
Christopher Mitchell, Kate Montgomery, Lamont Nelson, 
Siddhartha Sen*, Jinyang Li
New York University, *Microsoft Research
June 23, 2016

USENIX ATC 2016



Server

DataThread(s) of computation



Server

Client Client

RequestResponse

Client



 Load spikes saturate server CPUs

 Options
1. Over-provision server CPUs (wasteful)
2. Spin up extra servers during spike (slow)

 Solution: Relax locality by processing 
requests at client?

 Clients fetch the required server state



Server

ReadData

Client Client Client



 Server CPU bottleneck -> use client-side

 NIC bottleneck -> use server-side
 (If you have excess server CPU, just use it)



 Combining client-side and server-side 
operations

 Insight: Selectively relaxing locality improves 
load balancing

100% Server-Side Operations 0%

0% Client-Side Operations 100%



1. Distributed, sorted, RDMA-enabled store

2. Selectively relaxed locality to improve load 
balancing and CPU efficiency.

3. Dynamic locality selector



 Motivation: Selectively Relaxed Locality
 Cell Distributed B-tree
 Evaluation
 Related Work



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search

1. Making Client-Side and Server-Side Operations 
Efficient

2. Ensuring Correctness During Operations
3. Choosing Client-Side or Server-Side Search

 Evaluation
 Related Work



Client

Server 
1

Server 
2

"FOO"?

Continue at 
server 2

"FOO"?

"FOO":"BAR"



 Optimized for Ethernet
 Data-computation locality heavily emphasized
 BigTable: 128MB blocks, 3 RTs per operation
 Large, opaque B-trees inside each B-tree node

 Great for server-side operations, bad for 
client-side operations
 Bounded by server CPUs
 Shouldn’t ship large nodes via RDMA



 Selectively relax data-computation locality

 B-link tree of (accessible) B-link trees
 Traverse tree by 1KB “lean” nodes

 Client-side processing
 Traverse tree by 64MB “fat” nodes

 Server-side processing



ROOT
MEGANODE R

MEGANODE

L L L L L L

MEGANODE

node-to-node link
level
link



Client-Side and Server-Side Server-Side Only
• Search

• Server-side: traverse fat 
nodes (meganodes) 
when server CPU is 
plentiful

• Client-side: traverse slim 
nodes when server CPU 
is bottleneck

• Scan

• Insert
• Node splits
• Meganode splits

• Delete
• No rebalancing
• No distributed locks



root

meganodeR

1

2

L

meganode meganode

Client

Server 
1

Server 
2

RDMA read R for "FOO"?

Node R returned.
Continue at node 1

RDMA read 1 for "FOO"?

Node 1 returned.
Continue at node 2

RPC TRAVERSE for "FOO“, 
start at node 2?

"FOO" found 
in leaf L!

High Load!

R

1

Server 
1

Server 
2



 Writes: server-side only
 Reads: client-side or server-side

 Server side: B-Link tree offers lock-free reads
 Client side: lock-free reads… if they’re atomic



Node Body

Version V0

Version V0

Node Body

Version V1

Version V1

Node Body

Version V2

Version V2
Correctly read 
as unlocked

Correctly read 
as locked

Correctly read 
as unlocked

Partially-modified 
node contents



 Naïve: pick lowest latency
 Suboptimal! Keep NIC and CPUs occupied.
 Potential pitfalls

 Properly weighting operations
 Extremely short transient conditions, outliers -> 

moving average
 Stale measurements -> exploration



 Clients select client- or server-side search
 Queuing theory model

 Select server “queue” currently least full

Server
Client

Request

Network
Response

NIC

CPU

Message Passing 
Queue

RDMA Queue



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 C++, 16K LOC
 Infiniband with TCP-like connection mode
 Cell clients: Connection-sharing



1. Can selectively relaxed locality save CPUs?
2. Do these techniques scale?
3. Can selectively relaxed locality handle load 

spikes?



5.31M
OPS/SECOND

16 Server x 2-Core 
Throughput

2
CORES PER NIC

CPU Savings

>170%
VS. STRICT

Advantage over 
Server-Side

100% search, caching on
8-64 byte keys

64-256 byte values
2 cores per 16 servers



Cell:
2 core/NIC advantage

100% search, caching off
1 meganode/serv, 1-8 cores



Hybrid client-side and 
server-side processing

<40μs/meganode
>400K ops/sec/core

100% search, caching off
1 meganode, 1 core



Log scale

Cell:
170% to 222% throughput of 

server-side only searches

100% search, caching on
31 meganode/serv, 2 cores



100% search, caching on
2 cores per 4 servers



Cell:
~200ms reaction time

Server side:
Unbounded queue growth

100% search, caching on
31 meganodes, 2 cores



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 RDMA for faster message passing:
 MPI, Memcached, Hbase, Hadoop, PVFS, NFS
 Recent: HERD, FaRM

 In-memory K-V and sorted stores
 FaRM: Similar to DSM, includes K-V store app
 H-Store, VoltDB, Masstree, Silo

 Distributed B-trees
 Sagiv’s B-link tree: Johnson & Colbrook, Boxwood



 Tomorrow’s datacenters will include RDMA-
capable, ultra-low latency networks

 New system architectures:
1. Selectively-relaxed locality for load balancing and 

CPU efficiency
2. Self-verifying data structures make this practical
3. Locality-relaxation techniques work at scale

Thank you! Any questions?



 MPI: Liu 2003, Liu 2004, Shipman 2006,
 Memcached: Stuedi 2012, Nishtala 2013, Jose 2011, Jose 2012
 Hbase: Huang 2012
 Hadoop: Lu 2013
 PVFS: Wu 2003
 NFS: Gibson 2008
 HERD: Kalia 2014
 FaRM: Dragojevic 2014, Dragojevic 2015
 H-Store: Kallman 2008
 VoltDB: Unknown, 2010
 Masstree: Mao 2012
 Silo: Tu 2013
 Sagiv’s B-link tree: Lehman 1981, Sagiv 1986
 Johnson & Colbrook: Johnson 1992
 Boxwood: MacCormick 2004



Potentially-useful extra slides



CPU

Read

Write

Memory

In
fi

n
ib

a
n
d

N
IC

In
fi

n
ib

a
n
d

N
IC

RDMA Read:
SEARCH, GET

RPC: SEARCH, GET

PUT, DELETE

RPC to other 

servers:

SPLIT, SEARCH

Client Server

CPU



Internal Node 

Version 1

Valid Min Key Max Key

Version 2

Key Region ID Offset

Key Region ID Offset

Key Region ID Offset

Key Region ID Offset

● ● ●

Leaf Node 

Version 1

Valid Min Key Max Key

● ● ●

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Version 2



𝑞𝑠
𝑇𝑠

< 𝑚 ∙
𝑞𝑟
𝑇𝑟

 qs = Server-side search queue length
 Ts = Server-side service capacity
 qr = RDMA search queue length
 Tr = RDMA service capacity
 m = RDMA traversals per meganode


