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 Load spikes saturate server CPUs

 Options
1. Over-provision server CPUs (wasteful)
2. Spin up extra servers during spike (slow)

 Solution: Relax locality by processing 
requests at client?

 Clients fetch the required server state
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 Server CPU bottleneck -> use client-side

 NIC bottleneck -> use server-side
 (If you have excess server CPU, just use it)



 Combining client-side and server-side 
operations

 Insight: Selectively relaxing locality improves 
load balancing

100% Server-Side Operations 0%

0% Client-Side Operations 100%



1. Distributed, sorted, RDMA-enabled store

2. Selectively relaxed locality to improve load 
balancing and CPU efficiency.

3. Dynamic locality selector



 Motivation: Selectively Relaxed Locality
 Cell Distributed B-tree
 Evaluation
 Related Work



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search

1. Making Client-Side and Server-Side Operations 
Efficient

2. Ensuring Correctness During Operations
3. Choosing Client-Side or Server-Side Search

 Evaluation
 Related Work
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 Optimized for Ethernet
 Data-computation locality heavily emphasized
 BigTable: 128MB blocks, 3 RTs per operation
 Large, opaque B-trees inside each B-tree node

 Great for server-side operations, bad for 
client-side operations
 Bounded by server CPUs
 Shouldn’t ship large nodes via RDMA



 Selectively relax data-computation locality

 B-link tree of (accessible) B-link trees
 Traverse tree by 1KB “lean” nodes

 Client-side processing
 Traverse tree by 64MB “fat” nodes

 Server-side processing
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Client-Side and Server-Side Server-Side Only
• Search

• Server-side: traverse fat 
nodes (meganodes) 
when server CPU is 
plentiful

• Client-side: traverse slim 
nodes when server CPU 
is bottleneck

• Scan

• Insert
• Node splits
• Meganode splits

• Delete
• No rebalancing
• No distributed locks
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 Writes: server-side only
 Reads: client-side or server-side

 Server side: B-Link tree offers lock-free reads
 Client side: lock-free reads… if they’re atomic
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 Naïve: pick lowest latency
 Suboptimal! Keep NIC and CPUs occupied.
 Potential pitfalls

 Properly weighting operations
 Extremely short transient conditions, outliers -> 

moving average
 Stale measurements -> exploration



 Clients select client- or server-side search
 Queuing theory model

 Select server “queue” currently least full
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 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 C++, 16K LOC
 Infiniband with TCP-like connection mode
 Cell clients: Connection-sharing



1. Can selectively relaxed locality save CPUs?
2. Do these techniques scale?
3. Can selectively relaxed locality handle load 

spikes?



5.31M
OPS/SECOND

16 Server x 2-Core 
Throughput

2
CORES PER NIC

CPU Savings

>170%
VS. STRICT

Advantage over 
Server-Side

100% search, caching on
8-64 byte keys

64-256 byte values
2 cores per 16 servers



Cell:
2 core/NIC advantage

100% search, caching off
1 meganode/serv, 1-8 cores



Hybrid client-side and 
server-side processing

<40μs/meganode
>400K ops/sec/core

100% search, caching off
1 meganode, 1 core



Log scale

Cell:
170% to 222% throughput of 

server-side only searches

100% search, caching on
31 meganode/serv, 2 cores



100% search, caching on
2 cores per 4 servers



Cell:
~200ms reaction time

Server side:
Unbounded queue growth

100% search, caching on
31 meganodes, 2 cores



 Motivation: Selectively Relaxed Locality
 Cell: Balancing Server-Side & Client-Side Search
 Evaluation
 Related Work



 RDMA for faster message passing:
 MPI, Memcached, Hbase, Hadoop, PVFS, NFS
 Recent: HERD, FaRM

 In-memory K-V and sorted stores
 FaRM: Similar to DSM, includes K-V store app
 H-Store, VoltDB, Masstree, Silo

 Distributed B-trees
 Sagiv’s B-link tree: Johnson & Colbrook, Boxwood



 Tomorrow’s datacenters will include RDMA-
capable, ultra-low latency networks

 New system architectures:
1. Selectively-relaxed locality for load balancing and 

CPU efficiency
2. Self-verifying data structures make this practical
3. Locality-relaxation techniques work at scale

Thank you! Any questions?



 MPI: Liu 2003, Liu 2004, Shipman 2006,
 Memcached: Stuedi 2012, Nishtala 2013, Jose 2011, Jose 2012
 Hbase: Huang 2012
 Hadoop: Lu 2013
 PVFS: Wu 2003
 NFS: Gibson 2008
 HERD: Kalia 2014
 FaRM: Dragojevic 2014, Dragojevic 2015
 H-Store: Kallman 2008
 VoltDB: Unknown, 2010
 Masstree: Mao 2012
 Silo: Tu 2013
 Sagiv’s B-link tree: Lehman 1981, Sagiv 1986
 Johnson & Colbrook: Johnson 1992
 Boxwood: MacCormick 2004



Potentially-useful extra slides
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Internal Node 
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 qs = Server-side search queue length
 Ts = Server-side service capacity
 qr = RDMA search queue length
 Tr = RDMA service capacity
 m = RDMA traversals per meganode


