(%#1

USENIX ATC 2016

Balancing CPU and Network in the
Cell Distributed B-Tree Store

Traditional Client-Server System...

...Maintains Locality of

Data and Computation

Server

=
=

I

=
=

Client Client Client

Problem: Server CPU-Bound

Load spikes saturate server CPUs

Options
1. Over-provision server CPUs (wasteful)
2. Spin up extra servers during spike (slow)

Solution: Relax locality by processing
requests at client?

= (lients fetch the required server state

RDMA Enables Client-Side Processing

=

wn
M
-
IH”HI
1)
-

Choosing Client-Side vs.

Server-Side Processing

Server CPU bottleneck -> use client-side

NIC bottleneck -> use server-side
= (If you have excess server CPU, just use it)

Selectively Relaxed Locality

Combining client-side and server-side
operations

Insight: Selectively relaxing locality improves
load balancing

100% Server-Side Operations 0%

Client-Side Operations 100%

Cell: A Distributed B-Tree Store

Distributed, sorted, RDMA-enabled store

Selectively relaxed locality to improve load
balancing and CPU efficiency.

Dynamic locality selector

Motivation: Selectively Relaxed Locality
Cell Distributed B-tree

Evaluation

Related Work

Cell: Balancing Server-Side & Client-Side Search

1. Making Client-Side and Server-Side Operations
Efficient

2. Ensuring Correctness During Operations
3. Choosing Client-Side or Server-Side Search

Today'’s Distributed Sorted Stores

[]] FOO" p
—mE—m—-—) Server

- g ,
= Qtlaue at
\
A server 2

1 FOOII : 1 BARII

Today’s Sorted Stores

Optimized for Ethernet

= Data-computation locality heavily emphasized
= BigTable: 128MB blocks, 3 RTs per operation

= Large, opaque B-trees inside each B-tree node

Great for server-side operations, bad for
client-side operations

= Bounded by server CPUs
= Shouldn't ship large nodes via RDMA

How can RDMA help?

Selectively relax data-computation locality

B-link tree of (accessible) B-link trees
Traverse tree by 1KB “lean” nodes

= Client-side processing
Traverse tree by 64MB “fat” nodes

= Server-side processing

Cell B-Link Tree

[—_—

ROOT
MEGANODE

MEGANODE
r

...
L

Design Choice 1:
Client-Side and Server-Side Reads

Client-Side and Server-Side Server-Side Only

* Search * Insert
* Server-side: traverse fat * Node splits
nodes (meganodes) * Meganode splits
when server CPU is
plentiful * Delete
* Client-side: traverse slim * No rebalancing
nodes when server CPU * No distributed locks

IS bottleneck

* Scan

Cell’s Sorted Store In Action

RDMA read R for "FOO"

q-_-" ’ High Load!

Node R returned.
Continue at node 2

rRPt FAOVERSEO €Y FOO,
T TedF "' 27

meganode

root
meganode

meganode

Using Client-Side and Server-Side

Operations Together

Writes: server-side only
Reads: client-side or server-side

= Server side: B-Link tree offers lock-free reads
= Client side: lock-free reads... if they're atomic

Design Choice 2: Make Reads Atomic

Partially-modified

nhode contents

I

Node Body Node Body

VVersion VO

Node Body

\Version VO VVersion V1
Correctly read Correctly read Correctly read

as unlocked as locked as unlocked

Choosing Between Client-Side and

Server-Side Operations

Naive: pick lowest latency

Suboptimal! Keep NIC and CPUs occupied.
Potential pitfalls

= Properly weighting operations

= Extremely short transient conditions, outliers ->
moving average

= Stale measurements -> exploration

Design Choice 3:

Client-Side Locality Selector

Clients select client- or server-side search
Queuing theory model

= Select server “queue” currently least full

Request

Response

Evaluation

Implementation

C++, 16K LOC
Infiniband with TCP-like connection mode
Cell clients: Connection-sharing

Evaluation Questions

1. Can selectively relaxed locality save CPUs?

2. Do these techniques scale?

3. (Can selectively relaxed locality handle load
spikes?

Selectively Relaxed Locality is Fast

16 Server x 2-Core Advantage over CPU Savines
Throughput Server-Side 8
.
5.31M >170% 2

OPS/SECOND VS. STRICT CORES PER NIC

100% search, caching on
8-64 byte keys
64-256 byte values
2 cores per 16 servers

Selectively Relaxed Locality Scales

to Many CPU Cores

1200

+I Dynaniic Hybritli (Cell)
1000 | Server-Side Only
—&— C(Client-Side Only

800

600

Cell:
2 core/NIC advantage

Throughput (K ops/sec)

400 T —
1 & ¢ . L 4 — 1
200 E -
0 | | | | |
| 2 3 4 5 7 8
CPU Cores

100% search, caching off
1 meganode/serv, 1-8 cores

Selectively Relaxed Locality is Faster

than Client-Side or Server-Side Alone

240 | | | | .I I' | |
290 L Dynamic Hybrid (Cell) —%— |
Client-side Only —8—

200 Server-side Only -

180 | Hybrid client-side and

160 - server-side processing
% a0 L <40ps/meganode
g >400K ops/sec/core
9 120 | g
£ 100 | E i
_1 E\E\E

80 _

60 -

40 + -

20 _

0]]]]] |]] |

0 50 100 150 200 250 300 350 400 450 500
Throughput (KOPS)

100% search, caching off
1 meganode, 1 core

Selectively Relaxed Locality Scales

to Many Servers

Throughput (KOPS)

Log scale

16384

8192

4096

2048

1024

512

256

128

server-side only searches

| ' f | ' ' !
g 5311K]
! 3129K
: 1 848K
579K 986K Cell:
i » 170% to 222% throughput of
526K
i 260K Dynamic Hybrid (Cell) —»— |
| | | Servelr—side onlyI
1 2 4 8 16

Server Machines

100% search, caching on
31 meganode/serv, 2 cores

Mixed Workloads

I T T
mmmmm Scrver-Side Only S
T Cell - Q ©
2000 - S s
3 = =
S 1500 |
<)
! s 2 oz oz
= 1000 % o > N
= 5
o
— oy g g
5 sl .S eF = I I o I i
~ on
i7 ﬂ
0
‘O, 00, PO S0 g L =
fo@eoo/ %Q?O/o %Qa/o Cfooz/o O(‘S‘foo/o O&@\ O&@\
“ Yo e Yo < &

100% search, caching on Operation

2 cores per 4 servers

Selectively-Relaxed Locality

Handles Load Spikes

Latency (Us)

Cell (90th Pct) — — —

Cell (Median)
Server-Side (90th Pct)

Server-Side (Median)

I | | | |

_ Server side:

Unbounded queue growth

1

Cell:
~200ms reaction time

T e —— —s] ——— ™

0

30

100% search, caching on
31 meganodes, 2 cores

Related Work

Related Work

RDMA for faster message passing:

= MPI, Memcached, Hbase, Hadoop, PVFS, NFS
= Recent: HERD, FaRM

In-memory K-\ and sorted stores

= FaRM: Similar to DSM, includes K-V store app
= H-Store, VoltDB, Masstree, Silo

Distributed B-trees

= Sagiv's B-link tree: Johnson & Colbrook, Boxwood

Lessons & Conclusion

Tomorrow's datacenters will include RDMA-
capable, ultra-low latency networks

New system architectures:

1. Selectively-relaxed locality for load balancing and
CPU efficiency

2. Self-verifying data structures make this practical
3. Locality-relaxation techniques work at scale

Thank you! Any questions?

References

MPI: Liu 2003, Liu 2004, Shipman 2006,
Memcached: Stuedi 2012, Nishtala 2013, Jose 2011, Jose 2012
Hbase: Huang 2012

Hadoop: Lu 2013

PVFS: Wu 2003

NFS: Gibson 2008

HERD: Kalia 2014

FaRM: Dragojevic 2014, Dragojevic 2015
H-Store: Kallman 2008

VoltDB: Unknown, 2010

Masstree: Mao 2012

Silo: Tu 2013

Sagiv’'s B-link tree: Lehman 1981, Sagiv 1986
Johnson & Colbrook: Johnson 1992

Boxwood: MacCormick 2004

Excised Slides

Potentially-useful extra slides

Cell’'s System Architecture

CPU /V CPU RPC to other

% “E) servers:

? o - y SPLIT, SEARCH
c c Rea
8 | RPC: SEARCH, GET 8 Write @ >
= PuT, DELETE =
Y Y
= =

RDMA Read:
SEARCH, GET

Client Server

Small Node Structure

Internal Node Leaf Node
Version 1 Version 1
Valid Min Key Max Key Valid Min Key Max Key
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Version 2 Version 2

JSQ Details

ds . dr
I I;
. = Server-side search queue length
T. = Server-side service capacity
g, = RDMA search queue length
T, = RDMA service capacity
m = RDMA traversals per meganode

