é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Engineering a backdoored bitcoin wallet
Adam Scott and Sean Andersen, Block, Inc.

https://www.usenix.org/conference/woot24/presentation/scott

This paper is included in the Proceedings of the
18th USENIX WOOT Conference on Offensive Technologies.

August 12-13, 2024 « Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the
Proceedings of the 18th USENIX WOOT
Conference on Offensive Technologies
is sponsored by USENIX.

+ 8 ';\-_. - —
R b »

Engineering a backdoored bitcoin wallet

Adam Scott
Block, Inc.

Abstract

Here we describe a backdoored bitcoin hardware wallet. This
wallet is a fully-functional hardware wallet, yet it implements
an extra, evil functionality: the wallet owner unknowingly
leaks the private seed to the attacker through a few valid
bitcoin transactions. The seed is leaked exclusively through
the ECDSA signatures. To steal funds, the attacker just needs
to tap into the public blockchain. The attacker does not need
to know (or control) any aspect of the wallet deployment
(such as where in the world the wallet is, or who is using it).
The backdoored wallet behavior is indistinguishable from the
input-output behavior of a non-backdoored hardware wallet
(it is impossible to discern non-backdoored signatures from
backdoored ones, and backdoored signatures are as valid and
just “work”™ as well as regular, non-backdoored ones). The
backdoor does not need to be present at wallet initialization
time; it can be implanted before or after key generation (this
means the backdoor can be distributed as a firmware update,
and is compatible with existing bitcoin wallets). We showcase
the feasibility of the backdoored wallet by providing an end-
to-end implementation on the bitcoin testnet network. We
leak an entire 256-bit seed in 10 signatures, and only need
modest computational resources to recover the seed.
Version: 2024-05-30

1 Introduction

Bitcoin, introduced in 2008 [NakO08], transacts in 2024 over
5 billion USD per day. Bitcoin is a distributed ledger that ac-
cumulates signed transactions conveying movement of funds.
Cryptocurrencies like bitcoin are designed so that access to
cryptographic keys directly controls the ability to move funds.
In other words, in a cryptocurrency system, a security or cryp-
tographic mistake normally results in the loss of funds.
Cryptocurrency users typically handle cryptographic keys
in one of two ways: either they engage with a custodian to
handle keys on the customer’s behalf; or the users themselves

Sean Andersen
Block, Inc.

store keys in specific-purpose hardware wallets." Hardware
wallets are essentially small-scale HSMs that at a minimum
store (or derive) keys and sign transactions using public-
key cryptography. Examples of hardware wallets are Tre-
zor [Sat22] or Ledger [SAS22]. Hardware wallets typically
use a key derivation strategy such as BIP32 [Wuil2] to sim-
plify storage requirements and overall key management com-
plexity. In a deterministic key derivation strategy like BIP32,
all private keys are deterministically derived from a mas-
ter secret seed using a suitable key derivation function (like
HMAC-SHAS512 in the case of BIP32).

This paper focuses on cryptographic subversion of bitcoin
wallets. We assume an attacker designs a backdoor and can
inject custom firmware on the hardware wallet unit. The objec-
tive of the backdoor designer is to steal the wallet funds after
the wallet is deployed. The custom wallet firmware contains
a backdoored implementation of the signature scheme. This
signature scheme is sound: it produces valid signatures. In
addition, signatures themselves contain an extra, subliminal
message embedded onto the signature values. This sublimi-
nal message is recoverable only to the backdoor designer. In
our scenario, the subliminal message is the secret seed that
generates all wallet private keys. Note that it is very easy
for the attacker to obtain the signatures: since signatures are
part of transactions and hence public information, the back-
door designer can easily recover the seed by monitoring the
blockchain.

Previous work. Simmons introduced the problem of sub-
liminal messages in signatures schemes and gave precise
constructions back in the 1980s [Sim83, Sim84, Sim85].
Later Young and Yung generalized and coined the term
“kleptography” to refer to backdoored cryptographic algo-
rithms designed to steal information through covert chan-
nels [YY96,YY97a,YYO04]. They also gave a very efficient
kleptographic version of DSA that just requires two leaked

I Alternatively, the user can store the key directly on their personal device.
This is considered to be riskier since general-purpose computers have a richer
attack surface.

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 89

signatures [YY97b] assuming the signer is stateful. For formal
definitions, see Ateniese et al. [AMV15, AMV20]. Crypto-
graphic subversion is widespread: a notorious example of a
(standardized) backdoor is Dual EC PRNG [SF07,BLN16].

Our contribution. This paper details the design and imple-
mentation of a flavor of Simmons backdoored DSA, heavily
tailored towards an actual deployment onto a bitcoin hardware
wallet. We focus on crafting a stealth backdoor that can be
readily deployed in many different scenarios. We implement
this backdoor end-to-end using the bitcoin testnet network and
discuss optimizations and limitations. The backdoor designer
can recover the whole seed with just 10 signatures and modest
computational resources. We hope this example contributes to
the development of more secure wallets and and ecosystems.

Applicability to other cryptocurrencies. This paper fo-
cuses on bitcoin, but the ideas easily transfer to other cryp-
tocurrencies that use ECDSA with minimal modifications.
Similarly, while this paper focuses on “personal” hardware
wallets like Trezor or Ledger, the same observations carry to
special-purpose, cold storage solutions.

1.1 Attacker model

We assume the adversary has control over the wallet code.
Gaining control over a hardware wallet firmware can be at-
tained by a variety of paths, including supply-chain attacks on
any wallet software components, a compromise of the build
system, a malicious insider with write access to source code
or a compromise of the firwmare signing key.

On stealth backdoors. We note that when an attacker has
achieved (essentially) remote-code execution in the hardware
wallet firmware, there are many other exfiltration vectors avail-
able. For instance, a malicious wallet firmware could exfil-
trate keys in unused fields in a bitcoin transaction, or resort to
fancier physical exfiltration channels such as EM leakage or
sound (if targeting a deep cold storage appliance). There is a
plethora of work in this direction (sometimes called “covert
channels”) [KA98,VP09,LU02, GMME15,MSST05, GSE20].
However, these exfiltration channels often introduce new as-
sumptions that significantly increase the cost of the attack:
either by requiring a compromise of other system components
(as needed if the exfiltration technique relies on introducing
new messages) or some kind of physical proximity (as needed
in all EM / sound leakage techniques). Our exfiltration tech-
nique works in a significantly more constrained setting (our
attacker model is weaker) since we rely on less assumptions.
We do not require compromise of additional system com-
ponents nor require physical proximity (not even knowledge
about the specific deployment). Thus, our techniques are more
broadly applicable and can be universally deployed on bitcoin
wallets.

2 Design space

Informally, we design a ECDSA signing algorithm featuring
extra functionality: the signature values (r,s) convey extra
information that allow the backdoor designer to extract the
BIP32 seed. The basic idea traces back to Simmons, 40 years
ago.

2.1 Backdoored wallet requirements

We present in this section a brief reminder of what makes a
good cryptographic backdoor plus some particular properties
of good backdoored wallets. This concept was first introduced
by Young and Yung [YY96]. The following properties are
desirable:

R1 Backdoor is efficient, both for signing and leaking. On
the one hand, this means there is no noticeable perfor-
mance loss in the signer (signing is fast), and that only a
handful of signatures are required to leak the secret (the
subliminal channel has appropriate bandwidth). We as-
sume the attacker can afford some moderate computation
when recovering the secret from the signatures.

R2 Backdoor is stealth: backdoored signatures should be
computationally indistinguishable from non-backdoored
ones. This ensures the backdoor is undetectable from its
input/output behavior. Relatedly, the backdoor should
be sound: leaked secrets are unrecoverable to anyone
without the backdoor recovery seed.

R3 Backdoor is suitable for deployment in a typical cryp-
tocurrency scenario. This means that the backdoor sys-
tem should tolerate loss of signatures (for example, a
transaction is signed but never broadcasted) or reorder-
ing (in general, we cannot assume the order the signa-
tures are generated is the same as transactions in the
blockchain). The backdoor should be able to leak arbi-
trary data, not just the long term ECDSA key. Also, in
typical deployments of hardware wallets, each signature
is generated under a different long-term key (this is the
case in BIP32). This means the backdoor should work
when the long-term key changes from signature to sig-
nature. In addition, the backdoor should be stateless: in
some systems, non-volatile storage may not be available
(either as a security feature) or storing extra data in non-
volatile storage may not be desirable (to lower detection
probability, and simplify backdoor deployment).

2.2 Backdoor syntax

We first revisit the synatax of non-backdoored signature
schemes and later augment it to construct backdoored sig-
nature schemes.

90 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

Digital signature. We adopt the usual syntax for a digi-
tal signature scheme, consisting of the following three algo-
rithms:

* Sig.KeyGen() — (pk,sk) generates a public/private key
pair.

* Sig.Sign(sk,m) — & emits a signature G on a message
m using private key sk.

* Sig.Verify(pk,m,c) — {0,1} verifies signature G on
message m using public key pk.

For a definition of the ECDSA algorithm, see Appendix A.

Backdoored signatures. A backdoor signature scheme aug-
ments a signature scheme with two extra algorithms and mod-
ifies the signing algorithm:

* BSig.SysParam() — (bp.sign,bp.extract). Generates
backdoor system parameters required for signing bs.sign
and for recovery bs.extract. The attacker typically runs
this algorithm once to initialize the backdoor parameters.

» BSig.Sign(sk,m,S,bp.sign) — ©. Generates a back-
doored signature ¢ on message m. The signature ¢ con-
veys the subliminal message S (potentially only partially)
to be exfiltrated.

* BSig.Recover({c;},bp.extract) — [recovers the sub-
liminal message S from a set of signatures {G;}.

In practice, the signature scheme BSig.Sign may not fully
leak the whole subliminal message S in a single signature,
but only a part of it. To address this, the backdoor designer
implements BSig.Sign to leak different parts of S on each in-
vocation. Conversely, BSig.Extract takes multiple signatures
{ci} to reconstruct S. In other words, the backdoor designer
may bake message fragmentation and reassembly into the
backdoored algorithms.

3 Backdoor description / our construction

Basic idea overview. The backdoor designer wants to leak
an arbitrary value S. For example, S could be the BIP32 seed
that generates the whole wallet. The basic idea is to leak S in
two steps. The first step is splitting S into several partial sub-
liminal messages /;. The second step is picking the ECDSA
nonce to encode /; into o; such that BECDSA.Extract can
recover [; from G;.

We write in Figure 1 the full description of the backdoored
signature scheme BECDSA. In the next sections, we describe
step by step the construction of BECDSA.

Backdoor description:

* BECDSA.SysParam() — (bp.sign,bp.extract). Gener-
ate an ECIES public/private key pair esk, epk. Generate
a backdoor recovery secret b €g Z. Return bp.sign <
(epk,b) and bp.extract « (epk,b).

* BECDSA.Sign(sk,m,S,bp.sign) — ©. Signing consists
of two parts. First we compute a subliminal message to
leak I = p(S,m,bp.sign). Then we generate a signature
that leaks /: compute a nonce r from the message m,
subliminal message / and backdoor recovery secret b
as r < [-hy(m,b) € Z,. Call ECDSA.Sign(sk,m;r) and
emit the signature.

* BECDSA.Recover({c;}, bp.extract) — S. Given a col-
lection of signatures G;, extract each subliminal message
I; «+— Extract(bp.recover, 5;) and then invert p using sub-
liminal messages /; to recover S.

Figure 1: BECDSA backdoor description.

Notation and parameters. We write / for a hash function,
and add a subindex &; when we want different hash functions
to separate domains. We work with the prime order group G of
elliptic curve points. In the bitcoin case, this is the secp256k1
curve.

3.1 Step 1: construction rationale

Here we detail the construction rationale for step 1, perform-
ing fragmentation and assembly.

Mapping S to /;. We need a way to map the 256-bit S secret
to several “short™? L-bit /;. Simply assigning /; to each L-bit
chunk of S would work, but has important drawbacks. This
raw method requires the receiver to receive all the subliminal
messages /; in order, and does not tolerate loss of /;. In the
context of bitcoin transactions, these two points can be hard to
guarantee in practice since the signer may not broadcast every
transaction (loss of /;) or transactions may be broadcasted in
a different order in which they were generated.

A more robust approach is to use the message m itself to
“select” which linear combination of few bits from § are actu-
ally leaked. Since the message is public, BECDSA.Recover
can invert this operation. More precisely, we use bit vector-
matrix multiplication to “compress” S:

li < SM (1)

where S is seen as a 1 x 256 row vector of bits and M is a

Typically, L is in the range of few dozen bits. This is a constraint coming
from §3.2.

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 91

256 x L public matrix. The output /; is L bits long. Intuitively,
each /; “picks” a “random” combination of bits from S.

The matrix M is spanned from the message m. Each mes-
sage m generates a unique matrix M. Since the message is
public, the backdoor designer can easily reconstruct M. For
the concrete definition of M see Appendix B.

Recovering S from {/;}. Recovering S from multiple /; is
very easy once enough /; are recovered from the signatures o;.
Each /; adds L linear equations to a linear system of equations
over GF(2). Solving for S recovers the seed.

Mapping properties. Using a map like Eq. (1) tolerates
partial loss and reorder of some /;. It also provides an enter-
taining feature: the backdoor designer gets an early progress
report on how many bits from S are left to guess by computing
the kernel dimension of the linear mapping. Note that it is not
necessary to have a determined or over-determined system,
but we only need to collect enough equations so that the last
remaining bits can be bruteforced. We elaborate in §4.1.

3.2 Step 2: construction rationale

In what follows, r is the ECDSA secret nonce (also called
short-term key) and the signature is the pair 6 := (c,s) where
¢ = f(g") (in our case, f just returns the x-coordinate of the
curve point). For a complete description of ECDSA and nota-
tion, see §A.

Picking nonces. The basic working principle of backdoor-
ing ECDSA signatures is that the signer picks the ECDSA
secret nonce r to convey the subliminal message /;, a way that
the backdoor designer can recover r and thus /;. At the same
time, the nonce r should still be unpredictable for someone
that does not know the backdoor secret b. This ensures that
the security of the ECDSA signatures is preserved. > An easy
way to do this is by setting r < b - ;.

Cross-stealing resistance. The basic method for cooking
nonces r <— b-I; makes a very fragile signature scheme. Since
[; is small, a collision between r; can happen with large prob-
ability, leading to complete loss of security of the signing key
(if the same key is used for different signatures*). To fix this,
we diversify the backdoor recovery secret b on a per-message
basis as b; < h(b,m) where h is a suitable key derivation
function and set r <— [- b;. This ensures the security of the sig-
nature scheme is preserved (no one but the backdoor designer
can steal funds).

3Note that the “long-term” ECDSA key sk may change across invoca-
tions; thus, different signatures may correspond to different public keys. This
happens in modern bitcoin wallets that are based on HD derivation [BIP32].

4While we cannot assume the same key sk is used for different messages,
we cannot either discard this possibility, and the backdoor should yield a
good signature scheme even if this is the case.

Recovering {/;} from {c;}. To recover /;, the attacker
computes the discrete logarithm of rG with respect of bG.
This is relatively easy since /; is small by construction. One
straightforward procedure to solve this discrete logarithm
is to just iterate over all possible 27 values of /;. More pre-
cisely, to recover /; from a signature 6; = (c;,s;), we first
unblind the first signature component s = f(b;/;G) and com-
pute the point V; < bi_lb,'l,G = [;G. From V;, we extract [;
as [; «+ Extract(V;). This procedure simply iterates over all
possible /; until finding the value. We describe the compu-
tational optimizations to speed up this process below in §5

Discovery resistance. Assume the backdoor implementa-
tion gets leaked. This includes the secret b. Everyone who
knows b can recover the leaked seed S. If this is a concern,
then the backdoor implementation should leak a public-key
encryption E(S) of S instead of bare S. A good choice for the
encryption functionality E is ECIES [Sho0O1] over secp256kI1.
This greatly simplifies the implementation as all the elliptic
curve machinery is already in the signing implementation.
The only drawback of this approach is ciphertext expansion:
ECIES roughly doubles the size of the subliminal leakage
(512 bits), requiring more signatures to be leaked.

4 Discussion

4.1 How many signatures are needed to leak
the full seed?

Tradeoff between L and number of signatures. There is a
tension between the number of leaked bits per signature L and
the number of required signatures to reconstruct the seed S.
Obviously, we want to keep the number of required signatures
as low as possible to leak the seed as soon as possible. That
forces a high L, which in turns makes the recovery compu-
tationally expensive. The running time of BSig.Recover is
exponential in L. We study this tradeoff in this section.

How much efficiency are we losing? The map from Eq. (1)
is quite efficient: there is little redundancy across multiple
l;. Each [; as generated per the mapping from Equation (1)
leaks approximately L bits of S. This is because the rank of
a random square matrix® over GF(2) is very close to its di-

SPure trapdoor-based public key encryption do not yield a more efficient
scheme. RSA encryption would add zero overhead, but obviously for the
parameters in question RSA-256 would provide an unacceptable security
level. Even state-of-the-art trapdoors with low overhead [DGH ™ 19] still
would be more expensive than KEM+DEM for such a short plaintext size
(256-bit). For example, if the construction from [DGH™19] is asymptotically
perfect (rate-1 ciphertext expansion), for 64-byte messages the ciphertext is
274-byte long [DGH™ 19, §6]. Another alternative is to use ECIES over a
smaller curve.

OThis naturally assumes the matrix M is constructed as per §B which can
be considered uniform essentially random in {0, 1}.

92 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

180 T T T T T T
160
140
120
100
80
60
40
20

Residual brute force needed [bits]

4 5 6 7 8 9 10 11
Number of signatures leaked

Figure 2: Remaining bruteforce effort needed to recover a
unique S after solving the linear system from (1), for varying
number of signatures leaked and bits per signature L. From
top to bottom, each line corresponds to L = 22,24,...,38.
We plot a horizontal line at 40-bit effort level (representing a
feasible bruteforce effort).

mension [Kol99, §3.2]. To get full rank with high probability,
it suffices to add a few additional rows. This means that we
need to leak around 256/L signatures to have a system of
equations with almost unique solution for S.

Using less than 256 /L signatures. Typically, we have ac-
cess to an oracle that allows us to distinguish a correct guess
for § from an incorrect one. (For example, when S is a seed,
we can quickly tell if a guess for S is correct by checking if
S unlocks some outputs.) This means that we do not need a
fully determined system of equations to solve for S. When
the system is not fully determined, the remaining few bits can
be bruteforced by exhaustively generating all solutions for
the system and checking each candidate. Note that generating
solutions is a very efficient linear algebra operation (span the
null space). This process only works when the remaining bits
to be bruteforce is kept low (e.g. under 2%°).

Empirical results. In Figure 2 we empirically study how
many signatures we need to leak the full secret S. As an
example, we can see that if we allow L = 35 bits leaked per
signature, after leaking 7 signatures there is only 11 bits left
to bruteforce. This means that we can leak the whole 256-bit
HD wallet seed with a handful signatures. Setting L = 35 bits
per signature is feasible, as detailed below in §5.

4.2 Deterministic signatures

ECDSA signatures come in two broad flavors: randomized
and derandomized (aka deterministic signatures [MNPV98,
Por13]).” A backdoor signature scheme should mimic the
existing wallet behavior to remain stealthy. Otherwise, the
backdoored scheme is trivially distinguishable.

Deterministic backdoored signatures The scheme as de-
scribed in Section 3 is deterministic, except for the ECIES
encryption E for discovery resistance. To make ECIES de-
terministic, we can use a Encrypt-with-hash variant® from
Bellare et al. [BBOO7, §5.1]. This is possible in our case
since the plaintext input to ECIES comes from a space with
large min-entropy (a 256-bit seed S). This reduces to using a
hash of the plaintext S as the randomness required for ECIES.

Randomized backdoored signatures. If the backdoor de-
signer wishes to emulate a “randomized” version of ECDSA,
they can randomize the backdoored nonce r by multiplying
by a small integer v as r < v-h(b,m) - [;. This comes at a
increased cost at recovery time (exponential in the bitsize of
v). The random factor v should be large enough so that col-
lisions are below a threshold backdoor detection probability.
This is not a fully randomized ECDSA, since typically to be
indistinguishable from a real random ECDSA signature, the
value v would need to be very large (in the order of 128 bits).
As aresult, this backdoored ECDSA is not fully randomized,
but may be useful to avoid light detection.

4.3 Recovery discussion

Variant: lighter recovery. To improve recovery speed, set
r < b -2l instead of r <— b-I;. This will speed up recovery,
since it replaces elliptic curve point additions by point dou-
blings, which are typically faster.

Identifying backdoored signatures. By design, there is no
“in-protocol shortcut” to determine which signatures on the
blockchain the recovery procedure should be applied to. This
means that the backdoor designer should apply the recovery
procedure to every signature, and discard those signatures
for which the recovery procedure fails (i.e. does not yield a
subliminal message /;). Note that the backdoor designer could
make use of additional side-channel information outside the
raw ECDSA signature (like the way the transaction looks in

"Derandomized ECDSA signatures uses a deterministic process to gener-
ate the (pseudo-)random value k needed at signing time. They are prefered
in practice since they are more resilient to imperfect randomness (at the
cost of slightly increased computation). Many bitcoin wallets implement this
strategy, usually in the form of RFC6979.

8This deterministic public-key encryption construction does not attain
the usual standard level for encryption (semantic security) but in our specific
case this is acceptable [BBO07].

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 93

vulnerable wallets) to speed up this process, but this is not
necessary and orthogonal to our case.

Outsourcing recovery We note here that when using the
discovery resistance feature from §3.2, it is possible to out-
source the computationally expensive process in recovery to a
different party. This party does not learn the content of S (only
E(S)). Thus, this party, without access to bp.extract, cannot
steal funds, nor correlate to a specific transaction. This can be
useful to externalize this computationally expensive process.
This party can also amortize its computational effort across
different back door users, potentially by doing a heavy pre-
computation upfront and amortizing across different clients.

5 Recovery implementation

In this section, we focus on the Extract procedure, which
is the most computationally demanding procedure from
Recover. The Extract(rP) — r takes a curve point Q = rP
and outputs the discrete logarithm with respect to P, assuming
ris bounded 0 < r < 2.

Basic implementation. The basic implementation is just a
linear search on /;. Extract (V;) essentially loops sequentially
over candidate /. till it hits /G = V;. The cost is 2* elliptic
curve additions and point comparisons, which is manageable
when we keep L small. We can optimize this search at differ-
ent levels.

Optimizations: baby-step giant-step. First, we can apply
a classic time-vs-memory tradeoff (TMTO) by precomputing
a table T'[j] storing M multiples of G, evenly spread over the
search interval (from G to 2LG). This speeds up the search
since Extract just needs to compute L/M additions V; +
G,Vi+2G,....Vi+ ﬁG and on each step check for inclusion

on T[] to recover /;. This is essentially baby-step giant-step
algorithm to solve discrete logarithms.

Optimizations: point representation. Secondly, we can
keep the points in Jacobian form (thus making point addi-
tion very fast) and perform the inclusion check on 7'[j] af-
ter converting to affine representation. The speed-up comes
from batching several points in this conversion and leveraging
batched modular inversion.

Optimizations: compressed table. To lower memory re-
quirements we can store compressed points in the table T
(just the x-coordinate). This compression could be loosy (a
short “fingerprint” of each point, such as some bits from the x-
coordinate), at the cost of false positives (which can be filtered
out easily).

Optimizations: parallelization. This search is amenable
to parallelization at different levels. First, the search is embar-
rasing parallel on the search interval 1,...,M. Second, SIMD
operations can speed-up the search by computing in parallel
different chains of V;. Note that in contrast with the usual
context of elliptic-curve cryptography, the main objective in
this search is to maximize throughput in point operations, not
latency.

Implementation results. We wrote a prototype in Go fea-
turing the TMTO optimization. This implementation tests
about 2372 candidates /; per second on a single core of a 2014
MacBook Pro with a table 7 holding 22? points (compressed
to 64 bits of the x-coordinate). The implementation is concise
and takes around 30 lines of code. It is not particularly op-
timized for speed. It relies on math.big for multiprecision
integers (field arithmetic is not optimized for secp256k1). For
fast lookups, the table 7 is implemented as a hash map.

Real-time detection. In this section we see how quickly
can an attacker leak a full 256-bit seed S if their computing
power is the 2014 laptop from the section above. The fact
that a single laptop can test about 237 candidates per second
means a single laptop can run Extract on real time on ev-
ery transaction getting mined on the blockchain when each
signature is leaking at most L < 34 bits. This rough estimate
assumes the blockchain has a throughput of 8 transactions per
second’. In turn, by looking up Figure 2, leaking L = 34 bits
per signature means after just 7 signatures are leaked, there is
enough information leaked to completely recover the seed S.
(Leaking 7 signatures leaks about 238 bits, and the remaining
8 bits can be easily bruteforced).

Naturally, the estimations above are done with a single
2014 laptop as computing device. If the attacker has fancier
hardware, they can use it to leak more bits per signature and
accelerate the process, as they would need to leak less signa-
tures.

Other techniques. It might be tempting to implement
Extract based off generic techniques to solve the discrete
logarithm problem in an interval. One such method is Pol-
lard’s lambda algorithm (also called Pollard’s Kangaroo).
This is left as future work.

6 Experiments

We implemented the backdoor end-to-end. This experimental
backdoored wallet software runs on a laptop (rather than an
actual hardware wallet) to make it easy to perform experi-
ments. We implement the full backdoor except the “discovery

9This is a conservative estimation, the actual number is more between 3
and 7

94 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

resistance” feature (ECIES encryption) discussed in §3.2. The
implementation is written in python for simplicity.

Results. We leak 19 bits per signature. The imple-
mentation signs 13 transactions. Signing overhead is
negligible (an additional vector-matrix multiplication).
The recovery process recovers the leaked arbitrary mes-
sage in a matter of seconds. We set the leaked message to:

0x1234567890123456789012345678901234567890123456789012345678901234.

We extract in total 247 bits from the signatures and the
remaining 9 bits we just brute force by going through all the
27 solutions to the linear system of equations.

Transaction hashes. We put a chain of 13 transactions on
signet (a Bitcoin staging network) starting with the transaction
f019bd3461309ae48c48a9ceeSedactb8ff4ef4c921tbd9d43377ff64162d77b.
The full list of transactions can be found in Appendix C
and the example output of the recovery tool can be found in
Appendix D.

Generalizations. Whilst these concrete transaction chain
uses the same private key for every transaction, this is coinci-
dental (to make the implementation easier) and not essential.
Therefore, the backdoor is compatible with BIP32 wallets.
Also, even if these concrete transactions are chained, this is
not a requirement. The different backdoored signatures could
come from unrelated, unlinked transactions.

7 Detection, deployment

7.1 Distinguishing backdoored signatures

We elaborate here on the requirement R2 from §2.1.

Unknown-key scenario. For an observer that does not
know the secret key material (but only observes the black-box,
input/output behavior of the wallet), backdoored signatures
are indistinguishable from regular ones. This follows from
the PRF security of the hash function h(b,m).

Known-key scenario. For an observer that knows secret key
material (or can choose the key), the backdoored scheme is
trivially distinguishable. For example, the backdoored scheme
will not pass test vectors. This observer can take the refer-
ence test vectors from a known-good implementation (or
from the signature algorithm specification, such as RFC6979).
Note that a backdoor could easily hide itself (by computing
non-backdoored signatures) whenever it detects from its en-
vironment that it is running in test mode (for example, the
backdoor could detect if it is being fed test vector inputs from
a publication) or is running in a developer machine, or in the
software build pipeline, or is using a test key, or the key was
not generated internally at random inside the signer device.

7.2 Deployment aspects

Build pipeline. An attacker can plant the backdoor by com-
promising the software build pipeline. These systems are
typically operated by different teams and could become an
easy target.

Stealing firmware signing keys. Alternatively, this back-
door could also be planted by stealing the firmware signing
keys. Conversely, note that the firmware writer has a lifelong
liability to keep this signing key safe.

Evil maid. The evil maid is a particularly attractive vector
for introducing this backdoor. Say you buy a Trezor or Ledger
from Amazon. Replacing the whole hardware wallet with an
evil, backdoored one is an option to deploy this backdoor.
Ironically, the fact the code is open-source makes this pro-
cess extremely easy. (Maybe by sending the wallet back to
Amazon through the RMA process after having injected the
backdoor.)

Implementing the backdoor at other abstraction levels.
In this paper, we assume we implemented the backdoor at
the application firmware level. The backdoor could be imple-
mented at other levels: at the OS level (detecting whenever
the ECDSA nonce is generated), or at a hardware level (for
example by tampering with the RNG peripheral on nonce
generation.)

Lowering detectability. The retrieval strategy is out of
scope of this document. One possibility is to plant this back-
door in many wallets, but steal funds only from a few well-
funded wallets. This can be used to lower the suspicion on a
systemic breach like a firmware compromise. For example,
one could only siphon out the top 0.1% of the wallets.

Multi-user setting. The backdoor description in §3 as-
sumes we want to leak a secret from a single wallet. We
can extend this to the multi-user setting (multiple wallets) in
several ways. We can diversify the backdoor recovery secret
b on a per-wallet basis. This is a clean approach on the wallet
side; the recovery effort increases linearly with the number
of backdoored wallets. Alternatively, the w-th wallet can leak
first a single, short subliminal message /" using a global back-
door recovery secret b. This [}” encodes a “session” backdoor
recovery secret by, = KDF(b,li"). The w-th wallet uses this
“session” recovery secret b,, for subsequent subliminal mes-
sages. This makes the complexity of recovery substantially
smaller.

7.3 Comparison

Our construction relies on subliminal messages in ECDSA.
Simmons already provided in the 1980s several constructions

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 95

for this [Sim83, Sim84, Sim85] that relied on manipulating
the DSA secret nonces. Our construction adds a layer on top
for message fragmentation.

The early construction of Young and Yung [YY97b] is very
efficient, requiring only two signatures. However, it needs
to set the same key for both signatures, and the signer must
be stateful. In an actual hardware wallet, statefulness may
be hard to guarantee since this requires write capabilities to
non-volatile storage (which may be not even present).

The construction of Ateniese et.al [AMV15] is tangentially
related to ours. However, the running time for the backdoored
signer is exponential in the number of bits leaked, which
makes the backdoor easy to detect by measuring execution
time.

8 Mitigations

Split trust: multisignatures. Many protocols (including
Bitcoin) accept multisignatures natively. This consideration
can be taken at design time to generate a 2-of-2 wallet be-
tween the host and the hardware wallet. This technique can
be used to avoid the consequences of a backdoored signa-
ture, but comes at the price of longer transaction (hence more
expensive) and more complexity.

As with any technique that relies on splitting trust, diversity
and heterogeneity are critical to actually gain security. In this
case, if both the software running in the host and the firmware
running in the hardware wallet are developed by the same
teams, the cost of mounting an attack against both is not much
higher.

Split trust: firewalled signatures. As noted by Dauterman
et al [DCM™19], this problem can be solved with crypto-
graphic reverse firewalls [MS15]. This is a general technique
that protects against cryptographic subversion and assumes
some system parts (the reverse firewall) are trusted and behave
correctly. Cryptographic reverse firewalls can be built from
zero-knowledge techniques, but the performance is typically
much worse than custom designs such as [DCM ™ 19].

Split trust: multi-party computation. Firewalled signa-
tures can be implemented also with multi-party computation.
There are a myriad of threshold ECDSA designs that could
be used [Lin17,GG18,CCL"19,MPS19,CGG*20].

On the more practical side, Dauterman et al [DCM™19]
design a lightweight 2-party protocol for firewalled ECDSA
signatures between a signer and a firewall. By construction,
the signer cannot exfiltrate any message via bits of the signa-
ture. At first sight, it is easy to fall into this circular reasoning:
what does this buy us if we anyways have to trust the firewall?
This construction is appealing since the firewall itself does
not require to store any secret key material (thus making it

easy and cheap to manufacture with commercial, off-the-shelf
parts, and hence trust).

We see an opportunity in standardizing the protocol the
signer and the firewall (potentially, multiple firewalls) so that
interoperability between different manufacturers for the fire-
wall and signer is possible. Diversity here is beneficial for
security.

At run time: attestation. One way to mitigate evil-maid
style attacks is by using attestation: the hardware wallet could
prove its authenticity to the host before the host trusts the
hardware wallet.!” This requires setting some kind of PKI
between the hardware wallet manufacturer and host software;
and heavy modifications to the hardware wallet (quote gener-
ation functionality and provisioning secrets or certificates in
the hardware wallet.)

General supply-chain mitigations. A backdoored wallet is
a hardware and software supply chain problem, hence, generic
mitigations against supply chain threats apply. These are not
specific to the problem of a backdoored wallet, but apply to
every security-critical hardware or software product. Without
being exhaustive, generic mitigations like code audit, code
signing, build system hardening, artifact store hardening, re-
producible builds, artifact signing and secure boot will help.

Strengthening firmware signing. A take away is that we
need to make firmware signing more robust. Firmware signing
keys protect too much value, so it is convenient to diffuse this
pressure. One way for example is by using multiple firmware
signing keys, each owned by a different party that performs
independent authorization of the signing action. This is essen-
tially a straight multi-signature scheme. One can use more
complex multi-signature schemes like MuSig2 [NRS21]. Po-
tentially some of the firmware signing keys could be stored
offline with a tight, verifiable log of key utilization.

At validation time: known-answer tests. A mitigation
strategy could be cross-validation with a known-good imple-
mentation. As noted in §7.2, the backdoor could recognize the
test vector inputs and react accordingly to hide the backdoor.
This can be mitigated by using random, unpredictable inputs.
In addition, the backdoor could sense the environment that is
currently running on, and only get activated in a production
environment, while the debug/development builds hide the
backdoor behavior.

Applicability to other wallets. We focus here on hardware
wallets, but the same principles could be applied to hot wallets
or purpose-specific cold storage appliances.

10We need some mental gymnastics when laying out the threat model here
since the raison d’étre of hardware wallets is the host is untrusted.

96 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

9 Lessons learned

We collect here lessons we learned that could be useful in
the threat modeling process. The lessons here can assist the
security architect in gauging the risk level when developing
Bitcoin wallets.

Firmware signing key: lifetime responsibility. The tech-
nique presented in this paper can be used to turn an existing,
uncompromised wallet into a backdoored one. This means the
wallet designer has a lifetime responsibility of safeguarding
the firmware signing key (provided the wallet has some kind
of firmware update mechanism).

Firmware signing key: value. The monetary value of the
firmware signing key can be roughly estimated as the sum
of the wallet balances where the signed firmware runs. This
is typically much larger than the firmware signing key of
consumer electronics. Thus, significant more resources should
go to protect this key.

Build system: value. The previous observation carries also
to the build system: the cost of sneaking a backdoor anywhere
in the supply chain should be commensurate to the reward
of backdoor wallets. Otherwise, there’s an opportunity for an
attacker to make a profit.

The previous two points make clear the need for making
firmware signing robust. We described mitigations in §8.

Eliminating exfiltration channels is not enough. A com-
mon good practice is to reduce or eliminate the “free slots” to
exfiltrate data from the signer. This could take the shape of
exfiltrating data through unused data fields (in case the API
allows that), or by using representations that are not deter-
ministic (i.e. admit several different representations for the
same input). Whilst this is generally a good idea, it is not
enough, since just the signature is enough to exfiltrate seeds
in a backdoored wallet.

Physical exfiltration ranks lower in priority. For the secu-
rity architect designing a Bitcoin wallet, physical exfiltration
concerns rank lower than supply-chain security, since attacks
using physical exfiltration are strictly harder to mount than
supply-chain ones.

Compromise of the signer is enough. A relevant metric
in assessing the attack difficulty or chances to get detected
is how many different components need to be compromised.
In this case, we do not need to compromise any other sys-
tem upstream of the signer. (The attack works if the host
computer that the hardware wallet is connected to remains
uncompromised.)

Air-gap may give false sense of security. The backdoored
wallet described here works also in “air-gapped” systems. By
definition, in an air-gapped wallet the signature will always
need to cross the air gap, and hence air-gapping is not enough
to prevent this attack (even if it can help to reduce the attack
surface.)

RMA process can be a can of worms. The reverse order
fulfilling system is also a good opportunity to inject back-
doors: a malicious user may return a wallet claiming it does
not work properly, in the hope that the wallet gets later sold
to another customer as a refurbished device. The wallet man-
ufacturer is thus forced to inspect the wallets for backdoors if
they want to sell later refurbished devices. This is a very hard
problem.

10 Conclusion

In this paper, we engineered a bitcoin backdoored wallet. The
backdoor is very efficient and can leak a full seed in about
a dozen signatures. We demonstrated the feasibility of our
approach by implementing an end-to-end demo. We hope
some of our observations help the development of hardware
wallets.

Future work. This backdoor is efficient, but could scale
better in the number of injected backdoors. The effort required
to recover exfiltrated seeds is linear in the number of injected
backdoors and this could be improved.

Ethical considerations. The observations in this paper
could be used to cause harm. We have performed our ex-
periments in a non-production network using mock values.
We believe the recommendations in this paper for mitigating
backdoored wallets outweigh the potential harm.

A ECDSA definition

We adopt the same notation and exposition as [FKP16]. We
have a prime order group G of order ¢ generated by g € G, H :
{0,1}* — Z, a hash function, and f a “conversion function”
f:G —Z, (in ECDSA f typically returns the x-coordinate
of the input curve point). We define ECDSA as the following
three algorithms:

» ECDSA.KeyGen() — (pk,sk). Sample x € Z, at uni-
form random. Set x as the private key and X = ¢g* € G
as the public key.

 ECDSA.Sign(sk,m) — ©. Pick a random nonce r €g Zy,.
Compute ¢ + f(g") and s < r~!- (H(m) +c-x). Output
G+ (c,5) € Zf']. When the caller picks the random nonce
r, we write ECDSA.Sign(sk,m;r).

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 97

f019bd3461309ae48cd48a9ceeSedaefb8ff4efd4c921fbd9d43377££64162d77b
32d31db85bed£21c0d1761f4871eclddebcdIb2bedelb83aa850262fb401ba32
a2a40cbf8e85cf315ef9%e83efcl48b67103e92feb6d52403beeb2elcdb2aeded
8d42358580badccd94407d279225829f£af2215dcc508877bcl2e3ae36967673
1db369cc29eee5330265563460ba939¢c19c0bcblae7dd155b983290482fc382b
5a63c79ecabdelfd901bel8f98d41celaleddcSacc2falbb5a440bbcleedcada
71cf01£fdfe9£3566a9e07b9535£££9d173£f51a7e7£68df£253e9fafbal930a58
83b0d44575af054e035c42bbdcef8d1e23440c490d383fabcledbc32b14888ch
303a9%ab5e5763e66b2cee395de05db15648888b48ac7f19dffc5b85496804a50
55929d6b5£7c1973f1f44dce5bc2b687cbeb67cd26edf56a968b03eaclabfod?
a8563£37969%acl19ced41137bacl94£69169baB2670c96cdfad25405£720ddf100
350b8ce7186015283cd09fbcb2cbbd546bc824c7d7b8518£d95e5eT7af9cdbel3
aleb336a63e3eb246dfd89£f9eb7d128£54bc980fa5443b2fdb3c828e5760£9db

Figure 3: Transaction hashes for 13 transactions that leak a
backdoor

» ECDSA Verify(pk,m,c") — {0,1}. Write X for the pub-
lic verification key. The purported signature 6 = (c, s)
is valid if and only if f(R’) is equal to ¢, where R’
(gH(m)Xr)l/s cG.

B Definition of M

The matrix M is a 256 x L random-looking matrix spanned
by the public message m. We compute L different 256-bit
hashes hj(m),...,hy(m) of m and stack them to construct
M. (For example, h;(m) := h(i||M-matrix||m) This ensures
the matrix has balanced statistics and we can model it as
uniformly random bits for the purposes of Section 4.1.

C Transaction hashes

In Figure 3 we write hashes for 13 transactions. We leak 19
bits per transaction.

D Recovery output

In Figure 4 we put an exemplary output of the recovery pro-
cess. The tool recovers the leaked seed from 13 signatures
after trying 2° candidates.

References
[AMV15] Giuseppe Ateniese, Bernardo Magri, and
Daniele Venturi. Subversion-resilient signature
schemes. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the
22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO,
USA, October 12-16, 2015, pages 364-375.
ACM, 2015.

[AMV20]

[BBOO7]

[BLN16]

[CCL*19]

[CGGT20]

Figure 4: Recovery tool output

Giuseppe Ateniese, Bernardo Magri, and
Daniele Venturi. Subversion-resilient sig-
natures: Definitions, constructions and
applications. Theor. Comput. Sci., 820:91-122,
2020.

Mihir Bellare, Alexandra Boldyreva, and Adam
O’Neill. Deterministic and efficiently search-
able encryption. In Alfred Menezes, editor, Ad-
vances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007,
Proceedings, volume 4622 of Lecture Notes in
Computer Science, pages 535-552. Springer,
2007.

Daniel J. Bernstein, Tanja Lange, and Ruben
Niederhagen. Dual EC: A standardized back
door. In Peter Y. A. Ryan, David Naccache,
and Jean-Jacques Quisquater, editors, The New
Codebreakers - Essays Dedicated to David
Kahn on the Occasion of His 85th Birthday, vol-
ume 9100 of Lecture Notes in Computer Science,
pages 256-281. Springer, 2016.

Guilhem Castagnos, Dario Catalano, Fabien
Laguillaumie, Federico Savasta, and Ida Tucker.
Two-party ECDSA from hash proof systems and
efficient instantiations. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in
Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part
111, volume 11694 of Lecture Notes in Computer
Science, pages 191-221. Springer, 2019.

Ran Canetti, Rosario Gennaro, Steven
Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold
ECDSA with identifiable aborts. In Jay Ligatti,

98 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

[DCM*19]

[DGH"19]

[FKP16]

[GG18]

[GMMEI5]

[GSE20]

Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS '20: 2020 ACM SIGSAC
Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13,
2020, pages 1769-1787. ACM, 2020.

Emma Dauterman, Henry Corrigan-Gibbs,
David Mazieres, Dan Boneh, and Dominic
Rizzo. True2f: Backdoor-resistant authentica-
tion tokens. In 2019 IEEE Symposium on Secu-
rity and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019, pages 398-416. IEEE,
2019.

Nico Déttling, Sanjam Garg, Mohammad Haji-
abadi, Kevin Liu, and Giulio Malavolta. Rate-1
trapdoor functions from the diffie-hellman prob-
lem. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the
Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part I11, volume 11923 of
Lecture Notes in Computer Science, pages 585—
606. Springer, 2019.

Manuel Fersch, Eike Kiltz, and Bertram Poet-
tering. On the provable security of (EC)DSA
signatures. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi, editors, Proceedings of the
2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1651-1662. ACM,
2016.

Rosario Gennaro and Steven Goldfeder. Fast
multiparty threshold ECDSA with fast trust-
less setup. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Secu-
rity, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pages 1179-1194. ACM, 2018.

Mordechai Guri, Matan Monitz, Yisroel Mirski,
and Yuval Elovici. Bitwhisper: Covert signal-
ing channel between air-gapped computers us-
ing thermal manipulations. In Cédric Fournet,
Michael W. Hicks, and Luca Vigano, editors,
IEEE 28th Computer Security Foundations Sym-
posium, CSF 2015, Verona, Italy, 13-17 July,
2015, pages 276-289. IEEE Computer Society,
2015.

Mordechai Guri, Yosef A. Solewicz, and Yuval
Elovici. Fansmitter: Acoustic data exfiltration

[KA98]

[Kol99]

[Lin17]

[LU02]

[MNPV98]

[MPS19]

[MS15]

from air-gapped computers via fans noise. Com-
put. Secur., 91:101721, 2020.

Markus G. Kuhn and Ross J. Anderson. Soft
tempest: Hidden data transmission using electro-
magnetic emanations. In David Aucsmith, ed-
itor, Information Hiding, Second International
Workshop, Portland, Oregon, USA, April 14-17,
1998, Proceedings, volume 1525 of Lecture
Notes in Computer Science, pages 124-142.
Springer, 1998.

Valentin F. Kolchin. Random graphs, volume 53
of Encyclopedia of mathematics and its applica-
tions. Cambridge University Press, 1999.

Yehuda Lindell. Fast secure two-party ECDSA
signing. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, volume 10402
of Lecture Notes in Computer Science, pages
613-644. Springer, 2017.

Joe Loughry and David A. Umphress. Infor-
mation leakage from optical emanations. ACM
Trans. Inf. Syst. Secur., 5(3):262-289, 2002.

David M’Raihi, David Naccache, David
Pointcheval, and Serge Vaudenay. Computa-
tional alternatives to random number generators.
In Stafford E. Tavares and Henk Meijer, editors,
Selected Areas in Cryptography 98, SAC’98,
Kingston, Ontario, Canada, August 17-18, 1998,
Proceedings, volume 1556 of Lecture Notes
in Computer Science, pages 72—-80. Springer,
1998.

Antonio Marcedone, Rafael Pass, and Abhi She-
lat. Minimizing trust in hardware wallets with
two factor signatures. In Ian Goldberg and
Tyler Moore, editors, Financial Cryptography
and Data Security - 23rd International Confer-
ence, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18-22, 2019, Revised Selected Papers,
volume 11598 of Lecture Notes in Computer
Science, pages 407-425. Springer, 2019.

Ilya Mironov and Noah Stephens-Davidowitz.
Cryptographic reverse firewalls. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part

USENIX Association

18th USENIX WOOT Conference on Offensive Technologies 99

[MSSTO5]

[Nak08]

[NRS21]

[Por13]

[SAS22]

[Sat22]

[SFO7]

[ShoO1]

[Sim8&3]

[Sim84]

11, volume 9057 of Lecture Notes in Computer
Science, pages 657-686. Springer, 2015.

Anil Madhavapeddy, Richard Sharp, David J.
Scott, and Alastair Tse. Audio networking: the
forgotten wireless technology. IEEE Pervasive
Comput., 4(3):55-60, 2005.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer
Electronic Cash System. https://bitcoin.
org/bitcoin.pdf, 2008.

Jonas Nick, Tim Ruffing, and Yannick Seurin.
Musig2: Simple two-round schnorr multi-
signatures. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology - CRYPTO 2021
- 41st Annual International Cryptology Confer-
ence, CRYPTO 2021, Virtual Event, August 16-
20, 2021, Proceedings, Part I, volume 12825 of
Lecture Notes in Computer Science, pages 189—
221. Springer, 2021.

Thomas Pornin. Deterministic usage of the digi-
tal signature algorithm (DSA) and elliptic curve
digital signature algorithm (ECDSA). RFC,
6979:1-79, 2013.

Ledger SAS. http://www.ledger.com/,
2022.
SatoshilLabs. Trezor. http://trezor.io/,
2022.

D. Shumow and N. Ferguson. On the possibil-
ity of a back door in the NIST SP800-90 dual
EC PRNG. rump2007.cr.yp.to/15-shumow.
pdf, 2007.

Victor Shoup. A proposal for an ISO standard
for public key encryption. JACR Cryptol. ePrint
Arch., page 112, 2001.

Gustavus J. Simmons. The prisoners’ problem
and the subliminal channel. In David Chaum,
editor, Advances in Cryptology, Proceedings of
CRYPTO 83, Santa Barbara, California, USA,
August 21-24, 1983, pages 51-67. Plenum Press,
New York, 1983.

Gustavus J. Simmons. The subliminal channel
and digital signature. In Thomas Beth, Nor-
bert Cot, and Ingemar Ingemarsson, editors, Ad-
vances in Cryptology: Proceedings of EURO-
CRYPT 84, A Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, Paris,
France, April 9-11, 1984, Proceedings, volume
209 of Lecture Notes in Computer Science,
pages 364-378. Springer, 1984.

[Sim85]

[VPO9]

[Wuil2]

[YY96]

[YY97a]

[YYO97b]

[YYO04]

Gustavus J. Simmons. A secure subliminal chan-
nel (7). In Hugh C. Williams, editor, Advances
in Cryptology - CRYPTO ’85, Santa Barbara,
California, USA, August 18-22, 1985, Proceed-
ings, volume 218 of Lecture Notes in Computer
Science, pages 33—41. Springer, 1985.

Martin Vuagnoux and Sylvain Pasini. Com-
promising electromagnetic emanations of wired
and wireless keyboards. In Fabian Monrose,
editor, /8th USENIX Security Symposium, Mon-
treal, Canada, August 10-14, 2009, Proceedings,
pages 1-16. USENIX Association, 2009.

Pieter Wuille. Hierarchical deterministic wallets.
Bitcoin Improvement Proposal (BIP), 32, 2012.

Adam L. Young and Moti Yung. The dark side
of "black-box" cryptography, or: Should we trust
capstone? In Neal Koblitz, editor, Advances in
Cryptology - CRYPTO 96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceed-
ings, volume 1109 of Lecture Notes in Computer
Science, pages 89—103. Springer, 1996.

Adam L. Young and Moti Yung. Kleptogra-
phy: Using cryptography against cryptography.
In Walter Fumy, editor, Advances in Cryptol-
0ogy - EUROCRYPT ’97, International Confer-
ence on the Theory and Application of Crypto-
graphic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lec-
ture Notes in Computer Science, pages 62-74.
Springer, 1997.

Adam L. Young and Moti Yung. The preva-
lence of kleptographic attacks on discrete-log
based cryptosystems. In Burton S. Kaliski Jr.,
editor, Advances in Cryptology - CRYPTO 97,
17th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August
17-21, 1997, Proceedings, volume 1294 of Lec-
ture Notes in Computer Science, pages 264-276.
Springer, 1997.

Adam L. Young and Moti Yung. Malicious
cryptography - exposing cryptovirology. Wiley,
2004.

100 18th USENIX WOOT Conference on Offensive Technologies

USENIX Association

