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Traditional Client-Server System...
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Problem: Server CPU-Bound

Load spikes saturate server CPUs

Options
1. Over-provision server CPUs (wasteful)
2. Spin up extra servers during spike (slow)

Solution: Relax locality by processing
requests at client?

= (lients fetch the required server state



RDMA Enables Client-Side Processing
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Choosing Client-Side vs.

Server-Side Processing

Server CPU bottleneck -> use client-side

NIC bottleneck -> use server-side
= (If you have excess server CPU, just use it)



Selectively Relaxed Locality

Combining client-side and server-side
operations

Insight: Selectively relaxing locality improves
load balancing

100% Server-Side Operations 0%

Client-Side Operations 100%




Cell: A Distributed B-Tree Store

Distributed, sorted, RDMA-enabled store

Selectively relaxed locality to improve load
balancing and CPU efficiency.

Dynamic locality selector



Motivation: Selectively Relaxed Locality
Cell Distributed B-tree

Evaluation

Related Work



Cell: Balancing Server-Side & Client-Side Search

1. Making Client-Side and Server-Side Operations
Efficient

2. Ensuring Correctness During Operations
3. Choosing Client-Side or Server-Side Search



Today'’s Distributed Sorted Stores
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Today’s Sorted Stores

Optimized for Ethernet

= Data-computation locality heavily emphasized
= BigTable: 128MB blocks, 3 RTs per operation

= Large, opaque B-trees inside each B-tree node

Great for server-side operations, bad for
client-side operations

= Bounded by server CPUs
= Shouldn't ship large nodes via RDMA



How can RDMA help?

Selectively relax data-computation locality

B-link tree of (accessible) B-link trees
Traverse tree by 1KB “lean” nodes

= Client-side processing
Traverse tree by 64MB “fat” nodes

= Server-side processing



Cell B-Link Tree
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Design Choice 1:
Client-Side and Server-Side Reads

Client-Side and Server-Side Server-Side Only

* Search * Insert
* Server-side: traverse fat * Node splits
nodes (meganodes) * Meganode splits
when server CPU is
plentiful * Delete
* Client-side: traverse slim * No rebalancing
nodes when server CPU * No distributed locks

IS bottleneck

* Scan



Cell’s Sorted Store In Action

RDMA read R for "FOO"

q-_-" ’ High Load!

Node R returned.
Continue at node 2
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Using Client-Side and Server-Side

Operations Together

Writes: server-side only
Reads: client-side or server-side

= Server side: B-Link tree offers lock-free reads
= Client side: lock-free reads... if they're atomic



Design Choice 2: Make Reads Atomic

Partially-modified

nhode contents

I

Node Body Node Body

VVersion VO

Node Body

\Version VO VVersion V1
Correctly read Correctly read Correctly read

as unlocked as locked as unlocked



Choosing Between Client-Side and

Server-Side Operations

Naive: pick lowest latency

Suboptimal! Keep NIC and CPUs occupied.
Potential pitfalls

= Properly weighting operations

= Extremely short transient conditions, outliers ->
moving average

= Stale measurements -> exploration



Design Choice 3:

Client-Side Locality Selector

Clients select client- or server-side search
Queuing theory model

= Select server “queue” currently least full

Request

Response




Evaluation



Implementation

C++, 16K LOC
Infiniband with TCP-like connection mode
Cell clients: Connection-sharing



Evaluation Questions

1. Can selectively relaxed locality save CPUs?

2. Do these techniques scale?

3. (Can selectively relaxed locality handle load
spikes?



Selectively Relaxed Locality is Fast

16 Server x 2-Core Advantage over CPU Savines
Throughput Server-Side 8
.
5.31M >170% 2

OPS/SECOND VS. STRICT CORES PER NIC

100% search, caching on
8-64 byte keys
64-256 byte values
2 cores per 16 servers




Selectively Relaxed Locality Scales

to Many CPU Cores
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Selectively Relaxed Locality is Faster

than Client-Side or Server-Side Alone
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Selectively Relaxed Locality Scales

to Many Servers

Throughput (KOPS)

Log scale
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Mixed Workloads
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Selectively-Relaxed Locality

Handles Load Spikes

Latency (Us)
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Related Work



Related Work

RDMA for faster message passing:

= MPI, Memcached, Hbase, Hadoop, PVFS, NFS
= Recent: HERD, FaRM

In-memory K-\ and sorted stores

= FaRM: Similar to DSM, includes K-V store app
= H-Store, VoltDB, Masstree, Silo

Distributed B-trees

= Sagiv's B-link tree: Johnson & Colbrook, Boxwood



Lessons & Conclusion

Tomorrow's datacenters will include RDMA-
capable, ultra-low latency networks

New system architectures:

1. Selectively-relaxed locality for load balancing and
CPU efficiency

2. Self-verifying data structures make this practical
3. Locality-relaxation techniques work at scale

Thank you! Any questions?
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Excised Slides

Potentially-useful extra slides




Cell’'s System Architecture

CPU /V CPU RPC to other
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? o - y SPLIT, SEARCH
c c Rea
8 | RPC: SEARCH, GET 8 Write @ >
= PuT, DELETE =
Y Y
= =

RDMA Read:
SEARCH, GET

Client Server




Small Node Structure

Internal Node Leaf Node
Version 1 Version 1
Valid Min Key Max Key Valid Min Key Max Key
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Key Region ID | Offset Key | Virt Addr | Size CRC
Version 2 Version 2




JSQ Details

ds . dr
I I;
. = Server-side search queue length
T. = Server-side service capacity
g, = RDMA search queue length
T, = RDMA service capacity
m = RDMA traversals per meganode




