STOP DOING MEMORY SAFEY

® BOUNDS WERE NEVER MEANT TO BE CHECKED

e YEARS OF PAPERS vet NO ReaL-wORLD ADOPTION
for BOUNDS CHECKERS
e Wanted to PREVENT DANGLING POINTERS ? We had a tool for

that: It was called DON'T FREE YOUR MEMORY

® “Yes please give me PERLBENCH COMPATIBILITY Please give me
“CAPABILITIES” - Statements dreamed up by evil wizards

LOOK at what PHD STUDENTS have been demanding your Respect
for all this time, with all the CPU BENCHMARKS we built for them
(This is REAL researcH done by REAL ACADEMICS)

: . . | oxs0 struct A | oxso [
JddbJU gdutll oo
b N Ox60 BMmor 2 in
Vi . oo s b8 st o s o (e b 3 |memo

*ﬂi.ﬂihhuiuw,

222?227

"Hello | would like int*_counted by(count) p please”
They have played us for absolute fools

KU LEUVEN

Not Quite Write:
On the Effectiveness of Store-Only Bounds Checking

Adriaan Jacobs, Stijn Volckaert

i Ove
SSL s, UM vy es
i Eb SE‘_." ”'E'.rﬁb |'l) Vufn
W it a
E\NS . walarm s g, uq: "1 Opep "able ¢,
(® e m LV VeV e Sl

The r The g:;f--'ar;r}',',a.J €9 SC Magazine

;feaffbfe - Google patches new zero-day actively exploited in the

a ‘ - cf 1
30 \(ea- . rasrf'uph’.c Chrome browser . .’ j
Og i
“ Error , Google's most recent patch for Chrome is the fifth actively exploited zero-day targeted e

e . ‘
top W'ES.P]JHQ{GH . e ' f; e F;jj’ I by threat actors this year in the popular browser.
u.s. declar_ PANGOOBIN™="% 3 days ago
=1 '-\.Drl- ~ \.-f.[” . e —
Wﬂﬂna{j . TUE‘SQ’;\» f a'}”mum Ebp VU.!"}'] b\\‘w
190e e gt Goog T CVSS g STabijy, J) nera
S [% as e e
e - efOr an 'Mage | Signee r Acti Z
0 5 Lot ST g, - AQ
o™ ";nefﬁ“‘w e Dy, e VE iy SHbloitag, A
N e POV ng - i c G
B"Q a'.ﬂ'jl_ﬁl'la T e n th iy ets "‘
\N ine W ah\‘l.‘t‘t\': v _ ot] Ory Cliyj) m&p

bp ¢ se
G | T by fig,
Gouti*e - Eqﬂrdaw; quity _ \ \L lat ay
A T - p‘) k g .

Microsoft: 70 percent of all security bugs are
memory safety issues

Percentage of memory safety issues has been hovering at 70 percent for the past 12 years.

2021 in Memory Unsafety - Operating Systems

“Memory unsafety continues to dominate the total percentage of security bugs on Apple’s
platforms.”
CYBERSECURITY & /==

INFRASTRUCTURE 577
SECURITY AGENCY ‘&=

AMERICA’S CYBER DEFENSE AGENCY

,...._.. . T
(ot PLEASECMAKE ITSTOP o

Chrome: 70% of all security bugs are memdy
safety issues

Google software engineers are looking into ways of eliminating memory management-related bugs from Chrome.

5 KU LEUVEN

Products

Why Haven't We
Solved This Problem
Yet?

MEMORY SAFETY
® BOUNDS WERE NEVER MEANT TO BE CHECKED
e YEARS OF PAPERS yet NO ReaL-wORLD ADOPTION
for BOUNDS CHECKERS

® Wanted to PREVENT DANGLING POINTERS ? We had a tool for

that: It was called JON'T FREE YOUR MEMORY

® “Yes please give me PERLBENCH COMPATIBILITY Please give me
“CAPABILITIES” - Statements dreamed up by evil wizards

LOOK at what PHD STUDENTS have been demanding your Respect
for all this time, with all the GPU BENCHMARKS we built for them
(This is REAL research done by REAL ACADEMICS):

[er Prograns | l “
S ox50 iG] s
el

"Hello | would like int*_soutet byaunt)» please”
They have played us for absolute fools

STOP DOING "™

® BOUNDS WERE NEVER MEANT TO BE CHECKED

Why Haven’t We Solved

This Problem Yet? e veaRs OF PAPERS vet No reat-worto ADOPTION
for BOUNDS CHECKERS
e Wanted to PREVENT DANGLING POINTERS ? We had a tool for
e Very frequent checks that 1t was calicd DON'T FREE YOUR MEMORY
® Intrusive Instrumentation ® “Yes please give me PERLBENCH COMPATIBILITY Please give me
° Hard-to-generalize hardware “GAPABILITIES” - Statements dreamed up by evil wizards

acceleration LOOK at what PHD STUDENTS have been demanding your Respect

o Compatlblllty with arcane for all this time, with all the GPU BENCHMARKS we built for them
(T hls is REAL research done by REAL ACADEMICS):

programming practices

p

-
</ 2 g P2 | “Hello | would like - smmmtemnts please”

vulnerable code ' hardened code They have played us for absolute fools

Partial Bounds Checking

Prioritize Security-Critical Code/Data De-prioritize Costly Checks
Harden Code Data
this N . \ Security
Privileged Sensitive Benefit
part (Code) Data .
\OpenSsL/ Added
Overhead
Unprivileged Al
sensitive
Code
Data
—_/ —
HMM!!! INTERESTING
E.g., DataShield (AsiaCCS’17), OAT (S&P’20) E.g., ASAP (S&P’15),

Distribution of memory accesses in
SPEC CPU2017

Store-Only Bounds Checking

e |nvalid writes are necessary for many attacks
o Except pure information disclosure, e.g., Heartbleed

e Memory writes occur far less frequently than reads

i ; 4
= - a
= - - -

&)

o)

“Store-only checking [...] is
sufficient to prevent all memory
corruption-based security
vulnerabilities.”

J
Smells like opportunity: / - Nagarakatte et al.

Bounds Checkers Demystified

_ _ void* ptr = malloc ;
How to recover intended referent during P intended (refere)nt

dereference? /...
*ptr = ...

KU LEUVEN

Bounds Checkers Demystified

How to recover intended referent during ptr
dereference? bound
base

Idea #1 (pointer-based) Idea #2 (object-based)

my
precious
object

Propagate it with the Don't lose it in the
pointer! first place??

Constrain pointer

AT S [Jel arithmetic so pointers

with a reference to the

intended referent never escape their if (ptr < || ptr >)

intended referent

exit();

KU LEUVEN

Bounds Checkers Demystified

bound
base
How to recover intended referent during
dereference?
ptr
Idea #1 (pointer-based) Idea #2 (object-based) >
L . my
Propagate it with the Don't lose it in the precious
pointer! first place?? object

Constrain pointer

AT S [Jel arithmetic so pointers

with a reference to the

intended referent never escape their if (ptr < || ptr >)

intended referent

exit();

KU LEUVEN

Bounds Checkers Demystified

aptr | This is how
ase
_ | SoftBound
How to recover intended referent during works
dereference?
ptr
Idea #1 (pointer-based) Idea #2 (object-based))
my
Propagate it with the Don't lose it in the precious
pointer! first place?? object

Constrain pointer

AT S [Jel arithmetic so pointers

with a reference to the

intended referent never escape their if (ptr < || ptr >)

intended referent

exit();

KU LEUVEN

Bounds Checkers Demystified

How to recover intended referent during

dereference?
ptr
Idea #1 (pointer-based) Idea #2 (object-based))
L . my
Propagate it with the Don't lose it in the precious
pointer! first place?? object

Constrain pointer
arithmetic so pointers

Associate each pointer

with a reference to the

intended referent never escape their ptr += offset;

intended referent

if (ptr < || ptr >)

exit();

KU LEUVEN

Bounds Checkers Demystified

basel bound

How to recover intended referent during

dereference?
ptr
Idea #1 (pointer-based) Idea #2 (object-based) D
my
Propagate it with the Don't lose it in the precious
pointer! first place?? object

Constrain pointer

AT S [Jel arithmetic so pointers

with a reference to the

intended referent never escape their ptr += offset;

intended referent

if (ptr < || ptr >)

exit();

KU LEUVEN

Store-Only Bounds Checking

+ referent = *lookup for(&user ages[i]);
int* user age = user ages[i];

+ assert valid(user _age, referent);
*user_age = input();

isAdmin#referent

bool* isAdmin
email#referent

"attacker@
protonmail
.com"

ua2#referent

user_ages|[2]
ual#referent

user_ages|[1]

uaO#referent

user_ages|[0]

KU LEUVEN

Store-Only Bounds Checking

isAdmin#referent
|bool* isAdmin|
A

email#referent
- assert_valid(&user_ages[i], user_ages_referent); | | .

+ referent = *lookup for(&user ages[i]); Leturr;addgfzs:?
. . ox7ffffdead ounds table:
int* user age =|user ages[i]; . |

ua2#referent
+ assert valid(user age, referent); user_ages[2]
*user_age = input(); ual#referent

user_ages|[1]

uaO#referent

user_ages|[0]

KU LEUVEN

This Is Not a Design or Implementation Issue

Property SoftBound [75] | FRAMER [78] | PACMem [63]|| Intel MPX [81]
Hardware None None Commodity Commodity
Type Pointer-based Object-based | Pointer-based || Pointer-based
Per-Pointer Metadata Disjoint In-pointer In-pointer Disjoint
Per-Object Metadata None Inline Disjoint None
Pointer Reuse v v v v
Pointer Crafting X v v v
[llegitimate Targets X X X v

KU LEUVEN

Who Needs Invalid Writes?

Arbitrary Code Execution

func = array[i];
func(args) ;

§ 9
“Store-only checking provides
o0 much better safety than control-
ammmm flow integrity with similar
performance overheads.”
J
_/ - Nagarakatte et al.

KU LEUVEN

Who Needs Invalid Writes?

Arbitrary Code Execution Memory “Corruption”
) int adminLvl = dangling_ptr->1vl;
func = arrayl[1]; if (adminLvl > 2)
func(args); system (" /bin/bash");
globalAdminLv]l = adminLvl;

& Discovery through invalid reads
& Crafting in accessible locations

KU LEUVEN

Real-World Feasibility Study on 1,000 GitHub repos

1000 -
: —— unsafe data pointer loads
I unsafe funcptr loads
S 100 P
o 1
=}
E
£
=
=
W 10 A
=]]
[N]
S :
14

L | T T T L T T T T T T T T T T T T LA | T T T T T
100 101 102 103 104 10°
Number of occurrences

Unsafe data pointer load Unsafe funcptr load
ptr = array[i];

ptr = array[i];
/... QL= /]l ...

ptr = .. .; ptr(...);

Recap: Why Store-Only Bounds Checking Fails

KU LEUVEN

Looking Ahead: Promising Bounds Checking Trend

e Some pointer bits must typically be

immutable to prevent bypass
o “Relative” overwrites via pointer

arithmetic: ptr,= ptrg + (ptra-ptrg)

pointer-based example

64 48 0

bounds table idx pointer value

immutable attacker-controllable

e (OGs: constrain pointer arithmetic

object-based example

64 N 0
most significant pointer bits of
offset &= MASK; intented referent

immutable attacker-controllable

in-object offset

ptr += offset;

KU LEUVEN

Looking Ahead: Promising Bounds Checking Trend

e Some pointer bits must typically be

. obj_B
immutable to prevent bypass S
o “Relative” overwrites via pointer A
arithmetic: ptr,= ptrg + (ptra-ptrg)
e New Age: cryptographic immutability ptr_B-ptr_A
- offset &= MASK; \/ obj_A

P _ Ay

ptr += offset;

KU LEUVEN

Breaching Pointer Confidentiality

: : : : el o

e | ack of pointer arithmetic constraints | o | @D "Te—
introduces implicit pointer secrecy 5 | ﬂs‘”‘"“

requirement :?.‘t‘!‘![&”ﬁ E_C!‘?l.e_cg'_z_%.’

S— {m
e Breached by store-only bounds |- N —
checkers Bibemak] ObjectSe | . e ponter (wihsod) |
ZREWED B C3 (MICRO’21)
| NI | |
Cryptographic;’ally immutable Mutlable
NEW I I |1} | Radix | Upper digits | Least-significant digit|
PROMISING BOUNDS E ' :

1 Address digits with specified radix

Breaching Pointer Confidentiality

e | ack of pointer arithmetic constraints

introduces implicit pointer secr
requirement

e Breached by st
checkers

tadata Table

Address

irthmark ject Size ”
conflic

T (MICRO'21)

ptographically immutable Mutable
1 1

Upper digits | Least-significant digit |

l\..‘
— T

Address digits with specified radix

But | Still Want Store-Only Protection!

o WIT (S&P’08) computes
intended referents statically DATA FLow
e Store-only testing/fuzzing

e \Watch out for bounds — . .
checking optimizations, RANEWRHIO2E:
selective bounds checking, |

EPISODE MDCCCLXXXVIN

| KU LEUVEN

Not Quite Write:
On the Effectiveness of Store-Only Bounds Checking

Adriaan Jacobs Stijn Volckaert
DistriNet, KU Leuven DistriNet, KU Leuven

Check out the
experiments!

Read the paper!

Questions?

— KU LEUVEN

