graphics!


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube
Tweets by @usenix
  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy
Tweet

connect with us

Authors: 

Christopher Mitchell, Kate Montgomery, and Lamont Nelson, New York University; Siddhartha Sen, Microsoft Research; Jinyang Li, New York University

Abstract: 

In traditional client-server designs, all requests are processed at the server storing the state, thereby maintaining strict locality between computation and state. The adoption of RDMA (Remote Direct Memory Access) makes it practical to relax locality by letting clients fetch server state and process requests themselves. Such client-side processing improves performance when the server CPU, instead of the network, is the bottleneck.We observe that combining server-side and client-side processing allows systems to balance and adapt to the available CPU and network resources with minimal configuration, and can free resources for other CPU-intensive work.

We present Cell, a distributed B-tree store that combines client-side and server-side processing. Cell distributes a global B-tree of “fat” (64MB) nodes across machines for server-side searches. Within each fat node, Cell organizes keys as a local B-tree of RDMA-friendly small nodes for client-side searches. Cell clients dynamically select whether to use client-side or server-side processing in response to available resources and the current workload. Our evaluation on a large RDMA-capable cluster show that Cell scales well and that its dynamic selector effectively responds to resource availability and workload properties.

Christopher Mitchell, New York University

Kate Montgomery, New York University

Lamont Nelson, New York University

Siddhartha Sen, Microsoft Research

Jinyang Li, New York University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {196245,
author = {Christopher Mitchell and Kate Montgomery and Lamont Nelson and Siddhartha Sen and Jinyang Li},
title = {Balancing {CPU} and Network in the Cell Distributed {B-Tree} Store},
booktitle = {2016 USENIX Annual Technical Conference (USENIX ATC 16)},
year = {2016},
isbn = {978-1-931971-30-0},
address = {Denver, CO},
pages = {451--464},
url = {https://www.usenix.org/conference/atc16/technical-sessions/presentation/mitchell},
publisher = {USENIX Association},
month = jun
}
Download
Mitchell PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or register to post comments
  • Privacy Policy
  • Contact Us

© USENIX
EIN 13-3055038