
Christopher Mitchell, Kate Montgomery, Lamont Nelson, 
Siddhartha Sen*, Jinyang Li
New York University, *Microsoft Research
June 23, 2016

USENIX ATC 2016



Server

DataThread(s) of computation



Server

Client Client

RequestResponse

Client



 Load spikes saturate server CPUs

 Options
1. Over-provision server CPUs (wasteful)
2. Spin up extra servers during spike (slow)

 Solution: Relax locality by processing 
requests at client?

 Clients fetch the required server state



Server

ReadData

Client Client Client



 Server CPU bottleneck -> use client-side

 NIC bottleneck -> use server-side
 (If you have excess server CPU, just use it)



 Combining client-side and server-side 
operations

 Insight: Selectively relaxing locality improves 
load balancing

100% Server-Side Operations 0%

0% Client-Side Operations 100%



1. Distributed, sorted, RDMA-enabled store

2. Selectively relaxed locality to improve load 
balancing and CPU efficiency.

3. Dynamic locality selector



 Motivation: Selectively Relaxed Locality
 Cell Distributed B-tree
 Evaluation
 Related Work



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search

1. Making Client-Side and Server-Side Operations 
Efficient

2. Ensuring Correctness During Operations
3. Choosing Client-Side or Server-Side Search

 Evaluation
 Related Work



Client

Server 
1

Server 
2

"FOO"?

Continue at 
server 2

"FOO"?

"FOO":"BAR"



 Optimized for Ethernet
 Data-computation locality heavily emphasized
 BigTable: 128MB blocks, 3 RTs per operation
 Large, opaque B-trees inside each B-tree node

 Great for server-side operations, bad for 
client-side operations
 Bounded by server CPUs
 Shouldn’t ship large nodes via RDMA



 Selectively relax data-computation locality

 B-link tree of (accessible) B-link trees
 Traverse tree by 1KB “lean” nodes

 Client-side processing
 Traverse tree by 64MB “fat” nodes

 Server-side processing



ROOT
MEGANODE R

MEGANODE

L L L L L L

MEGANODE

node-to-node link
level
link



Client-Side and Server-Side Server-Side Only
• Search

• Server-side: traverse fat 
nodes (meganodes) 
when server CPU is 
plentiful

• Client-side: traverse slim 
nodes when server CPU 
is bottleneck

• Scan

• Insert
• Node splits
• Meganode splits

• Delete
• No rebalancing
• No distributed locks



root

meganodeR

1

2

L

meganode meganode

Client

Server 
1

Server 
2

RDMA read R for "FOO"?

Node R returned.
Continue at node 1

RDMA read 1 for "FOO"?

Node 1 returned.
Continue at node 2

RPC TRAVERSE for "FOO“, 
start at node 2?

"FOO" found 
in leaf L!

High Load!

R

1

Server 
1

Server 
2



 Writes: server-side only
 Reads: client-side or server-side

 Server side: B-Link tree offers lock-free reads
 Client side: lock-free reads… if they’re atomic



Node Body

Version V0

Version V0

Node Body

Version V1

Version V1

Node Body

Version V2

Version V2
Correctly read 
as unlocked

Correctly read 
as locked

Correctly read 
as unlocked

Partially-modified 
node contents



 Naïve: pick lowest latency
 Suboptimal! Keep NIC and CPUs occupied.
 Potential pitfalls

 Properly weighting operations
 Extremely short transient conditions, outliers -> 

moving average
 Stale measurements -> exploration



 Clients select client- or server-side search
 Queuing theory model

 Select server “queue” currently least full

Server
Client

Request

Network
Response

NIC

CPU

Message Passing 
Queue

RDMA Queue



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 C++, 16K LOC
 Infiniband with TCP-like connection mode
 Cell clients: Connection-sharing



1. Can selectively relaxed locality save CPUs?
2. Do these techniques scale?
3. Can selectively relaxed locality handle load 

spikes?



5.31M
OPS/SECOND

16 Server x 2-Core 
Throughput

2
CORES PER NIC

CPU Savings

>170%
VS. STRICT

Advantage over 
Server-Side

100% search, caching on
8-64 byte keys

64-256 byte values
2 cores per 16 servers



Cell:
2 core/NIC advantage

100% search, caching off
1 meganode/serv, 1-8 cores



Hybrid client-side and 
server-side processing

<40μs/meganode
>400K ops/sec/core

100% search, caching off
1 meganode, 1 core



Log scale

Cell:
170% to 222% throughput of 

server-side only searches

100% search, caching on
31 meganode/serv, 2 cores



100% search, caching on
2 cores per 4 servers



Cell:
~200ms reaction time

Server side:
Unbounded queue growth

100% search, caching on
31 meganodes, 2 cores



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 RDMA for faster message passing:
 MPI, Memcached, Hbase, Hadoop, PVFS, NFS
 Recent: HERD, FaRM

 In-memory K-V and sorted stores
 FaRM: Similar to DSM, includes K-V store app
 H-Store, VoltDB, Masstree, Silo

 Distributed B-trees
 Sagiv’s B-link tree: Johnson & Colbrook, Boxwood



 Tomorrow’s datacenters will include RDMA-
capable, ultra-low latency networks

 New system architectures:
1. Selectively-relaxed locality for load balancing and 

CPU efficiency
2. Self-verifying data structures make this practical
3. Locality-relaxation techniques work at scale

Thank you! Any questions?



 MPI: Liu 2003, Liu 2004, Shipman 2006,
 Memcached: Stuedi 2012, Nishtala 2013, Jose 2011, Jose 2012
 Hbase: Huang 2012
 Hadoop: Lu 2013
 PVFS: Wu 2003
 NFS: Gibson 2008
 HERD: Kalia 2014
 FaRM: Dragojevic 2014, Dragojevic 2015
 H-Store: Kallman 2008
 VoltDB: Unknown, 2010
 Masstree: Mao 2012
 Silo: Tu 2013
 Sagiv’s B-link tree: Lehman 1981, Sagiv 1986
 Johnson & Colbrook: Johnson 1992
 Boxwood: MacCormick 2004



Potentially-useful extra slides



CPU

Read

Write

Memory

In
fi

n
ib

a
n
d

N
IC

In
fi

n
ib

a
n
d

N
IC

RDMA Read:
SEARCH, GET

RPC: SEARCH, GET

PUT, DELETE

RPC to other 

servers:

SPLIT, SEARCH

Client Server

CPU



Internal Node 

Version 1

Valid Min Key Max Key

Version 2

Key Region ID Offset

Key Region ID Offset

Key Region ID Offset

Key Region ID Offset

● ● ●

Leaf Node 

Version 1

Valid Min Key Max Key

● ● ●

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Key Virt Addr CRCSize

Version 2



𝑞𝑠
𝑇𝑠

< 𝑚 ∙
𝑞𝑟
𝑇𝑟

 qs = Server-side search queue length
 Ts = Server-side service capacity
 qr = RDMA search queue length
 Tr = RDMA service capacity
 m = RDMA traversals per meganode


