
This paper is included in the Proceedings of the
18th USENIX WOOT Conference on Offensive Technologies.

August 12–13, 2024 • Philadelphia, PA, USA
ISBN 978-1-939133-43-4

Open access to the
Proceedings of the 18th USENIX WOOT
Conference on Offensive Technologies

is sponsored by USENIX.

The Power of Words: Generating PowerShell
Attacks from Natural Language

Pietro Liguori, Christian Marescalco, Roberto Natella, Vittorio Orbinato,
and Luciano Pianese, DIETI, Università degli Studi di Napoli Federico II

https://www.usenix.org/conference/woot24/presentation/liguori

The Power of Words: Generating PowerShell Attacks from Natural Language

Pietro Liguori*, Christian Marescalco**, Roberto Natella*, Vittorio Orbinato*, Luciano Pianese*
DIETI, Università degli Studi di Napoli Federico II, Naples, Italy

*{pietro.liguori, roberto.natella, vittorio.orbinato, luciano.pianese}@unina.it
**c.marescalco@studenti.unina.it

Abstract
As the Windows OS stands out as one of the most targeted
systems, the PowerShell language has become a key tool for
malicious actors and cybersecurity professionals (e.g., for
penetration testing). This work explores an uncharted domain
in AI code generation by automatically generating offensive
PowerShell code from natural language descriptions using
Neural Machine Translation (NMT). For training and evalua-
tion purposes, we propose two novel datasets with PowerShell
code samples, one with manually curated descriptions in nat-
ural language and another code-only dataset for reinforcing
the training. We present an extensive evaluation of state-of-
the-art NMT models and analyze the generated code both
statically and dynamically. Results indicate that tuning NMT
using our dataset is effective at generating offensive Power-
Shell code. Comparative analysis against the most widely
used LLM service ChatGPT reveals the specialized strengths
of our fine-tuned models.

1 Introduction

Offensive security practices, such as red teaming and adver-
sary emulation, play a crucial role by helping us to understand
how attackers take advantage of vulnerabilities and how to
mitigate attacks [1, 2]. In these attacks, cybersecurity pro-
fessionals emulate malicious post-exploitation actions, such
as credential stealing, lateral movement across accounts and
machines, data obfuscation and exfiltration, and more [3].

As Windows stands out as one of the most targeted OS [4],
the PowerShell language has become a key tool for both mali-
cious actors and cybersecurity professionals. This language is
widely used to perform attacks since it can perform complex
actions, such as establishing connections and accessing OS
services and APIs without the need to deliver a malicious
binary executable or payload on the target machine (e.g., “file-
less” malware), making them harder to detect [5–8].

Unfortunately, writing offensive code demands a high de-
gree of expertise and effort, restricting the adoption of offen-
sive security practices. Therefore, the rise of automatic AI

code generators represents an appealing solution to unlock
these practices to a broader spectrum of users [9].

AI code generators leverage ML models for Neural Ma-
chine Translation (NMT) to produce (offensive) code starting
from inputs in Natural Language (NL), e.g., in the English
language. The usage of NMT models is widespread across
diverse software engineering tasks [10], yet their application
in security-related scenarios is infrequent and not widely ex-
plored. This gap stems primarily from the lack of suitable
corpora for training and evaluating code generators. The short-
age of corpora for offensive code generation is an evident
limitation: existing benchmarks [11–13] are derived from
programming competitions and software interview questions
(e.g., about algorithms and mathematics), or they focus on pro-
grams and languages that are not related to security (e.g., web
applications in Python). Only a few security-oriented datasets
are publicly available, targeting shellcodes in low-level pro-
gramming languages [14]. As a result, there is a significant
gap in the literature on offensive PowerShell code generation.

This work presents an assessment of AI code generators
for PowerShell offensive code, a novel application of NMT.
Given that generative models are predominantly trained on
mainstream programming languages like Python and Java,
we investigate strategies to repurpose these models for the
PowerShell domain. To this aim, we adopt a combination of
unlabeled and labeled datasets to train and evaluate models.
Specifically, we first use a large collection of unlabeled (i.e.,
code only) samples of general-purpose PowerShell from var-
ious online repositories to pre-train ML models and refine
their capabilities to comprehend and generate PowerShell
code. Then, we build from scratch a manually annotated la-
beled dataset consisting of PowerShell code samples specif-
ically crafted for security applications, which we pair with
curated NL descriptions in English. We use this dataset to
fine-tune three state-of-the-art NMT models (CodeT5+ [15],
CodeGPT [16], and CodeGen [17]) to generate offensive Pow-
erShell code. The dataset also serves as a ground truth for

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 27

the evaluation. We publicly share code, models 1 and datasets
as open data2 to encourage further experimentation on this
topic.

To perform our experiments, we formulate four key re-
search questions (RQs) aimed at evaluating the models’ capa-
bilities and the impact of the training strategies, performing
static and execution analysis to assess the generated code, and
comparing privately fine-tuned models with ChatGPT, the
most widely used LLM service from OpenAI [18]. Table 1
summarizes the key findings of our analysis. To the best of our
knowledge, this is the first work on the automatic generation
of offensive PowerShell code from NL descriptions.

In the following, Section 2 discusses related work; Sec-
tion 3 describes the research study; Section 4 shows the ex-
perimental results; Section 5 discusses the threats to validity;
Section 6 discusses the ethical considerations; Section 7 con-
cludes the paper.

2 Related Work

This work focuses on offensive code generation, involving
machine translation techniques applied to the security domain
for PowerShell code generation. Thus, we reviewed related
literature in these areas.

ML for security-related PowerShell. Li et al. [19] designed
a subtree-based de-obfuscation method and a semantic-aware
PowerShell attack detection system. This work also demon-
strates how the presented de-obfuscation method improves the
performance of detection systems such as Windows Defender
and Virus-Total. PowerDP [20] is a solution that aims to auto-
matically identify malicious PowerShell commands through
character distribution features and obfuscation multi-label
classification also proposing a de-obfuscator method for re-
covering obfuscated commands. Even ML-based methodolo-
gies have arisen for detection purposes, as shown by Hendler
et al. [21], who proposed several ML-based detectors demon-
strating their effectiveness on malicious scripts. The authors
also devised another solution [22] to achieve the same objec-
tive by retrieving information from Microsoft’s AMSI inter-
face. Mimura and Tajiri [23] presented a lighter methodology,
restricting detection only to word embeddings. Mezawa et
al. [24] proposed an evaluation methodology for ML-based de-
tectors based on a word-level machine learning model. Given
the effectiveness of Abstract Syntax Trees (ASTs) in detect-
ing obfuscated PowerShell scripts, Rusak et al. [25] proposed
a hybrid approach that combines ASTs and deep learning to
enhance detection methods for high-level obfuscation Pow-
erShell malicious programs. We remark that research of ML
for PowerShell focuses on defensive uses (i.e., detecting and
de-obfuscating attacks), but none of these studies analyzed the
offensive uses of ML (i.e., generating attacks), which are also

1HuggingFace repo
2GitHub repo

Analysis Main Findings

Capability
Assessment

• Models without fine-tuning (zero-shot learn-
ing) showed a limited ability to generate Pow-
erShell code, often defaulting to Python syntax
or incorrect PowerShell code.

• The fine-tuning phase significantly enhanced
the models’ ability to generate syntactically
correct and semantically relevant PowerShell
code. Among the models, CodeT5+ and
CodeGPT demonstrated notable improvements
in generating offensive PowerShell code.

• Pre-training on a large PowerShell corpus had
a varying impact on different models. While
pre-training generally improved CodeT5+ and
CodeGPT, especially with a limited number of
epochs for fine-tuning, CodeGen did not con-
sistently benefit from pre-training.

Static and
Execution
Analysis

• All models achieved high syntax accuracy, in-
dicating their strong capability to generate syn-
tactically correct code. However, a significant
number of warnings were identified, suggesting
potential issues or suboptimal coding practices.

• The execution analysis showed that, despite
textual differences between the ground truth
and the generated code, the models are still able
to generate offensive PowerShell code closely
aligned with the intended malicious activities,
in terms of events occurring in the system (e.g.,
on the filesystem, network, registry).

Comparison
with public
AI model

• Our fine-tuned models outperform ChatGPT
across all the metrics, showing that specializing
the models on our fine-tuning dataset provides
an advantage in the offensive PowerShell code
generation task.

Table 1: Main findings.

relevant for red teaming and adversary emulation purposes,
and which are in the scope of this paper.

Offensive Code Generation. Research on AI code genera-
tors for offensive security is still at an early stage. Gupta et
al. [26] presented an outlook of the possibilities opened by
ChatGPT for generating various types of cyber attacks, such
as social engineering, phishing attacks, and malware creation.
For each attack scenario, the paper shows qualitative examples
of prompts submitted to ChatGPT, and the attack payloads
generated as a result, including some snippets of PowerShell
code. Similarly, Charan et al. [27] presented qualitative exam-
ples with ChatGPT and Google BARD to generate malicious

28 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://huggingface.co/collections/dessertlab/the-power-of-words-generating-powershell-attacks-from-natur-66223c3e6cd34bb31ce38a69
https://github.com/dessertlab/powershell-offensive-code-generation/

scripts (mainly in Python, Bash, and PowerShell) for the top
10 prevalent MITRE Techniques of 2022, showing the poten-
tial of these AI models for security applications. However,
none of these studies systematically analyzed AI code genera-
tors, lacking in several aspects: (i) the evaluation was limited
to a few examples, while systematic evaluation requires much
larger datasets; (ii) the study lacked a ground truth for evalu-
ating the correctness of generated code; (iii) they did not yet
explore the potential of fine-tuning ML models for security-
related code generation. The few studies in this direction
focused on generating exploits in low-level languages (e.g.,
to attack memory management vulnerabilities). However, ex-
ploitation is only a limited part of the cyber kill chain, over-
looking several more types of malicious code. Among these
studies, Liguori et al. [28] proposed a dataset and approach for
training and evaluating AI code generators for code security,
by generating shellcodes in Assembly language. EVIL [29]
automatically generates exploits for conducting code injec-
tion attacks via NMT by targeting both the generation of
shellcodes in Assembly language and related Python code
for encoding and obfuscating the shellcodes. DualSC [30]
formalizes the automatic generation and summarization of
shellcodes via a "Shallow" Transformer inspired by the T5
model and dual learning using the corpus provided by Liguori
et al. [28]. ExploitGen [31] is an approach for generating
exploit code in Python and Assembly based on the Code-
BERT model. Differently from these studies, we presented a
dedicated model for generating offensive PowerShell code,
covering the entire cyber kill chain (e.g., including credential
stealing, lateral movement, data exfiltration, and more tactics
from the MITRE ATT&CK taxonomy). Moreover, we system-
atically analyzed the quality of generated PowerShell code by
introducing a manually curated dataset to serve as a ground
truth and evaluating the code statically and dynamically.

3 Research Study

The main objective of our research study is to understand
whether NMT models can translate NL descriptions into code
that accurately replicates the complexities of cyber attacks in
PowerShell. This aspect is crucial as it explores the models’
understanding of the unique syntax and semantics of this
programming language.

Figure 1 provides an overview of this research study. We
analyze various deep learning strategies to accurately gener-
ate code and introduce datasets to train and evaluate them.
We study several state-of-the-art NMT models and introduce
various approaches to evaluating the generated code, includ-
ing the similarity of the generated code to ground truth and
static and dynamic analysis of the code.

To help NMT models in the novel and ambitious task of
generating PowerShell code from NL, we adopt a two-step
process consisting of pre-training and fine-tuning. The pre-
training phase aims to tailor NMT models (already pre-trained

on other programming languages) in the generation of Pow-
erShell code. Armed with the pre-trained models, we pro-
ceed to the fine-tuning phase. This iterative process refines
the models’ capabilities, enabling them to generate offensive
PowerShell code from NL descriptions.

The main problem in using NMT models is to have a suffi-
cient set of data and to use them effectively to train the models
themselves. Recognizing the lack of suitable datasets for of-
fensive PowerShell code generation, in this study, we collect a
large set of PowerShell programs used for penetration testing
and adversary emulation. In addition to the code, we create
descriptions of these programs in English to allow the model
to translate English into PowerShell code. This dataset was
created manually to verify that the programs were related to
security and to ensure that the English language descriptions
were complete and consistent with the code. The dataset is
labeled since each sample includes both the text to translate
into code and the code expected to be produced by the model
(ground truth).

The creation of labeled datasets is inevitably limited by the
availability of PowerShell security programs and the need to
manually create English language descriptions for each pro-
gram. To increase the amount of training data, in this study, we
investigate an additional strategy, fully automated, to build an
extended dataset of PowerShell programs, collecting Power-
Shell programs and the related text from the web (for example,
comments in the code or description accompanying the code).
As the collection is fully automated, this second dataset is
non-labeled. The dataset includes programs not strictly re-
lated to security but includes, in general, PowerShell code
used for various purposes. This dataset still contributes to the
ability to generate security code since it allows the model
to learn from further examples how to generate syntactically
valid PowerShell code and to correlate the PowerShell code
with the English language. We use this dataset to pre-train the
NMT models, carrying out additional unsupervised training
rounds.

Table 2 reports the statistics of both datasets, in terms of
size, unique number of tokens, and average number of tokens
for NL descriptions (only for fine-tuning data) and code.

Finally, we evaluate the models as follows:

• Capability Assessment: We compare the textual similar-
ity of the code generated by the models with a ground-
truth reference through automatic metrics. These met-
rics are an appealing solution to estimate the generated
code since they are easy to tune and time-saving, hence
overcoming the limit of human evaluation, which poses
practical challenges for large-scale assessments.

• Static analysis: We assess the generated code to ensure
that it adheres to PowerShell programming conventions
and does not contain syntax errors.

• Execution analysis: We evaluate the capability of the

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 29

Data Collection Pre-training

Fine-tuning

Stockpile

Data Collection

Atomic
Red Team

OnlineEmpire

GitHub
Pre-training

Dataset

Fine-tuning
Dataset

Pre-trained
Models

PowerShell
Code

Capability
Assessment

NL Intents

Output
Similarity

AI-based Code Generation

Syntactic
Evaluation

Execution
Evaluation

Static
Analysis

Execution
Analysis

Legend

Code Generation Task – ∮ 4.1, 4.2

Fine-tuning data – ∮ 3.2

Pre-training data – ∮ 3.1

Static Analysis – ∮ 4.3

Execution Analysis– ∮ 4.4

CodeT5+ CodeGPT CodeGen

Figure 1: Overview of our research study.

generated offensive PowerShell code in executing ma-
licious actions, replicating the behavior of the ground
truth commands.

In the following of this section, we detail the pre-training
(§ 3.1) and the fine-tuning data (§ 3.2), and the code genera-
tion task (§ 3.3).

3.1 Pre-training data (unlabeled)
Pre-training involves training the model on a large corpus
of text data to learn general language representations before
fine-tuning it for specific downstream tasks [32]. In other
words, the parameters obtained from this step serve as a start-
ing point for the later supervised training. Unsupervised or
self-supervised pre-training is particularly attractive in the
NMT context since large unlabeled data is available on the In-
ternet. In this work, we leverage domain-adaptive pre-training
(DAPT) [33]: given an NMT model pre-trained on massive,
heterogeneous corpora, we perform additional rounds of unsu-
pervised training with domain-specific data. Specifically, we
leverage general-purpose PowerShell code for pre-training.
The pre-training dataset aims to provide a valuable resource
to enable the models’ understanding of general-purpose Pow-
erShell code. This dataset encompasses ∼ 90k samples ex-
tracted through the GitHub API. Specifically, we queried all

the repositories containing PowerShell code from the last
decade (2013-2023) to encompass a broad spectrum of Pow-
erShell code, then parsed the extracted data to remove un-
necessary information, such as duplicates (inside the same
repository), and logging and echo commands. In addition, we
filtered out all the PowerShell commands with sizes greater
than 1024, ensuring the dataset maintains a balanced repre-
sentation of code complexities. This collection encompasses
a diverse array of PowerShell scripts, spanning various appli-
cation domains such as system administration, automation,
and network management. Including a wide range of scripts
reflects the versatility of PowerShell as a scripting language
and provides models with exposure to the diverse ways Pow-
erShell is used across different use cases.

The pre-training process depends on the model architecture.
For decoder-only models, i.e., CodeGPT and CodeGen, we
chose Causal Language Modeling (CLM), also referred to as
Language Modeling, as the pre-training objective. CLM has
been extensively used as a pre-training task for transformer-
based decoder-only models [34], such as in the GPT se-
ries [35–37]. CLM refers to language models that predict
the next token or sequence of tokens in a sentence in a causal
or autoregressive manner, where the prediction for each to-
ken depends only on the preceding tokens. By using mask-
ing, the model only attends to the left context in a unidirec-

30 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Statistic Pre-training
Dataset

Fine-tuning
Dataset

Dataset size 89,814 1,127
Unique Intents - 1,077

Unique Commands 79,410 1,121
Unique tokens (Intents) - 2,273

Unique tokens (Commands) 85,342 17,463
Avg. tokens per Intent - 15.97

Avg. tokens per Command 12.71 15.49

Table 2: Statistics of the pre-training and fine-tuning datasets.
The pre-training dataset does not contain NL descriptions
(intents).

tional manner, ensuring that it cannot see "into the future". In
the probabilistic framework, starting from the text sequence
x = (x1,x2,x3, . . . ,xT), where x is the original sentence and
xt (t = 1,2, . . . ,T) is the t-th token, and T is the sequence
length, an autoregressive model factorizes the likelihood of
the input text sequence as p(x) = ∏

T
t=1 p(xt | x<t), where p is

the likelihood of the input text sequence [38]. Finally, mod-
els are evaluated by token-level accuracy. For CodeT5+, the
pre-training objective is Masked Language Modeling (MLM),
as recent works show its effectiveness in code understanding
tasks [39]. MLM refers to the prediction of missing tokens in
a sentence based on the context provided by the surrounding
tokens. Unlike the left-to-right language model pre-training,
MLM considers both the left and right context. The approach
is inspired by BERT [40], where 15% of the tokens in the
encoder inputs are randomly replaced with sentinel token
[MASK], and the decoder is tasked with recovering these
tokens to reconstruct the complete snippet. The model is eval-
uated by token level accuracy only on the masked-out tokens.

3.2 Fine-tuning data (labeled)

The overarching purpose of this dataset is to serve as a com-
prehensive resource for training models in the translation
of NL intents, i.e., descriptions of code snippets, into exe-
cutable security-oriented PowerShell commands. Specifically,
we focus on offensive PowerShell code, a key resource for cy-
bersecurity exercises since Microsoft Windows represents the
most targeted OS. By encompassing a wide array of sources,
the dataset aims to expose models to the intricacies of real-
world cybersecurity scenarios, enabling them to understand
and generate PowerShell commands that align with those typ-
ical of cybersecurity operations. This holistic approach strives
to ensure that models trained on this dataset are well-equipped
to handle the complexities of real-world tasks and contribute
meaningfully to offensive code generation, specifically Pow-
erShell commands.

The dataset, consisting of 1,127 samples of PowerShell
commands, is meticulously curated from the following

sources:

• Atomic Red Team [41]: renowned for its library of tests
mapped to the MITRE ATT&CK framework3 [42],
serves the purpose of replicating real-world adversarial
tactics, techniques, and procedures (TTPs). This inclu-
sion provides the dataset with a foundation rooted in a
standardized and widely accepted framework, ensuring
that the PowerShell commands align with recognized
cybersecurity methodologies.

• Stockpile [43]: is a plugin for the CALDERA cyberse-
curity framework [1, 44] developed by MITRE and in-
troduces a layer of sophistication by incorporating struc-
tured data integral for adversary emulation. Therefore,
the dataset does not encompass raw PowerShell com-
mands only but also captures the contextual information
and relationships between commands within the broader
context of adversarial scenarios.

• Empire [45]: a post-exploitation and adversary emula-
tion framework integrated with MITRE ATT&CK, pro-
vides PowerShell commands representative of advanced
malicious techniques, further enriching the dataset with
nuanced and intricate scenarios.

• Online sources: we manually verified and selected ad-
ditional offensive samples from several security-related
online sources. We gathered samples from HackTricks
[46], Red Team Recipe [47], and Infosec Matter [48],
community-driven cybersecurity wikis about ethical
hacking, penetration testing, and information security.
By including diverse examples specific to the offen-
sive PowerShell dataset, the model acquires a more pro-
found understanding of the conventions and best prac-
tices unique to PowerShell security commands.

We manually curated the dataset to cover the highest num-
ber of tactics in the MITRE ATT&CK framework. In particu-
lar, the dataset covers 12 out of 14 tactics from the MITRE
ATT&CK framework, the de facto standard for adversar-
ial techniques representation, with varying numbers of tech-
niques and sub-techniques per tactic. Figure 2 illustrates the
number of entries for each ATT&CK tactic. Each entry in the
dataset is annotated with an NL description extracted from
the respective source. We manually annotated every sample
that did not come with a predefined description. Moreover,
we enriched all those descriptions that did not provide enough
information about the specific PowerShell command. For
instance, in the case of Atomic Red Team, the PowerShell
commands represent implementations of the techniques in
the ATT&CK framework. Consequently, these commands are

3The ATT&CK framework is a comprehensive knowledge base of the
tactics, techniques, and procedures (TTPs) that adversaries leverage during
cyberattacks, developed by MITRE.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 31

32
38

163
430

205
54

10
12
4

96
42
37

5

0 100 200 300 400 500
Collection

Command and Control
Credential Access
Defense Evasion

Discovery
Execution
Exfiltration

Impact
Initial Access

Lateral Movement
Persistence

Privilege Escalation
Reconnaissance

Number of dataset entries

M
IT

RE
 A

TT
&C

K
Ta

ct
ic

s

Figure 2: Mapping of fine-tuning dataset samples on the
MITRE ATT&CK tactics.

often labeled with the technique name, which provides infor-
mative content about the technique itself rather than what the
command does. To better understand how programmers and
security experts describe PowerShell scripts and how to deal
with ambiguities in natural language, we referred to popular
books and manuals [49–51].

Finally, we notice that the size of our dataset is in line with
other state-of-the-art corpora used to fine-tune ML models.
In fact, in state-of-the-art code generation, the datasets for
fine-tuning are relatively limited, in the order of one thousand
samples [52].

3.3 Code Generation Task
To ensure the robustness of our study, we adopt the following
state-of-the-art NMT models:

• CodeT5+ [15] is a new family of Transformer models
pre-trained with a diverse set of pretraining tasks to learn
rich representations from both unimodal code data and
bimodal code-text data. We utilize the variant with model
size 220M, trained from scratch following T5’s architec-
ture [53]. It has an encoder-decoder architecture with 12
decoder layers, each with 12 attention heads and hidden
layer dimension of 768, and 512 for the size of position
embeddings. We set the learning rate α= 0.00005, batch
size = 16, and beam size = 10.

• CodeGPT [16], a Transformer-based language model
pre-trained on millions of Python functions and Java
methods. The model architecture consists of 12 layers of
Transformer decoders. We followed previous work for
the implementation [54].

• CodeGen [17], an autoregressive language model for
program synthesis with an architecture that follows a
standard transformer decoder with left-to-right causal
masking. The family of CodeGen models is trained in
various sizes, including 350M, 2.7B, 6.1B, and 16.1B,
and utilizes various datasets. Specifically, we leverage

CodeGen-Multi, initialized from CodeGen-NL and fur-
ther pre-trained on BigQuery [17], a large-scale dataset
of multiple programming languages from GitHub repos-
itories, which consists of 119.2B tokens and includes C,
C++, Go, Java, JavaScript, and Python.

In our experiments, we randomly split the fine-tuning
dataset into training (the set of examples used to fit the param-
eters), validation (the set used to tune the hyperparameters of
the models), and test (the set used for the evaluation of the
models) sets using a typical 80%/10%/10% ratio.

To assess the performance of the models in generating
offensive PowerShell code from NL descriptions, we used
output similarity metrics, which compare the generated code
with the code from the ground truth. This type of metrics is
widely used to assess the performance of AI generators in
many code generation tasks [55], including the generation of
code for security contexts [28–31, 56]. The metrics are:

• Bilingual Evaluation Understudy (BLEU) score [57].
It measures the degree of n-gram overlapping between
the string of each code snippet produced by the model
and the reference, for values of n usually ranging be-
tween 1 and 4 [58, 59]. We implemented BLEU-4
score (i.e., with n = 4) computation employing the
bleu_score module contained in the open-source Natu-
ral Language Toolkit (NLTK) Python suite [60].

• Edit Distance (ED). It measures the edit distance be-
tween two strings, i.e., the minimum number of opera-
tions on single characters required to make each code
snippet produced by the model equal to the reference.
For the edit distance, we adopted the Python library
pylcs [61].

• METEOR [62]. It measures the alignment between each
code snippet produced by the model and the reference.
The alignment is defined as a mapping between unigrams
(i.e., 1-gram), such that every unigram in each string
maps to zero or one unigram in the other string and no
unigrams in the same string. To calculate the METEOR
metric, we relied on the Python library evaluate by
HuggingFace [63].

• ROUGE-L. It is a metric based on the longest common
subsequence (LCS) between the model output and the
reference, i.e., the longest sequence of words (not neces-
sarily consecutive, but still in order) shared between both.
We computed the ROUGE-L metric using the Python
package rouge [64].

All metrics range between 0 and 1, with higher scores corre-
sponding to a better quality of the generated code. To evaluate
the generated PowerShell code, we also introduce additional
evaluation metrics based on static and dynamic analysis that
are specific to our context. These metrics will be introduced
in the following sections.

32 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

3.4 Research Questions

We designed this research study to answer the following re-
search questions (RQs):
▷ RQ1: To what extent can NMT models effectively generate
offensive PowerShell code for security applications from NL
descriptions?
RQ1 aims to establish a preliminary assessment of NMT
models in generating PowerShell code for offensive security
applications. This investigation seeks to shed light on the
models’ efficacy in translating NL descriptions into offensive
code.
▷ RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code gen-
eration?
RQ2 focuses on the impact of pre-training and fine-tuning
on the quality of generated code. We analyze the influence
of these training strategies by considering different configu-
rations of the NMT models and their impact on their perfor-
mance.
▷ RQ3: How good is the generated code in terms of code
quality and dynamic behavior?
RQ3 aims to evaluate the generated PowerShell code in a
deeper way than output similarity metrics, in terms of syntac-
tic correctness and capability of executing malicious actions
realistically, through behavioral comparison with the ground
truth.
▷ RQ4: How do fine-tuned NMT models, leveraging security-
oriented training data, compared to a publicly available,
closed-source model?
RQ4 introduces a comparative analysis, evaluating the perfor-
mance of the fine-tuned models against a publicly available
general-purpose language model, specifically ChatGPT 3.5.
This investigation strives to evaluate whether specialization on
security-focused data provides an advantage in the offensive
PowerShell code generation domain.

4 Experimental Results

This section presents an extensive evaluation of NMT models
(CodeT5+, CodeGPT, and CodeGen) on the generation of
offensive PowerShell code. First, we assess the models’ capa-
bility of generating PowerShell code in their original configu-
ration (§ 4.1) without further training. Then, we evaluate the
impact of different training strategies, i.e., domain-adaptive
pre-training and fine-tuning, on the performance of such mod-
els (§ 4.2). To provide further insight into the PowerShell
code generation, we analyze the quality of the generated code
in terms of syntactic correctness (§ 4.3) and dynamic behavior
(§ 4.4), i.e., its ability to replicate the behavior of the ground
truth code. Finally, we compare the fine-tuned models with
a public AI model (ChatGPT) for all the previous analyses
(§ 4.5) to benchmark their performance against a publicly
available, closed-source model.

Model Pre-
training

BLEU-4
(%) ED (%) METEOR

(%)
ROUGE-
L (%)

CodeT5+ ✗ 0.04 8.87 4.69 1.08
✓ 0.01 6.96 1.86 2.68

CodeGPT ✗ 0.23 12.31 4.08 1.19
✓ 0.28 15.67 2.55 3.41

CodeGen ✗ 0.06 7.58 2.88 0.21
✓ 0.00 0.43 0.09 0.00

Table 3: Performance of models with and without pre-training
on zero-shot.

4.1 Zero-shot Learning

To establish a baseline for the evaluation, we initially used
the NMT models in their original configuration, asking them
to generate PowerShell code. This is a zero-shot learning
task, where an NMT model is applied for a different sce-
nario than the one for which it was trained. In this way, we
evaluate the current gap of existing models in generating Pow-
erShell code. Table 3 shows the results of this analysis. In
this task, the models are tested without any gradient updates,
relying only on the intent provided by the test set for infer-
ence [36,37]. The non-pre-trained versions of the models tend
to generate Python code, but their performance is generally
low for the downstream task of generating offensive Pow-
erShell code. Pre-training the models with general-purpose
PowerShell code slightly improves the accuracy but is still not
high. Among the pre-trained versions, CodeGPT is the only
one that provides output close to valid PowerShell code, al-
though it does not align well with the expected code indicated
by the intent in natural language. In summary, regardless of
pre-training, all models demonstrate the need for fine-tuning
on a tailored dataset for optimal performance in generating
offensive PowerShell code.

4.2 Impact of Training Strategies

The evaluation of CodeT5+, CodeGPT, and CodeGen in-
volved a meticulously designed test plan. More precisely,
the models underwent three distinct fine-tuning scenarios: 3
Epochs, 10 Epochs, and 30 Epochs. This deliberate choice
allowed us to assess the impact of prolonged fine-tuning on
the models’ ability to generate PowerShell code for offensive
security tasks. In each scenario, we considered two training
configurations: one with pre-training and the other without.
This test plan allowed us to systematically explore the models’
capabilities under varying conditions, providing a comprehen-
sive understanding of their strengths and limitations. Table 4
shows the results.

In the 3 epochs setting, CodeT5+ exhibits low perfor-
mance, regardless of pre-training, with a BLEU-4 score lower
than 10%. In contrast, CodeGPT and CodeGen demonstrate
notable performance even after a short fine-tuning period,

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 33

Model Epochs
Pre-
train.
(%)

BLEU-4
(%) ED (%) METEOR

(%)
ROUGE-
L (%)

CodeT5+

3
✗ 4.22 35.11 28.83 22.26
✓ 4.57 35.96 30.57 23.99

10
✗ 12.64 46.72 44.76 37.65
✓ 11.88 49.10 46.11 37.17

30
✗ 17.40 50.92 47.61 39.05
✓ 18.50 50.23 47.87 38.86

CodeGPT

3
✗ 10.28 40.71 31.21 25.60
✓ 12.80 42.54 35.14 30.35

10
✗ 16.22 46.39 40.50 33.52
✓ 17.93 49.88 45.12 37.12

30
✗ 21.71 50.17 45.34 38.63
✓ 19.94 49.20 45.45 38.06

CodeGen

3
✗ 16.20 47.68 42.27 35.97
✓ 14.75 45.88 39.86 34.69

10
✗ 19.15 50.52 46.76 37.63
✓ 19.04 48.45 43.25 35.25

30
✗ 18.23 47.53 44.10 35.48
✓ 18.53 48.67 44.14 35.45

Table 4: Performance of models with and without pre-training
and different number of epochs. Best results for each metric
are blue/bold.

achieving a BLEU-4 score higher than 10% and an ED over
40%. Notably, after 3 epochs, CodeGen demonstrates supe-
rior performance compared to the other two models. In the 10
epochs experiment, CodeT5+ shows significant improvement,
with BLEU-4 tripling to 12%. Moreover, ED, METEOR,
and ROUGE-L experience a rise of 12-16%. CodeGPT also
enhances its performance, surpassing CodeT5+ in terms of
BLEU-4 score, although it faces challenges in achieving the
same level of overall improvement. CodeGen remains ahead
of the other models, even reaching an ED over 50%. For a
more in-depth assessment of the models’ adaptability, the
training duration is extended to 30 epochs. CodeT5+ demon-
strates superior performance over CodeGPT in ED, METEOR,
and ROUGE-L metrics, while CodeGPT exhibits a higher
BLEU-4 score surpassing 20%. Notably, both models achieve
a high ED value of around 50%. CodeGen establishes its per-
formance without further improvement compared to the 10
epochs versions.

To provide an estimate of the goodness of the results, we
compared the results of the models with the performance of
the state-of-the-art (SOTA). Since the task of generating Pow-
erShell using NMT models is a task never addressed before,
we compared the results with recent work investigating the
effectiveness of existing models in the generation of differ-
ent languages from NL, specifically, Python code [65] and in
shell language [66]. We found that the best performance is
21% for BLEU-4 and 38% for METEOR in the case of the

Python language, and 25% for BLEU-4 and 44% for ED in
the case of shell language. We notice that our results are in
line with the ones of the SOTA. Even better, our best perfor-
mance, represented by CodeT5+ without pre-training and 30
fine-tuning epochs, overcomes the SOTA over all the metrics.

We also assessed the impact of varying the number of
epochs on fine-tuning time, with distinct differences observed
between 3, 10, and 30 epochs for each model. For both
CodeT5+ and CodeGPT, fine-tuning over 3 epochs takes ap-
proximately 20 minutes, whereas CodeGen requires double
that time (40 minutes). Extending to 10 epochs, CodeT5+ and
CodeGPT need around 35 and 39 minutes, respectively, while
CodeGen’s training time increases to 90 minutes. For the 30-
epoch extension, CodeT5+ takes about 80 minutes, CodeGPT
requires 110 minutes, and CodeGen extends its training time
to 270 minutes. Finally, the comparison between the fine-
tuning times of pre-trained and non-pre-trained models did
not reveal evident differences, suggesting that the pre-training
process does not introduce a significant computational over-
head during the subsequent fine-tuning phase.

RQ1: To what extent can state-of-the-art NMT models
effectively generate offensive PowerShell code for security
applications from NL descriptions?

The evaluation of CodeT5+, CodeGPT, and CodeGen
underscores their remarkable effectiveness in generat-
ing offensive PowerShell code for security applications
from NL descriptions. CodeGen surpasses the other
models in the 3 and 10 epochs settings according to all
metrics. CodeT5+, designed with a specialized architec-
ture for code generation tasks, consistently outperforms
CodeGPT and CodeGen across various metrics in the 30
epochs setting. Particularly noteworthy is the compar-
ison with SOTA performance in code generation tasks
for different languages, such as Python and shell lan-
guages. Our best-performing model, CodeT5+ without
pre-training and 30 fine-tuning epochs, surpasses the
SOTA results, exhibiting superior performance across
all metrics.

Considering the impact of pre-training further enriched
our evaluation. Focusing on the 3-epoch experiments,
CodeT5+ exhibits a slight improvement across all metrics, and
CodeGPT extends the improvement to 2%-4% across all met-
rics. Conversely, CodeGen appears to have better performance
without pre-training. Training the models for 10 epochs re-
veals a more pronounced distinction between the two versions.
CodeT5+ pre-training results in a 2% increase in both Edit
Distance (ED) and METEOR metrics. CodeGPT, on the other
hand, shows a substantial displacement of 1.7%, 3.5%, 4.6%,
and 3.6% for BLEU-4, ED, METEOR, and ROUGE-L, respec-
tively. CodeGen maintains a negative displacement between
the versions even with the extended training duration. When
extending the fine-tuning duration to 30 epochs, pre-training

34 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Natural Language Intent Ground Truth Model Output

Start a process with DirLister,
wait for 4 seconds, and stop the

DirLister process.

Start-Process ${WebBrowserPassViewPath}
; Start-Sleep -Second 4 ; Stop-Process

-Name "WebBrowserPassView"

Start-Process ${WebBrowserPassViewPath}
; Start-Sleep -Second 4 ; Stop-Process

-Name "WebBrowserPassView"

Invoke-Mimikatz cmdlet with
bypassed execution policy.

powershell.exe -exec bypass -c “
Invoke-Mimikatz ”

powershell.exe -ExecutionPolicy Bypass
-Command “ Invoke-Mimikatz ”

Invoke compiled HTML Help
(CHM) file with specific storage
handler, HH file path, and CHM

file path.

Invoke-ATHCompiledHelp
-InfoTechStorageHandler $ {

infotech_storage_handler } -HHFilePath
$ { hh_file_path } -CHMFilePath $ {

chm_file_path }

Invoke-ATHCompiledHTMLHelp

((((((((((((((
-InfoTechStorageHandler

(((((((((((((((((

$ { infotech_storage_handler }
-HHFilePath $ { hh_file_path }

-CHMFilePath $ { chm_file_path }

Get the wininit process and
perform token manipulation to

create a new process for
’cmd.exe’.

Get-Process wininit |
Invoke-TokenManipulation
-CreateProcess ’cmd.exe’

$wininit = Get-Process wininit |
Invoke-TokenManipulation
-CreateProcess ’cmd.exe’

Table 5: Illustrative examples of model output. The prediction errors are red/bold.����Slashed text refers to omitted predictions.

did not consistently yield superior results. In this case, the
performance of pre-trained models is comparable to non-pre-
trained counterparts.

RQ2: What is the influence of the training strategies on
NMT models’ performance in offensive PowerShell code
generation?

As the fine-tuning period extends, such as with 10 and 30
epochs, the benefits of pre-training diminish or even be-
come counterproductive. In these cases, the performance
of pre-trained models consistently falls below that of
their non-pre-trained counterparts. This highlights the
variable effectiveness of pre-training, dependent on the
duration of fine-tuning. These findings underscore the
interplay between the duration of training epochs and
the usage of pre-training, emphasizing the importance
of carefully considering these factors in model develop-
ment.

Table 5 illustrates four cases of model predictions. They
are examples from our test sets to highlight both success-
ful and failed prediction cases. Row # 1 demonstrates the
models’ ability to generate a PowerShell snippet composed
of multiple commands (separated by semicolons) without
errors. The model correctly predicts the correct variables,
e.g., WebBrowserPassViewPath, and command names, such
as Start-Process, Start-Sleep. Row # 2 is indicative
of the concept of implicit model knowledge. Indeed, the
model can generate a correct command by leveraging al-
ternative equivalent versions of PowerShell’s option flags
(e.g., -ExecutionPolicy instead of -exec). Row # 3 shows
a relevant example of a failure case. It is possible to no-
tice how the model correctly predicts the variable names
and values except for one not referenced in the intent

(-InfoTechStorageHandler). In addition, the model fails
to predict the correct command name, generating an addi-
tional word (HTML) based on the NL description. Finally, row
4 illustrates another incorrect example in which the model
is capable of generating the ground truth code, except for
introducing an additional variable to save the output of the
command ($wininit =).

Overall, we can conclude that these examples indicate the
model’s ability to generate complex PowerShell snippets, even
though there is still some error margin, specifically related to
omissions (e.g., variable names).

4.3 Static Analysis

We evaluated the generated code through static analysis to
ensure that the code adheres to PowerShell conventions and
does not contain syntax errors. The analysis was conducted
on the top-performing models identified in the previous eval-
uation, namely the 30-epoch versions of CodeT5+ with pre-
training, CodeGPT without pre-training, and CodeGen with
pre-training. The static analysis leverages PSScriptAnalyzer
[67], a static code checker for PowerShell modules and scripts.
The primary purpose of PSScriptAnalyzer is to assess the qual-
ity of PowerShell code by analyzing its syntax, structure, and
adherence to best practices. The rules are based on Power-
Shell best practices identified by the PowerShell Team and the
community, organized into categories such as Cmdlet Design,
Script Functions, Error Handling, Scripting Style, and Script
Security. The severity levels (ParseError, Error, Warning, In-
formation) associated with each rule indicate the importance
and impact of adhering to the specific guideline. In this work,
we focused on parse errors, which occur during the parsing
phase of a program’s execution, errors, occurring when code

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 35

Pre-trained
models

Static Analysis

Test Set

Reference
commands

PSScript
Analyzer

Syntactic
Evaluation

NL Intents Generated
commands

Figure 3: Static analysis workflow.

Model Single Accuracy
(%)

Comparative
Accuracy (%)

CodeT5+ 91.15 92.04
CodeGPT 98.23 98.23
CodeGen 98.23 98.23

Table 6: Syntactic evaluation for the best models.

does not meet specific high-severity rules (e.g., hardcoding
computer names, using plain text passwords), and warnings,
which typically highlight potential issues or coding practices
that might lead to errors or security concerns.

We developed a syntactic analysis tool to streamline the
process of detecting parse errors, errors, and warnings in
PowerShell scripts. This tool automatically feeds PSScriptAn-
alyzer with PowerShell commands generated by the models
during the testing phase. By doing so, our tool identifies er-
rors and warnings in the generated code, assessing the overall
syntactic quality of the models.

The syntactic analysis process begins with our test set,
which consists of NL intents paired with reference PowerShell
commands. These NL intents are fed into fine-tuned models to
produce the PowerShell code. Both the generated commands
and their corresponding references are then subjected to the
syntax analyzer.

To assess the syntactic quality of the generated commands,
we introduce two distinct metrics: Single Syntax Accuracy
and Comparative Syntax Accuracy. The metrics are defined
as follows:

• Single Syntax Accuracy: evaluates the percentage of
commands without parse errors. This evaluation is in-
dependent of the reference commands from the ground
truth.

• Comparative Syntax Accuracy: assesses the syntactic
correctness of the generated commands by considering
the results alongside the reference commands. When
both commands present common parse errors, these are
excluded from the counting process. Given that some ref-
erence commands include stub templates such as <code>

Test Set ParseError (%) Error (%) Warning (%)

CodeT5+ 8.85 1.94 35.92

CodeGPT 1.77 2.70 29.73

CodeGen 1.77 1.80 31.53

Ground Truth 2.65 0.00 39.09

Table 7: Summary of ParseError, Error, and Warning percent-
ages for models and ground truth on the test set.

14

22

3

4

14

14

5

2

17

7

5

4

16

10

5

6

0 5 10 15 20 25

AvoidUsingInvokeExpression

 AvoidUsingCmdletAliases

 AvoidUsingWMICmdlet

 UseDeclaredVarsMoreThanAssignments

Number of Warnings

W
ar

ni
ng

s

CodeT5+ CodeGPT CodeGen Ground Truth

Figure 4: Counts for different warning types in each test set.

or <command>, the analysis filters out parse errors asso-
ciated with these templates, specifically the Redirection-
NotSupported and MissingFileSpecification errors.

The workflow for the syntactic analysis is depicted in Fig-
ure 3. Looking at the results in Table 6, it is possible to notice
that all the models achieved a score greater than 90%, assess-
ing their strong capability to generate syntactically correct
code. CodeGPT and CodeGen, in general, demonstrate high
performance across both syntax metrics. Table 7 summarizes
the percentages for various severity types in the test set. Given
that warning frequencies are consistently above 30% for all
models, including the ground truth, Figure 4 enumerates the
various warning types within each set.

4.4 Execution Analysis

The execution analysis aims to evaluate the generated offen-
sive PowerShell code when running in an actual system. This
involves assessing the ability of the code to behave as intended
in terms of effects caused on the system. Therefore, we run
both code from the ground truth and generated code, monitor
their behavior at runtime, and compare the behavioral events

36 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

Execution Analysis

Windows 10 VMPre-trained
models

Test Set

Reference
commands

NL Intents Generated
commands

Sysmon

Security
Tools

Event
Filtering

Execution
Evaluation

Figure 5: Execution analysis workflow.

Ground truth
events

Generated code
events

188 151145

powershell.exe -ExecutionPolicy Bypass -NoLogo -NonInteractive -NoProfile -WindowStyle
Hidden -Command "IEX (Invoke-WebxRequest –Uri 'https://raw.githubusercontent.com/Powershell-
Scripts-for-Hackers-and-Pentesters/main/scripts/all_in_one_enum.ps1').Content"Whitecat18

powershell.exe -NoP -NonI -W Hidden -Exec Bypass -Command "Invoke-WebRequest
https://raw.githubusercontent.com/Whitecat18/Powershell-Scripts-for-Hackers-and-Pentesters/main/
scripts/all_in_one_enum.ps1 -OutFile hello.ps1; .\hello.ps1"

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

...
powershell.exe>C:\Windows\System32\sxs.dll

powershell.exe>C:\Windows\System32\umpdc.dll

pwsh.exe>C:\Windows\System32\ntdll.dll

pwsh.exe>C:\Windows\System32\gdi32full.dll

...
pwsh.exe>C:\Program
Files\PowerShell\7\System.Reflection.Metadata.dll
pwsh.exe>C:\Program
Files\PowerShell\7\System.Collections.Immutable.dll

Figure 6: Comparison between events.

that occurred during their execution. The entire workflow for
the execution analysis is shown in Figure 5.

We performed the experiments in a controlled and dedi-
cated testing environment. The controlled environment con-
sists of a virtualized Windows 10 system running in Virtual-
Box 7. The system is equipped with a set of security-related
tools, such as PowerSploit [68] and Mimikatz [69], that are
invoked by many samples of offensive code in our dataset.
We assume that these tools have been previously infiltrated
by the attacker in a previous stage, as typical of advanced
malicious campaigns. To monitor the execution of Power-
shell code, we integrated Sysmon [70], a popular Windows
service for gathering system events, including the filesystem,
the network, and the Windows Registry. To be able to run
the generated code on the system, we assume the scenario
in which an attacker already bypassed part of the security
mechanisms by deactivating the Microsoft Defender Firewall,
Windows Defender, and Microsoft Defender SmartScreen.

The evaluation involved executing each command from
both the generated ones and those from ground truth
multiple times as a single-line PowerShell script. This
generates a process through the standard Windows Sys-
tem.Diagnostics.Process. We filter the events recorded by
Sysmon by filtering out records related to previous irrelevant

Model Precision (%) Recall (%) F1-Score (%)

CodeT5+ 97.26 80.94 88.35

CodeGPT 91.86 85.23 88.42

CodeGen 96.94 80.97 88.24

Table 8: Execution analysis results.

events and selecting records based on the Process ID (PID),
focusing on both the parent process responsible for executing
the PowerShell command and its child processes. The com-
parison has been performed comparing the events triggered
by the generated command (called retrieved records) to those
from the execution profile of the ground truth (called rele-
vant records). The events that appear both when executing
the generated code and the ground truth are relevant records
retrieved. From these sets of events, we evaluate the precision,
recall and F1-score of the generated code, defined as follows:

precision =
1
N

N

∑
i

#(relevant records retrieved)i

#(retrieved records)i

recall =
1
N

N

∑
i

#(relevant records retrieved)i

#(relevant records)i

F1-Score = 2
precision∗ recall
precision+ recall

Figure 6 illustrates an example of event analysis: given
the ground truth and the generated PowerShell command,
we execute them and compare the set of events triggered by
each command to measure their overlap. To avoid noise in
the analysis due to events that only occur sporadically (e.g.,
because of non-determinism sources in the system), we iden-
tify such events by performing multiple repeated runs of the
code and discard non-reproducible events from the analysis.
After every command execution, the Windows environment
is restored to a clean state, by reloading the virtual machine
from a snapshot, to avoid interferences caused by the effect
of previous commands.

The results shown in Table 8 outline how all models share
an overall precision higher than 90% and an overall recall
higher than 80%, likewise, the Execution F1-Score is very
similar between the different models and higher than 88%.
Thus, although there were differences found in the textual
similarity analysis, the generated code closely matches the
ground truth in terms of dynamic events.

RQ3: How good is the generated code in terms of code
quality and dynamic behavior?

The syntactic analysis of the generated code showed that
the models are indeed capable of generating high-quality

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 37

Figure 7: Comparison with ChatGPT on output similarity
metrics.

PowerShell code. CodeGPT and CodeGen achieve the
best results in terms of Single and Comparative Accu-
racy, along with an amount of Warnings and ParseErrors
comparable to the ground truth. The execution analy-
sis revealed that the generated PowerShell code closely
replicates the behavior of the ground truth code, generat-
ing the same events in the target system. This is indica-
tive of the generated code’s capability of performing the
malicious actions described in the NL intents.

4.5 Comparison with Public AI Model
In this study, we conducted a comprehensive evaluation
by comparing the performance of our fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, with ChatGPT, the Ope-
nAI LLM service widely used for a variety of tasks, including
code generation [71]. The purpose was to assess the special-
ized capabilities of our models in generating PowerShell code
for offensive security tasks and to benchmark their perfor-
mance against a publicly available, closed-source model. We
leveraged ChatGPT 3.5, which represents the most recent free
version at the time of this work.

To assess the capabilities of the OpenAI model, we first
provided a detailed description of the required task, i.e.,
the generation of PowerShell commands starting from NL
descriptions, including an example of input and the desired
output. Then, we provided a list of natural language code
descriptions and asked ChatGPT to automatically generate
the corresponding PowerShell code. Specifically, following
works and guidelines on prompt engineering [71, 72], we
leveraged the following prompt: I want you to act
as a code generator. Given a natural language
description of a PowerShell command, generate
the corresponding PowerShell code.

Figure 7 shows the results of this analysis. The figure shows
that our fine-tuned models consistently outperform ChatGPT

Figure 8: Comparison with ChatGPT on static and execution
analysis evaluation metrics.

across multiple evaluation metrics. Specifically, ChatGPT
exhibits a BLEU-4 score of 7.45%, an ED of 33.84%, a ME-
TEOR of 22.14%, and a ROUGE-L of 20.61%. In contrast,
our fine-tuned models showcase superior overall performance
across all output similarity metrics. The tailored training on
the specialized fine-tuning dataset, designed specifically for
offensive security code generation, results in more accurate
code generation, enabling our models to surpass the capabil-
ities of ChatGPT in this particular task. We also analyzed
the syntactical quality of the PowerShell code generated by
ChatGPT, obtaining a Syntax Single Accuracy of 95.58% and
a Syntax Comparative Accuracy of 96.46%. These results
underscore the commendable ability of ChatGPT to generate
accurate and syntactically correct PowerShell code.

Finally, we extended the execution analysis to ChatGPT,
following the same strategies described in Section 4.4, ob-
taining an overall Execution F1-Score of 82.92%. Despite
the strong syntactic performance, ChatGPT remains one step
below the fine-tuned models in the qualitative analysis of the
generated PowerShell code. The results of this analysis are
shown in Figure 8.

RQ4: How do fine-tuned NMT models, leveraging
security-oriented training data, compare to a publicly avail-
able, closed-source model?

The comparative analysis with ChatGPT, a publicly
available general-purpose language model, highlights
the specialized strengths of privately fine-tuned models,
CodeT5+, CodeGPT, and CodeGen, in offensive Pow-
erShell code generation. The fine-tuned models consis-
tently outperform ChatGPT across BLEU-4, Edit Dis-
tance, and METEOR scores. While showing notable
performance on syntactic accuracy, ChatGPT achieves
poorer results than the fine-tuned models for the exe-
cution analysis. This underscores the significance of

38 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

domain-specific fine-tuning and the benefits of training
on security-oriented datasets, providing an advantage
in generating offensive PowerShell code compared to
a general-purpose language model. The results affirm
the effectiveness of tailored training data for achieving
superior performance in domain-specific tasks.

5 Threats To Validity

Model selection. The external validity of the study might be
impacted by the choice of NMT models (CodeT5+, CodeGPT,
CodeGen). To mitigate this, we carefully selected models with
distinct architectures and capabilities, ensuring a representa-
tion of current advancements in the field [16,73,74]. This care-
ful selection aims to ensure that our findings reflect broader
trends in NMT model performance for code generation tasks.
Evaluation metrics. The reliance on output similarity met-
rics, although representing the most common solution in the
field, poses a potential threat to construct validity, as these
metrics may not fully encapsulate the correctness and func-
tional adequacy of the generated PowerShell commands. To
address this issue, our evaluation strategy encompasses a com-
prehensive suite of metrics, including similarity, syntactic, and
execution metrics, each offering unique insights into the mod-
els’ performance. By considering multiple variants of these
metrics and aligning with common practices in code genera-
tion evaluation, we aim to provide a well-rounded assessment.
No single metric is perfect, but analyzing them collectively
allows for a more comprehensive evaluation of the code.
Fine-tuning data. The construction of our dataset, meticu-
lously curated from several sources such as online repositories,
Atomic Red Team, Stockpile, and Empire, introduces poten-
tial limitations regarding the generalizability of our models’
performance across different offensive security contexts. To
minimize the impact of these limitations, we sourced data
from diverse origins and conducted manual verification of
each sample in the labeled dataset, ensuring the completeness
and coherence of descriptions with the intended programs.
The diversity in data sources and the thorough verification
process aim to diminish the influence of any singular source’s
peculiarities and errors in programs or descriptions, thereby
enhancing the dataset’s applicability and reliability for train-
ing and evaluating AI models in generating offensive Pow-
erShell code. Furthermore, our approach to crafting NL de-
scriptions, inspired by established styles found in PowerShell
literature, mirrors real-world scenarios where such descrip-
tions play a critical role in describing PowerShell commands.
Finally, regarding the size of our dataset, we notice that it is
in line with other state-of-the-art corpora used to fine-tune
models, which are in the order of one thousand samples [52].

6 Ethical Considerations

Recognizing that attackers use attacks as a weapon, it is im-
portant to specify that the goal of the proof-of-concept (POC)
is not to cause harm but to surface security weaknesses within
the software. Identifying security issues allows companies to
patch vulnerabilities and protect themselves against attacks.

Offensive security is a sub-field of security research that
tests security measures from an adversary or competitor’s
perspective, employing ethical hackers to probe a system for
vulnerabilities [75, 76]. Our work aims to automate attack
generation to explore critical vulnerabilities before they are
exploited by attackers [77]. Indeed, our work simplifies the
process of coding the attacks to surface security weaknesses
within the software and can provide valuable information
about the technical skills, degree of experience, and intent of
the attackers. With this information, it is possible to imple-
ment measures to detect and prevent attacks [78].

7 Conclusion

In this paper, we assessed the feasibility of using NMT models
to generate PowerShell code for security contexts. We aimed
to demonstrate that AI-based code generators are indeed fit to
generate PowerShell code, specifically, offensive PowerShell,
which spans several applications in the cybersecurity domain.
The evaluation of CodeT5+, CodeGPT, and CodeGen demon-
strated that these models achieve significant performance on
the code generation task, both with and without pre-training.
Moreover, the study showed that domain-specific fine-tuning
allows our models to outperform state-of-the-art privately fine-
tuned models, i.e., ChatGPT. We also introduced two novel
datasets for PowerShell code generation to use for pre-training
and fine-tuning AI-code generators.

Future work includes further analysis of the generated code,
such as sandbox execution of the offensive scripts, to under-
stand whether the code can evade detection measures, along
with more NMT models spanning several architectures and
capabilities.

Acknowledgments

This work has been partially supported by MUR PRIN 2022,
project FLEGREA, CUP E53D23007950001 (https://fl
egrea.github.io) and by an Industrial Ph.D. grant (PNRR
- DM 117/2023) from MUR and DigitalPlatforms S.p.A, CUP
E66E23000580003.

References

[1] A. Applebaum, D. Miller, B. E. Strom, C. Korban, and
R. Wolf, “Intelligent, automated red team emulation,”

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 39

https://flegrea.github.io
https://flegrea.github.io

Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, 2016.

[2] A. B. Ajmal, M. A. Shah, C. Maple, M. N. Asghar,
and S. U. Islam, “Offensive security: Towards proactive
threat hunting via adversary emulation,” IEEE Access,
vol. 9, pp. 126 023–126 033, 2021.

[3] E. M. Hutchins, M. J. Cloppert, R. M. Amin et al.,
“Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill
chains,” Leading Issues in Information Warfare & Secu-
rity Research, vol. 1, no. 1, p. 80, 2011.

[4] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels,
A. G. Pennington, and C. B. Thomas, “Mitre att&ck:
Design and philosophy,” in Technical report. The
MITRE Corporation, 2018.

[5] Sudhakar and S. Kumar, “An emerging threat fileless
malware: a survey and research challenges,” Cybersecu-
rity, vol. 3, no. 1, p. 1, 2020.

[6] I. Kara, “Fileless malware threats: Recent advances,
analysis approach through memory forensics and re-
search challenges,” Expert Systems with Applications,
vol. 214, p. 119133, 2023.

[7] Varonis, “What is Fileless Malware? PowerShell Ex-
ploited,” https://www.varonis.com/blog/fileless-malwa
re.

[8] Cybersecurity & Infrastructure Security Agency, “Iden-
tifying and Mitigating Living Off the Land Techniques,”
https://www.cisa.gov/sites/default/files/2024-02/Join
t-Guidance-Identifying-and-Mitigating-LOTL_V350
8c.pdf.

[9] R. Natella, P. Liguori, C. Improta, B. Cukic, and
D. Cotroneo, “Ai code generators for security: Friend or
foe?” IEEE Security & Privacy, 2024.

[10] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sen-
gupta, S. Yoo, and J. M. Zhang, “Large language models
for software engineering: Survey and open problems,”
arXiv preprint arXiv:2310.03533, 2023.

[11] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cum-
mings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati,

K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. Mc-
Candlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” arXiv
preprint arXiv: 2107.03374, 2021.

[12] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma,
G. Liang, Y. Li, Q. Wang, and T. Xie, “Codereval: A
benchmark of pragmatic code generation with gener-
ative pre-trained models,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engi-
neering, 2024, pp. 1–12.

[13] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen,
J. Feng, C. Sha, X. Peng, and Y. Lou, “ClassEval: A
Manually-Crafted Benchmark for Evaluating LLMs on
Class-level Code Generation,” arXiv preprint arXiv:
2308.01861, 2023.

[14] P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella,
B. Cukic, and S. Shaikh, “Shellcode_IA32: A dataset
for automatic shellcode generation,” in Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), R. Lachmy,
Z. Yao, G. Durrett, M. Gligoric, J. J. Li, R. Mooney,
G. Neubig, Y. Su, H. Sun, and R. Tsarfaty, Eds.
Online: Association for Computational Linguistics,
Aug. 2021, pp. 58–64. [Online]. Available: https:
//aclanthology.org/2021.nlp4prog-1.7

[15] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and
S. C. Hoi, “Codet5+: Open code large language models
for code understanding and generation,” arXiv preprint
arXiv:2305.07922, 2023.

[16] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang,
G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,
M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine
learning benchmark dataset for code understanding and
generation,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.
[Online]. Available: https://datasets-benchmarks-proce
edings.neurips.cc/paper/2021/hash/c16a5320fa475530
d9583c34fd356ef5-Abstract-round1.html

[17] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open
large language model for code with multi-turn program
synthesis,” 2023.

[18] OpenAI, “ChatGPT,” https://openai.com/chatgpt.

[19] Z. Li, Q. A. Chen, C. Xiong, Y. Chen, T. Zhu, and
H. Yang, “Effective and light-weight deobfuscation and

40 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf
https://aclanthology.org/2021.nlp4prog-1.7
https://aclanthology.org/2021.nlp4prog-1.7
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://openai.com/chatgpt

semantic-aware attack detection for powershell scripts,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp.
1831–1847.

[20] M.-H. Tsai, C.-C. Lin, Z.-G. He, W.-C. Yang, and C.-
L. Lei, “Powerdp: De-obfuscating and profiling mali-
cious powershell commands with multi-label classifiers,”
IEEE Access, vol. 11, pp. 256–270, 2023.

[21] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious
powershell commands using deep neural networks,” in
Proceedings of the 2018 on Asia conference on computer
and communications security, 2018, pp. 187–197.

[22] A. Rubin, S. Kels, and D. Hendler, “Amsi-based detec-
tion of malicious powershell code using contextual em-
beddings,” arXiv preprint arXiv:1905.09538, 2019.

[23] M. Mimura and Y. Tajiri, “Static detection of malicious
powershell based on word embeddings,” Internet of
Things, vol. 15, p. 100404, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2
542660521000482

[24] Y. Mezawa and M. Mimura, “Evaluating the possibility
of evasion attacks to machine learning-based models
for malicious powershell detection,” in International
Conference on Information Security Practice and Expe-
rience. Springer, 2022, pp. 252–267.

[25] G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “Ast-based
deep learning for detecting malicious powershell,” in
Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp.
2276–2278.

[26] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj,
“From chatgpt to threatgpt: Impact of generative ai in
cybersecurity and privacy,” IEEE Access, vol. 11, pp.
80 218–80 245, 2023.

[27] P. Charan, H. Chunduri, P. M. Anand, and S. K. Shukla,
“From text to mitre techniques: Exploring the malicious
use of large language models for generating cyber attack
payloads,” arXiv preprint arXiv:2305.15336, 2023.

[28] P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella,
B. Cukic, and S. Shaikh, “Can we generate shellcodes
via natural language? an empirical study,” Automated
Software Engineering, vol. 29, no. 1, pp. 1–34, 2022.

[29] P. Liguori, E. Al-Hossami, V. Orbinato, R. Natella,
S. Shaikh, D. Cotroneo, and B. Cukic, “Evil: exploit-
ing software via natural language,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 2021, pp. 321–332.

[30] G. Yang, X. Chen, Y. Zhou, and C. Yu, “Dualsc: Auto-
matic generation and summarization of shellcode via
transformer and dual learning,” in IEEE International
Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2022, Honolulu, HI, USA, March 15-18,
2022. IEEE, 2022, pp. 361–372.

[31] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and
T. Chen, “Exploitgen: Template-augmented exploit code
generation based on codebert,” Journal of Systems and
Software, vol. 197, p. 111577, 2023.

[32] A. M. Dai and Q. V. Le, “Semi-supervised sequence
learning,” Advances in neural information processing
systems, vol. 28, 2015.

[33] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. A. Smith, “Don’t stop
pretraining: Adapt language models to domains and
tasks,” arXiv preprint arXiv:2004.10964, 2020.

[34] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of trans-
formers,” AI Open, 2022.

[35] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever
et al., “Improving language understanding by generative
pre-training,” 2018.

[36] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever et al., “Language models are unsupervised
multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell et al., “Language models are few-shot learn-
ers,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[38] H. Wang, J. Li, H. Wu, E. Hovy, and Y. Sun, “Pre-trained
language models and their applications,” Engineering,
2022.

[39] R. Tufano, L. Pascarella, and G. Bavota, “Automating
code-related tasks through transformers: The impact of
pre-training,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE,
2023, pp. 2425–2437.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[41] Red Canary, “Atomic Red Team,” https://atomicredtea
m.io/.

[42] M. Corporation, “MITRE ATT&CK,” https://attack.mit
re.org/.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 41

https://www.sciencedirect.com/science/article/pii/S2542660521000482
https://www.sciencedirect.com/science/article/pii/S2542660521000482
https://atomicredteam.io/
https://atomicredteam.io/
https://attack.mitre.org/
https://attack.mitre.org/

[43] MITRE, “CALDERA plugin: Stockpile,” https://github
.com/mitre/stockpile.

[44] MITRE, “CALDERA,” https://github.com/mitre/calde
ra.

[45] Empire Project, “Empire,” https://github.com/EmpireP
roject/Empire.

[46] Hacktricks, “Hacktricks,” https://book.hacktricks.xyz/.

[47] R. T. Recipe, “PowerShell tips & tricks,” https://redtea
mrecipe.com/powershell-tips-tricks/.

[48] I. Matter, “PowerShell commands for pentesters,” https:
//www.infosecmatter.com/powershell-commands-for
-pentesters/.

[49] Tutorial’s Point, “Learn PowerShell,” https://www.tuto
rialspoint.com/powershell/index.htm.

[50] T. Lee, K. Mitschke, M. E. Schill, and T. Tanasovski,
Windows PowerShell 2.0 Bible. John Wiley & Sons,
2011.

[51] L. Holmes, Windows PowerShell Cookbook: The Com-
plete Guide to Scripting Microsoft’s Command Shell.
O’Reilly Media, 2012.

[52] C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma,
A. Efrat, P. Yu, L. Yu, S. Zhang, G. Ghosh, M. Lewis,
L. Zettlemoyer, and O. Levy, “LIMA: less is more for
alignment,” CoRR, vol. abs/2305.11206, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2305.11206

[53] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-
to-text transformer,” J. Mach. Learn. Res., vol. 21,
pp. 140:1–140:67, 2020. [Online]. Available: http:
//jmlr.org/papers/v21/20-074.html

[54] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang, D. Tang,
G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,
M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K.
Deng, S. Fu, and S. Liu, “Codexglue: A machine
learning benchmark dataset for code understanding and
generation,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, J. Vanschoren and S. Yeung, Eds., 2021.
[Online]. Available: https://datasets-benchmarks-proce
edings.neurips.cc/paper/2021/hash/c16a5320fa475530
d9583c34fd356ef5-Abstract-round1.html

[55] P. Liguori, C. Improta, R. Natella, B. Cukic, and
D. Cotroneo, “Who evaluates the evaluators? on

automatic metrics for assessing ai-based offensive code
generators,” Expert Systems with Applications, vol. 225,
p. 120073, 2023. [Online]. Available: https://www.scie
ncedirect.com/science/article/pii/S0957417423005754

[56] X. Ruan, Y. Yu, W. Ma, and B. Cai, “Prompt learning
for developing software exploits,” in Proceedings of the
14th Asia-Pacific Symposium on Internetware, 2023, pp.
154–164.

[57] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
[Online]. Available: https://aclanthology.org/P02-1040/

[58] L. Han, “Machine translation evaluation resources and
methods: A survey,” arXiv preprint arXiv:1605.04515,
2016.

[59] D. Munkova, P. Hajek, M. Munk, and J. Skalka, “Evalu-
ation of machine translation quality through the metrics
of error rate and accuracy,” Procedia Computer Science,
vol. 171, pp. 1327–1336, 2020.

[60] NLTK, “Natural Language Toolkit (NLTK), bleu_score
module,” 2023. [Online]. Available: https://www.nltk.o
rg/api/nltk.translate.bleu_score.html

[61] pylcs, “Python library pylcs,” 2023. [Online]. Available:
https://pypi.org/project/pylcs/

[62] A. Lavie and A. Agarwal, “Meteor: An automatic metric
for mt evaluation with high levels of correlation with
human judgments,” in Proceedings of the Second Work-
shop on Statistical Machine Translation, ser. StatMT
’07. USA: Association for Computational Linguistics,
2007, p. 228–231.

[63] evaluate, “Python library evaluate,” 2022. [Online].
Available: https://pypi.org/project/evaluate/

[64] rouge, “Python ROUGE Score Implementation,” 2021.
[Online]. Available: https://pypi.org/project/rouge/

[65] J. Shin, M. Wei, J. Wang, L. Shi, and S. Wang, “The
good, the bad, and the missing: Neural code gen-
eration for machine learning tasks,” arXiv preprint
arXiv:2305.09082, 2023.

[66] J. Shi, S. Jiang, B. Xu, J. Liang, Y. Xiao, and W. Wang,
“Shellgpt: Generative pre-trained transformer model for
shell language understanding,” in 2023 IEEE 34th Inter-
national Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE, 2023, pp. 671–682.

[67] Microsoft, “PSScriptAnalyzer,” https://github.com/Pow
erShell/PSScriptAnalyzer.

42 18th USENIX WOOT Conference on Offensive Technologies USENIX Association

https://github.com/mitre/stockpile
https://github.com/mitre/stockpile
https://github.com/mitre/caldera
https://github.com/mitre/caldera
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://book.hacktricks.xyz/
https://redteamrecipe.com/powershell-tips-tricks/
https://redteamrecipe.com/powershell-tips-tricks/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.infosecmatter.com/powershell-commands-for-pentesters/
https://www.tutorialspoint.com/powershell/index.htm
https://www.tutorialspoint.com/powershell/index.htm
https://doi.org/10.48550/arXiv.2305.11206
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://www.sciencedirect.com/science/article/pii/S0957417423005754
https://www.sciencedirect.com/science/article/pii/S0957417423005754
https://aclanthology.org/P02-1040/
https://www.nltk.org/api/nltk.translate.bleu_score.html
https://www.nltk.org/api/nltk.translate.bleu_score.html
https://pypi.org/project/pylcs/
https://pypi.org/project/evaluate/
https://pypi.org/project/rouge/
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer

[68] Will Schroeder, “PowerSploit,” https://github.com/Pow
erShellMafia/PowerSploit.

[69] Benjamin Delpy, “Mimikatz,” https://github.com/genti
lkiwi/mimikatz.

[70] Mark Russinovich,Thomas Garnier, “System Monitor,”
https://learn.microsoft.com/en-us/sysinternals/downl
oads/sysmon.

[71] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration
code generation via chatgpt,” arXiv preprint
arXiv:2304.07590, 2023.

[72] Microsoft, “Prompt Engineering - Learn how to use AI
models with prompt engineering,” https://microsoft.gith
ub.io/prompt-engineering/.

[73] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots:
Fusing large language models with completion engines
for automated program repair,” in Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172–184.

[74] S. Tipirneni, M. Zhu, and C. K. Reddy, “Structcoder:
Structure-aware transformer for code generation,” arXiv
preprint arXiv:2206.05239, 2022.

[75] S. Bratus, I. Arce, M. E. Locasto, and S. Zanero, “Why
offensive security needs engineering textbooks,” Yale
Law & Policy Review, p. 2, 2013.

[76] J. G. Oakley, “The state of modern offensive security,” in
Professional Red Teaming. Springer, 2019, pp. 29–41.

[77] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley,
“Aeg: Automatic exploit generation,” in NDSS, 2011.

[78] I. Arce, “The shellcode generation,” IEEE security &
privacy, vol. 2, no. 5, pp. 72–76, 2004.

USENIX Association 18th USENIX WOOT Conference on Offensive Technologies 43

https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://microsoft.github.io/prompt-engineering/
https://microsoft.github.io/prompt-engineering/

	Introduction
	Related Work
	Research Study
	Pre-training data (unlabeled)
	Fine-tuning data (labeled)
	Code Generation Task
	Research Questions

	Experimental Results
	Zero-shot Learning
	Impact of Training Strategies
	Static Analysis
	Execution Analysis
	Comparison with Public AI Model

	Threats To Validity
	Ethical Considerations
	Conclusion

