
Vacuums in the Cloud:
Analyzing Security in a Hardened IoT Ecosystem

Fabian Ullrich, Jiska Classen, Johannes Eger, Matthias Hollick
Secure Mobile Networking Lab

TU Darmstadt
{fullrich, jclassen, jeger, mhollick}@seemoo.de

Abstract
With the advent of robot vacuum cleaners, mobile sensing

platforms entered millions of homes. These gadgets not only
put “eyes and ears” into formerly private spaces, but also com-
municate gathered information into the cloud. Furthermore,
they reside inside the customer’s local network. Hence, they
are a prime target for attacks and if compromised become a
privacy and security nightmare. Vendors are aware of robots
being a target of interest; they employ various security mech-
anisms against tampering with devices and recorded data in
the cloud.

In this paper, the Neato BotVac Connected and Vor-
werk Kobold VR300 ecosystems are analyzed and the robot
firmware is reverse engineered. To achieve the latter, a tech-
nique to bypass the devices’ secure boot process is presented
revealing the firmware, which is then dissected to evaluate
device-specific secret key generation and to trace vulnerabili-
ties. We present flaws in the secret key generation and provide
insight on the occurrence and exploitation of a buffer over-
flow, which give an attacker complete control not only in the
local network but also via the robots’ cloud interface. Eventu-
ally, multiple attacks based on the findings are described and
security implications are discussed. We shared our findings
with the vendors, who further increased their otherwise com-
mendable security mechanisms, and hope more vendors can
take away valuable lessons from this highly complex Internet
of Things (IoT) ecosystem.

1 Introduction

Smart vacuum cleaning robots contain many interesting sen-
sors, such as laser scanners, ultrasonic distance sensors, cam-
eras, and bump detectors. Combined with cleaning schedules
and result maps, this exposes a substantial amount of pri-
vate information about their owner—accordingly, iRobot’s
announcement to sell Roomba data for marketing purposes
has been discussed controversially [2]. With the customer’s
shipping address, WiFi configuration, or simply position data

collected by the robot or the app, apartment size and furniture
can be associated with locations. All market leading vacuum
cleaning robots are embedded into complex IoT ecosystems.
Xiaomi robots were subject of significant security research in-
cluding an open source replacement for their proprietary cloud
components [7]. However, Xiaomi uses a different infrastruc-
ture, hardware architecture, and operating system—meaning
that while Neato and Xiaomi are functionally similar, the
security measures have to be different.

With a market share of 62.7 million e in 2017, Neato is
one of the bigger players on the vacuum robot market [20].
Vorwerk acquired Neato in 2017 and sells a robot with al-
most identical firmware, which is part of the vacuum cleaning
product line Kobold listed with 800 million e revenue in total.

Even though vacuum cleaning robots are a target of inter-
est, not much security research has been published on Neato,
except for an exploit chain for attackers in the same local
network [10, 11]. For Vorwerk robots, which are re-branded
Neato robots with minor hardware and settings upgrades, not
a single Common Vulnerabilities and Exposures (CVE) num-
ber is known. Despite robot vacuums not being broadly con-
sidered to be security critical, Neato put plenty of advanced
security techniques in place, which are interesting to analyze
and learn from for all kinds of IoT devices. We show that
the combination of multiple vulnerabilities in different com-
ponents leads to a powerful attack compromising the entire
ecosystem. Our main contributions are:

• Secure boot bypass and extraction of Random Access
Memory (RAM) with previous contents,

• execution of commands on robots over the cloud with
superuser privileges without authorization,

• massive entropy reduction in robot secret key generation,

• decryption of RSA private keys on robots and enabling
arbitrary command and control channels over their cloud,

• information leakage of end-user smartphone’s public
Internet Protocol (IP) addresses.

?

Account information

Robot commands & status replies

Initial setup: user_id,
secret_ke

y, mac, ...

Robot commands & status replies

WebSocket information

Manual robot commands

Neato BotVac Connected

Nucleo

Beehive

App

Debug pins
Secure boot bypass
Static RSA keys
Non-random secret key
Static log and coredump key

Unauthenticated buffer overflow
Secret key extraction

Smartphone IP disclosure

Robot stealing
Robot blinding

Figure 1: The Neato ecosystem. During normal usage, the smartphone application only communicates through a cloud infrastruc-
ture with the robot. Vulnerabilities found in certain components or communication paths are marked red.

All security issues were communicated to the vendor. Re-
mote exploitation over the cloud was filtered immediately, and
firmware updates fixing bugs closer to hardware were rolled
out until June 2019. Adequate patches on some encryption
flaws required changes in the device manufacturing process.

Our research highlights that obscurity and the usage of
strong encryption methods without proper knowledge of the
underlying schemes does not provide sufficient security. Our
analysis and recommendations are practice-oriented and of
interest to other vendors and security analysts. This is espe-
cially relevant as some technologies utilized by Neato are also
present in the automotive and other interconnected sectors.
We encourage vendors to work on open solutions for security
and establish better standards. In the long run this will solve
security issues similar to the ones found in our analysis.

This paper is structured as follows: Section 2 gives a brief
overview on the robot ecosystem components and the mes-
sages exchanged with special emphasis on security. While
Section 3 focuses on exploitation with local hardware or net-
work access, Section 4 shows cloud exploitation techniques.
Security implications of our findings are discussed in Sec-
tion 5. Section 6 concludes our work.

2 The Neato and Vorwerk Ecosystems

Advanced smart robot vacuum cleaners are able to clean the
house almost autonomously. The only parts requiring inter-
action are emptying the dirt bin and starting the robot. Neato
advertises the connected series with the ability to control the
robot and get notifications via smartphone as well as obtain-
ing a cleaning summary [16]. To achieve this, the ecosys-
tem features multiple components displayed in Figure 1. The
smartphone app communicates with two different application
programming interfaces (APIs), namely Beehive and Nucleo.
Beehive (beehive.neatocloud.com) manages all account-
related tasks, such as account information and linked robots.
The robot itself communicates with the Beehive cloud dur-

Product Name Firmware Version Build Date
Neato BotVac Connected 2.2.0_296_ Dec 12 2016
Neato BotVac Connected D7 4.2.0-102 Jul 12 2018

4.4.0-72 Dec 22 2018
Vorwerk Kobold VR300 4.2.2-137 Aug 30 2018

4.2.5-166 Jan 11 2019

Table 1: Firmware version comparison. Neato is used to test
new features, Vorwerk is getting stable releases only.

ing initial pairing to exchange authentication information. In
contrast, Nucleo (nucleo.neatocloud.com) provides robot
functionality. It receives commands from the smartphone app
and forwards them to the robot. In reverse direction, Nucleo
provides the app with robot status messages. Moreover, a
subset of commands can be sent to the robot directly without
using the cloud in manual mode. The robot platform itself is
based on a QNX system [3].

Neato, like most vendors, does not provide public details
about the inner life of their ecosystem. All information in this
section was gathered either by sniffing network traffic or by re-
verse engineering the Android smartphone app. Additionally,
Neato provides a developer API documentation [17].

We dissected multiple products, which we compare in Sec-
tion 2.1. Section 2.2 explains further details on the Beehive
cloud while Section 2.3 focuses on the Nucleo cloud.

2.1 Product Comparison
To confirm and compare our findings, we tested three vac-
uum cleaning robot models. Vorwerk robots are very similar
to Neato; in fact they use the same firmware just with dif-
ferent settings applied. Firmware versions are listed in Ta-
ble 1. The Vorwerk Beehive and Nucelo cloud are hosted on
beehive.ksecosys.com and nucleo.ksecosys.com. Vor-
werk hardware has some upgrades compared to Neato hard-
ware, such as more ultrasonic sensors, a larger battery, dif-
ferent power and speed settings for normal and eco vacuum
cleaning mode, a green brush, and rainbow colored LEDs.

2.2 Beehive Cloud
Beehive is responsible for all account-related information. It
holds the secret_keys of all robots that are connected to a
user account. The secret_key is required for communicating
with the Nucleo cloud and to send manual commands to the
robot. Beehive is hosted at Amazon [1] via Heroku [18].

2.3 Nucleo Cloud
The Nucleo API represents the interface for
smartphone↔robot communication. It provides robot status
information and forwards commands to the Neato BotVac
Connected. The Nucleo infrastructure is hosted with Amazon
via Heroku as well. All messages to the API are payload-
based with the constant path /vendors/neato/robots/
[robot_serial]/messages.

Authentication In the Nucleo API, Authorization and
Date header fields are used for authentication. The authoriza-
tion field is generated by concatenating the message body to
the date and afterwards concatenating the result to the lower
case robot_serial. Then the SHA-256 Keyed-Hash Mes-
sage Authentication Code (HMAC) [6, 9] of the resulting
string is computed, using the robot secret_key. The compu-
tation instructions in pseudo-code are given in Listing 1.

On sending a message to a distinct robot, the server checks
for Dateheader validity. If a date is provided and lies within a
20 min time window of the current time, the server checks for
presence of the Authorization header. When providing the
“NEATOAPP” string in the Authorization header but not
giving a HMAC or an invalid HMAC, the server’s response
is {"Could not find robot_serial for specified
vendor_name"}. This behavior also applies when trying to
access random robot_serials, which means it is not possi-
ble to confirm the existence of robot_serials in the Nucleo
API. Note that the server does not check the Authorization
header validity itself, instead the request is forwarded to the
robot which then validates the HMAC. To summarize, anyone
who is in possession of a robot_serial and secret_key is
able to send commands to the corresponding robot.

authorization = "NEATOAPP " + signature
signature = HMAC_SHA256(robot_secret_key,

UTF8_encoded(string_to_sign))
string_to_sign = lower(robot_serial) + "\n" +

date_header + "\n" + body

Listing 1: Neato Nucleo authentication between smartphone
and backend [17].

3 Local Vulnerabilities

We use a new secure boot bypass technique in Section 3.1
to extract system image and RAM contents. Static system
image analysis in Section 3.2 is the base for findings across
the remaining part of the paper, which includes extensive
secret_key generation entropy reduction in Section 3.3.

3.1 Bypassing Secure Boot
Access to the firmware running on the robot is required for
more advanced security research. This includes but is not
limited to analysis of mutually authenticated Transport Layer
Security (TLS) connections and debugging of running appli-
cations. Neato is using a custom AM335x chip with secure
boot enabled [14]. The flash chip only contains an encrypted
and signed system image; a physical attacker cannot sim-
ply unsolder the chip to obtain it. Firmware updates use the
same encrypted and signed format. Changing and debugging
firmware on a robot therefore requires bypassing secure boot.

We start with a hardware analysis in Section 3.1.1, which
leads to a hidden boot menu in Section 3.1.2. We exploit this
to extract Neato’s system image (see Section 3.1.3). The de-
scribed security issue is filed as CVE-2018-20785. It has been
fixed in the Neato BotVac Connected D7 firmware version
4.4.0-72, all other versions listed in Table 1 are vulnerable.
As of June 2019, also the Vorwerk firmware has been fixed.

3.1.1 Hardware Analysis

After teardown of the Neato BotVac Connected, further analy-
sis of all components is required. The motherboard has many
testing points and undocumented chips, with an important
part of it depicted in Figure 2. We connected all testing points
to a logic analyzer, and rebooted the robot multiple times.
Most of the testing points do not show any interesting output,
some might be for sensors and other features not relevant for
system access. In addition to test points, the right front of the
motherboard contains three extra large unlabeled pins, which
are a serial interface with clock, read, and write. The ground
needs to be taken from another source, such as the internal
Universal Serial Bus (USB) port. It prints the following text
during startup and remains silent afterward:

BotVac Connected "<Fast Memory>"(84038)

The Neato BotVac Connected D7 features a similar serial
port, it is located on the motherboard’s left and already has
four connection pins. Access to the Vorwerk Kobold VR300
serial port does not require disassembling it, it is located next
to the USB port.

The main chip on the Neato Botvac Connected is the
SNI20952608ZCE in the center of Figure 2. Since it is a
custom chip there is no information or documentation avail-
able. The form factor 962B leads to the AM335x chip family
manufactured by Texas Instruments.

3.1.2 Hidden Boot Menu

During startup, QNX first loads an Initial Program Load (IPL),
which then loads an Image File System (IFS) containing the
operating system. Instead of a QNX IPL, Linux typically uses
the more common setup of MLO and U-Boot on AM335x.
Either way, these setups enable to boot an operating system.
Secure boot uses encryption keys configured on the AM335x
decrypt and verify both, IPL and IFS, prior to execution.

Neato’s standard setup is to simply boot the IFS containing
the firmware from the external flash chip without showing any
options. While testing the partially documented Neato USB
command line [15], we found that TestMode On followed
by SetSystemModePowerCycle enables a hidden IPL boot
menu on the serial interface:

BotVac Connected "<Fast Memory>"(84038)
Press enter twice within the next 2 seconds for

boot menu
**Commands:
Press ’M’ to load IFS from main image flash
Press ’X’ for serial download, using XModem-1k
Press ’S’ to scan existing memory without download

Note that XModem-1kdownloadmakes the robot download
a system image from the serial port and boot it. This does
not enable system image extraction. On uploading a valid
QNX IFS no secure boot checks are performed, representing
a bypass. Loading a BeagleBone QNX IFS from Foundry27
for AM335x works in principle, it prints some information on
the serial interface but crashes when initializing processors.

The original AM335x Foundry27 board support package in-
cludes a very similar IPL procedure in src/hardware/ipl/
boards/am335x/main.c. It enables sending an IFS over the
QNX serial protocol sendnto. Neato’s implementation repre-
sents a variation and more AM335x-based products might be
affected by the secure boot bypass. The more common setup
of MLO and U-Boot also allows to load arbitrary images by
default. In general, vendors relying on secure boot should
carefully check for such contradicting setups.

3.1.3 Memory Extraction

We exploit the secure boot bypass to launch a cold boot attack,
which is possible as neither the AM335x chip nor the IPL
reset memory contents during startup. When recompiling and
booting the Foundry27 image, the main issue is that hardware

AM335xAM335x

Figure 2: Part of the Neato BotVac Connected motherboard.

Nucleo

/bin/webserver /bin/astro

/bin/conman/bin/robot

/bin/pinky

Watchdog

Manual commands

Commands & status replies

Figure 3: Core tasks running on Neato BotVac Connected and
their most important actions.

cannot be initialized. This is since memory is mapped to
different addresses on the Neato chip variant and any invalid
memory access freezes the chip.

At this stage an attacker is able to print memory contents
until an invalid memory access is made. In our experiments,
increasing the serial interface speed up to 1 Mbit/s worked.
Despite slow speed and partially unknown memory layout,
this poses a huge attack surface for cold boot attacks.

By default, QNX is located at address 0x81000000. First
memory dumps show that despite booting our own QNX
IFS this memory region still contains some of the original
Neato IFS contents. We relocate our custom QNX IFS to a
free memory region and perform a full memory dump of the
upper 2 GB of the address space. This area contains the same
256 MB, which are mapped 8 times to the memory region.
Each mapping contains the full Neato IFS and any RAM
contents present before the reboot, including WiFi credentials.

3.2 Static Firmware Analysis
Neato’s IFS is a rich source for information and enables static
firmware analysis. It contains all important binaries and shell
scripts coordinating them. For example,/bin/robot is called
by a script /etc/brain.sh and the watchdog /bin/pinky
is started via /etc/pinky.sh. An overview of the main tasks
is shown in Figure 3. robot is the largest binary and responsi-
ble for the main features, starting at the interactive command
line and ending at all cleaning logic. It receives Nucleo cloud
commands from astro and generates replies. The manual
drive mode which is issued locally via the smartphone app is
first redirected from webserver to astro and then processed
similarly. conmanmanages WiFi connections. Messages are
exchanged via proprietary libNeatoIPC calls as well as stan-
dard QNX message queues. In the following we focus on
those components relevant for further findings.

Testing the robot’s wireless interfaces produced coredumps
that are separate files in the so-called “Blackbox Logs”, which
can be copied to a USB stick connected to the Neato USB
interface. Such a coredump is the entry point for our analy-
sis in Section 4.2. For security reasons, these coredumps are
encrypted. A key question for further research is how this
encryption works. Shell scripts in the Neato IFS copy and ro-
tate these logs, encryption is performed by /bin/rc4_crypt
called without arguments. Reverse engineering rc4_crypt
reveals the hard-coded password *̂ JEd4W!I. This password
is valid for each of the three tested robots. We assume the
same password is used throughout all firmware versions. We
published this vulnerability as CVE-2018-17177.

The robot features a number of encrypted private RSA keys
which are located in /var/keys/. One of the keys is named
vendorPrivateKeyProduction and is used for authenticat-
ing the robot against the cloud components. By examining the
key decryption procedure in the robot binaries, we were able
to decrypt the keys and launched several tests as described in
Section 4.1. Due to the high impact of these keys becoming
public, we agreed to not disclose details on the decryption
process.

3.3 Secret Key Generation
First hints for the secret_key generation are found in the
astro binary since it features a GenerateSecretKey func-
tion. This function calls multiple other functions to finally
call NeatoCrypto_GenerateRobotPassword, which is im-
ported from NeatoCrypto. After renaming and adjusting
type declarations, we were able to reconstruct the function
as shown in Listing 2. The first important observation is
the usage of the OpenSSL library for computing the final
secret_key, which appears to be a SHA-1 [5] hash. Type
declarations were derived from the OpenSSL documentation.
Contents passed to SHA-1 are the following blocks of bytes:

t_shift[0-3]The first block is set to the current Unix time
in seconds.

t_shift[4-6] is set to constant 0.

t_shift[7] is set to constant 16.

t_shift[8] is set to a random value with some mathemati-
cal operation.

t_shift[9] is set to a random value with multiple math-
ematical operations. Since one of them is an ANDwith
the value 0x3F, the first two bit of this byte are set to
constant 0.

t_shift[10-15] is the robot’s Media Access Control
(MAC) address, which is a 6 B hex-string.

In the next step, a hash for the 16 B t_shift vari-
able is computed. If computing the digest was success-
ful, the hash is then stored at the address contained in

ciphers = OpenSSL_add_all_ciphers(v8)
OPENSSL_add_all_algorithms_noconf(ciphers)
EVP_MD_CTX_init(&v18)
rnd = rand()
t_shift[0:3] = time_now
t_shift[4:6] = 0
t_shift[7] = 16
t_shift[8] = rnd + rnd / 0xFFFF
t_shift[9] = ~(~((((unsigned int)(unsigned short)

(rnd + rnd / 0xFFFF) >> 8) & 0x3F) << 25) >> 25)
t_shift[10:15] = robot_MAC
v_sha1 = EVP_sha1()
if (!EVP_DigestInit(&v18, v_sha1)

|| !EVP_DigestUpdate(&v18, t_shift, 16)
|| !EVP_DigestFinal(&v18, robot_key, 20))
return 7000

filehandle = fopen(*emmc_keys_robotkey, "w")
fwrite(robot_key, 1, 16, filehandle)

Listing 2: Secret Key Generation.

the pointer emmc_keys_robotkey which leads to the file
/emmc/keys/RobotKey. The first 16 B of the robot_key
variable are then written to that file.

In Section 5.1.3 we show that the robot_serial (and
thereby the robot_MAC) has to be considered as known,
which eradicates the entropy of t_shift[10:15]. The same
is true for the constant values, eliminating the entropy for
t_shift[4:7].

The bytes t_shift[8:9] are random, but one of them
has two bits constantly set to 0. Given the random number
generator (RNG) was properly seeded, this would add 14 bit
of entropy to the secret_key. Since the RNG is not seeded,
these two bytes do not add entropy in case the attacker knows
the state of the RNG. Our experiments show that the RNG
state is always the same after rebooting or resetting a robot.
We were able to confirm, that newly unboxed robots have the
same RNG state as well. Note that the RNG state is the same
amongst all robots and not limited to single devices.

The first 4 B of the t_shift structure are the Unix time
in seconds, which is close to the time where the robot con-
nects to the Beehive cloud for the first time. Since all other
values for the secret_keygeneration are known, the entropy
consists of timestamp entropy plus 14 bit from the random
values in case the RNG state is not known. If the RNG state
at the time of secret_key computation is known, the en-
tropy exclusively relies on the timestamp. Further security
implications and attacks are discussed in Section 5.1.3.

4 Remote Vulnerabilities

In Section 4.1 several attacks on the robot interface of the
Neato and Vorwerk cloud are presented. Section 4.2 analyzes
a buffer overflow vulnerability in the robot, which is triggered
by sending forged requests to the cloud.

4.1 Robot Backend Vulnerabilities
Obtaining the private RSA keys for the Neato and the Vor-
werk cloud (compare Section 3.2) offers a new attack vector
against the ecosystems. We give an overview of the message
types that are exchanged between robot and cloud and discuss
resulting security problems.

4.1.1 Authentication

Robots authenticate against the backend by using RSA signa-
tures in the Authorization header, as detailed in Listing 3.
The header consists of two parts, separated by the : charac-
ter. The first part is the robot_serial and the second part
the base64 encoded RSA signature. The signature signs sim-
ilar content as the Authorization header presented in Sec-
tion 2.3. It signs the robot_serial, the Hypertext Transfer
Protocol (HTTP) request method, the request Uniform Re-
source Identifier (URI), and the request body. Since some of
the backend messages exchange the secret_key discussed
in Section 3.3, backend requests do not utilize it and instead
entirely rely on the RSA private key.

Robot Impersonation Attack The RSA private key is iden-
tical for all robots and the robots do not submit any other
authentication factor. This enables an attacker to send mes-
sages to the backend on behalf of any robot with a known
robot_serial. Problems caused by this issue are explained
in the following sections.

4.1.2 Beehive

The Beehive backend is exclusively used for linking a robot
to a new account and exchanging the new secret key. Under
normal circumstances a robot only has to send a request to
the backend once in a lifetime. A linking request contains
several information about the robot, among others the robot’s
secret_key and the user_idof the account which the robot
will be linked to. A linking request as sent by a robot is
displayed in Listing 4.

Robot Stealing Attack The Robot Impersonation Attack
enables an attacker to send such linking requests on behalf
of arbitrary robots. This allows to change the user account
to which a robot is linked to. With the means presented
in Section 3.3 it is possible to compute the current valid
secret_key and fully take over control of a robot.

Changing Keys Possession of the private RSA key also
allows for changing the secret_key stored in the cloud for
a given robot_serial, which results in the Robot Blinding
Attack described in Section 4.1.3.

string_to_sign = utf8(robot_serial + "\n" +
http_req_method + "\n" + req_URI + "\n" +
date_time "\n" + req_body)

utf8 = convert_to_utf8(string_to_sign)
signature = sign_rsa_sha256(utf8, private_key)
enc_signature = base64encode(signature)

Listing 3: Robot signature, used between robot and backend.

POST /links HTTP/1.1
Host: beehive.neatocloud.com
Authorization: NEATOBOT OPS2[red]-508cb1[red]:

jRB31k+D0qu7TkgwDkPyezmhn8XrEzoKoVXJq1W[short]
User-Agent: Neato-Robot

{"user_id":"95ac1f189b434[red]",
"mac_address":"508cb1[red]",
"model":"BotVacConnected",
"secret_key":"295DC2BA26A221060[red]",
"firmware":"2.2.0","name":"Test"}

Listing 4: Neato Beehive robot link (shortened).

Information Leakage With the means to impersonate
arbitrary robots, we were also able to test the server’s
error handling in regard to information leakage. When
providing the backend with a random user_id an
{"user_id":"invalid"} error is returned. This allows
to verify the existence of user_ids in the cloud. Since
user_ids are randomly generated and are 32 B long, enu-
meration should not be feasible.

The same cloud behavior is achieved by sending random
robot_serials to the server. Since the MAC part of the
serial is easy to obtain, only the first part resembling the
production date remains unknown. The production date has
little entropy and therefore can be bruteforced in an on-
line attack against the backend. When a valid MAC with
a wrong production date is sent, the server answers with an
{"mac_address":"taken"}.

Fake Identities There is no verification if vacuum cleaners
were actually produced, it is possible to add arbitrary robots
with a forged robot_serial via the Beehive /links path.

4.1.3 Nucleo

The Nucleo cloud backend forwards app commands to the
robots and receives their status updates. A robot↔Nucleo
connection is a bidirectional stream, one connection is used
for multiple messages. This portion of Nucleo is not HTTP
conform. When a robot logs into the cloud with a request
to /vendors/neato/login (compare Listing 5), the cloud
answers with transfer-encoding:chunked and does not
give a Content-Length. It also sends a Connection:close
header, which normally ends the connection. If the connec-
tion is not closed from client side, the server starts to send

heartbeat messages and control commands. The connection
is used as a socket from this point on.

The data format of one message in this socket connection
is a length field followed by the Authorization and Date
header data explained in Section 2.3. Afterwards the payload
is sent. An example exchange is displayed in Listing 6.

Input Validation The backend is not filtering the payload
sent by the app or robot, since the payloads of frontend mes-
sages are identical. It is even possible to change data types
in the JavaScript Object Notation (JSON), which leads to ab-
normal behavior in the app. This might represent an attack
vector against the app.

Smartphone IP Disclosure The most interesting func-
tionality provided by the app is manual control, where
a user directly controls a robot via websocket. To start
manual mode, the smartphone sends a message to the Nucleo
cloud, requesting the IP and port where it should connect
to. The robot then sends a response with this information
and additionally communicates which Service Set Identifier
(SSID) it is connected to. The manual driving mode should
only work in the same WiFi and local network, as stated
by the manufacturer. By impersonating a robot and sending

POST /vendors/neato/login HTTP/1.1
Host: nucleo.neatocloud.com
Date: Wed, 06 Mar 2019 16:21:28 GMT
Authorization: NEATOBOT OPS2[red]-508cb1[red]:WqJ7

+FTo1D19jTlV9bD2gbfjCmS93rBKE[short]
User-Agent: Neato-Robot

Listing 5: Neato Nucleo robot login (shortened).

87
Wed, 06 Mar 2019 16:21:27 GMT|de6a3344c1c[short]
{"reqId": "117","cmd": "getRobotState"}

246
{"version":1,"reqId":"183","result":"ok",
"error":"ui_alert_linkedapp","state":1,
[shortened]
{"modelName":"BotVacConnected",
"firmware":"2.2.0"}}

Listing 6: Neato Nucleo command.

POST /vendors/neato/robots/OPS234[short]/messages
HTTP/1.1

Accept: application/vnd.neato.nucleo.v1
Content-type: application/json
Authorization: NEATOAPP aabbccddeeff[short]
Date: Tue, 06 Nov 2018 13:37:00 GMT
Host: nucleo.neatocloud.com:4443

AAAAAAAAAAAAAAAAAAAAAAAAAA....

Listing 7: Shortened request crashing astro.

a forged external IP and port, we were able to make the
victim’s smartphone connect to our given IP address. Neither
the IP range nor the SSID are verified to be local before
connecting to the given IP. This poses a severe threat since
the victims public IP address is leaked in this attack. With
this information, an attacker is able to derive geolocation
information or target the victim’s smartphone directly.

Forwarding the unchecked Authorization headers and pay-
loads to the robot has several side-effects:

Robot Blinding Attack First, changing the secret_key
of a robot as described in Section 4.1.2 results in a Denial of
Service (DoS) attack. The robot will still receive heartbeat
packets and is convinced it is still connected, but it is not
able to validate any packets with payload. Therefore the robot
cannot be controlled via the cloud anymore.

Secret Key Extraction Second, in Section 5.1.3 an offline
attack against a robot’s secret_key with manual driving
packets is explained. Since the messages sent from Nucleo
backend to the robots are not additionally encrypted and can
be leaked by impersonating the robot, this enables an offline
attack as well. The severity of this attack is further increased
due to eliminating the constraint of having access to the vic-
tim’s local network.

Buffer Overflow Third, the buffer overflow explained in
4.2 could as well be prevented by not forwarding the header
information to the robots unchecked.

4.2 Buffer Overflow
We discovered a buffer overflow vulnerability in the Neato
BotVac Connected firmware version 2.2.0 and developed a
proof of concept (PoC) exploit, which enables arbitrary unau-
thenticated remote code execution over the Nucleo cloud with
root permissions.

4.2.1 Vulnerability

Commands can be sent to robots over the Nucleo cloud as de-
scribed in Section 2.3. If the forwarded request body contents
are too long, astro crashes locally on the robot and the QNX
utility dumper automatically creates a core dump. Listing 7
shows a request that triggers the buffer overflow. It is trig-
gered for arbitrary HMACs, meaning it does not require valid
authentication. The only required information is the robot’s
serial number.

We analyze the binary files webserver, astro, and the
core dump of the latter to locate the root cause. The Link
Register (LR) is used to save the return address if a function
is called in an ARM program [12]. The return address points
to the next instruction to execute after the function call returns.

The LR of the astro core dump belongs to the function
HMAC_CTX_cleanup. It is part of the library OpenSSL, but the
problem occurs earlier in program execution. We examine the
call graph of HMAC_CTX_cleanup shown in Figure 4 to locate
the issue, which indicates that astro verifies the HMAC.
Note that the function name VerifySignature is misleading
here; examination of the binary file reveals that this function
calculates a HMAC. Since the crash occurs during HMAC
verification, the exploit can be triggered unauthenticated.

Listing 8 shows the part of VerifySignature that con-
tains the buffer overflow vulnerability. The NeatoCrypto_
UTF8_Encode function encodes an input string in UTF-8 and
stores it in the buffer utf8_str. This is done without ver-
ification if the input string fits into the target buffer. The
input string str can contain 7265 B, while the target buffer
utf8_str is only 2048 B, thus causing the overflow.

The input string is generated by concatenating the robot’s
serial number, the date header, and the JSON-formatted com-
mand to be executed. By sending long and invalid command
strings, attackers can overwrite values on the stack. The Pro-
gram Counter (PC) register, which holds the currently exe-
cuted instruction on ARM [13], retrieves its content from the
stack in function epilogues. The corresponding stack value is
overwritten by the payload at the position 2032. Moreover, a
malicious payload controls registers r4–r11.

Nucleo_message_handler

VerifySignature

libNeatoCrypto_VerifySignUsingRobotPassword

HMAC_CTX_cleanup

Figure 4: Simplified call graph to the function
HMAC_CTX_cleanup.

VerifySignature(*this, const char *cmd, const char
*date, const char *robot_serial, const char *

signature) {
char *str; //str_to_sign
char *utf8_str;
//[...]
memset(&utf8_str, v11, 0x800);
memset(&str, 0, 0x1C61u);
robot_serial_lower = str_lowercase(v9);
snprintf(&str, 0x1C61u, "%.*s\n%.*s\n%.*s", 32,

robot_serial_lower, 64, cmd_date, 7168,
cmd_str);

len = strlen(&str);
NeatoCrypto_UTF8_Encode(&str, len, &utf8_str);
//[...]

}

Listing 8: Extract of the source code of the reverse engineered
function VerifySignature.

4.2.2 Proof of Concept Development

The QNX 6.5 operating system running on Neato BotVac
Connected robots supports various exploit mitigation tech-
niques. However, neither Address Space Layout Random-
ization (ASLR) nor Data Execution Prevention (DEP) are
enabled by default [21]. Thus, the buffer overflow exploit
development is simplified. Nonetheless, request body pay-
loads must satisfy two conditions. First, a string containing
null bytes (0x00) is rejected by the Nucleo cloud. Second,
only American Standard Code for Information Interchange
(ASCII) characters are accepted (byte values 0x00–0x7f).

To execute arbitrary commands, our proof of concept aims
at executing system [4]. Since the astro binary runs as root,
commands are executed with the same privileges. astro is us-
ing the shared library libc.so.3, which provides the system
function at address 0x0101b0a8. However, this address con-
tains non-ASCII bytes. In addition, system requires the com-
mand to be passed in r0, which is not directly controlled by
the buffer overflow. Therefore, we construct a Return Oriented
Programming (ROP) chain containing five gadgets, which are
located at valid addresses. An ADD gadget solves the non-
ASCII issue by adding up ASCII values to non-ASCII ones,
which ultimately leads to root Remote Code Execution (RCE).

5 Discussion

In this section the most important findings and their security
implications and impact are discussed. We continue using
the same structure as in the actual findings and first discuss
local vulnerabilities in Section 5.1, remote vulnerabilities in
Section 5.2, and then discuss remaining issues in Section 5.3.

5.1 Local Vulnerabilities
In this section security implications related to findings in
Section 3 are discussed.

5.1.1 Secure Boot Bypass

Fixing the bootloader has a high potential in bricking robots.
If anything fails during the bootloader update, there is proba-
bly no recovery for customers. However, a hard-coded pass-
word and a memory reset would be sufficient to stop an attack
at this stage in the first place. Neato’s solution to this issue
rolled out in version 4.4.0-72. It fixes this issue by detecting
if the robot is in factory mode and skips the boot menu if not.

5.1.2 Static Firmware Analysis

On evaluating the binaries we found that they are not obfus-
cated at all—they even contain symbols which made analysis
fast and efficient. The efforts required to fully understand
and exploit an ecosystem could be significantly increased by
obfuscation, while the costs for doing so are fairly low.

5.1.3 Secret Key Generation

Secret keys are computed based on robot MAC addresses, a
timestamp, and an unseeded random element. In this section
we discuss the security of serial numbers and the resulting
implications on the secret key.

Serial Number Security A lot of the security and authenti-
cation depends on a robot’s serial number—which turns out to
be fairly easy to find out. First, serial numbers are printed on
the robot’s packaging and the robot itself. The former enables
attackers to go into shops and note their numbers or checking
someone’s trash. The latter is often photographed when sell-
ing used robots. Second, serial numbers can be enumerated
as shown in Section 4.1.2. The only information they contain
is the MAC address and manufacturing date, with the former
being observable in—for instance—the network and the latter
being within a limited time range. Taking this into considera-
tion, a robot’s serial number is not a secret and security solely
relies on secret_key security.

Secret Key Security Considering the findings in Sec-
tion 3.3, where we presented the NeatoCrypto_Generate
RobotPassword, several derivations are made. If an attacker
knows in which year a robot was first connected to the cloud,
the timestamp contributes log2(365×24×60×60) = 25 bit
of entropy. In contrast, if he is able to tell the timestamp
with an accuracy of ±1/2 h, the number of unknown bits is
log2(60×60) = 12. Table 2 gives an overview of different
timespans and the resulting entropy and average number of
tries needed for bruteforcing a secret_key, depending on a
known respectively unknown RNG state.

As visible in Table 2, an attacker is able to test all possible
secret_keys for a given robot_serial against the cloud,
if the RNG state is known and the time of first connection
can be determined with a 30 min accuracy. If the time is not
known to a sufficient accuracy, it is still possible to execute
an online attack distributed over a longer period of time.

For an unknown RNG state, testing against the Nucleo
cloud would not work, since the server will start to blacklist
all IP addresses generating massive amounts of faulty authen-
ticated messages. If the attacker is able to record a manual
driving session on the local network of the victim, an offline at-
tack on the unencrypted authentication header is possible [19].
The offline attack has to break the hash of the authentica-
tion header, which contains the secret_key, robot_serial,

RNG state Timespan Entropy Avg. # tries Bruteforce

known ±30 min 12 bit 2048 0.000,15 s
±1/2 year 25 bit 16,777,216 1.1 s

unknown ±30 min 26 bit 33,554,432 2.2 s
±1/2 year 39 bit 2.75×1011 5 h

Table 2: Complexity computations for secret_key.

date, and message body (compare Section 2.3). Since all
information except for the secret_key is known, this rep-
resents a valid attack. With the secret_key extraction de-
scribed in Section 4.1.3 an offline attack is possible on arbi-
trary robots with known robot_serial.

Gosney has shown that a setup with 8x Nvidia GTX
1080 Ti achieves 15,187.1 kHashes/s for PBKDF2-HMAC-
SHA256 [8], which is used for the hash of the authentication
header, hence average attack duration for given timestamp
accuracies can be computed and are presented in Table 2. The
time calculations show that the secret_key of a robot can
be easily brute-forced as soon as an Authorization header
with all related data for the offline attack is given.

This new attack allows to remotely control a robot via the
Nucleo API, since knowledge of the secret_key and the
robot_serial is sufficient to forge a valid authentication
header. This is an upgrade to an attack presented in [19],
since for the new attack the robot is not paired with a new
account. Instead the old account connection stays intact and
the attack is thereby very hard to detect.

Since this is found in the NeatoCrypto library, this attack
is valid for the most recent Neato and Vorwerk vacuum robots
as well. With the secret_key being the root of trust in their
cloud environment, this has further security implications.

5.2 Remote Vulnerabilities
In this section the security implications of the findings pre-
sented in Section 4 are discussed.

5.2.1 Robot Backend Vulnerabilities

We revealed several problems in the backend and the common
root of problem is the usage of an identical RSA private
key on all devices. Having different devices using the same
private key defeats the purpose of public key cryptography—a
symmetric cryptography scheme would be sufficient. Since
RSA consumes a lot of computation time, this also allows to
send lots of random Authorization headers to the backend,
which results in an amplified Denial of Service (DoS) attack.

With an attacker being able to send and receive arbitrary
data from both the app and the robot cloud interface, the
server could be exploited as a botnet command and control
server. An attacker could register multiple fake robot vacuums
with arbitrary robot_serials and use them as an interfacing
point for control data. Since knowledge of a robot_serial
is enough to communicate with a fake robot, the app interface
would be used by the botnet’s bots in this scenario. An at-
tacker could also register high amounts of fake robots sending
regular traffic to execute a stealthy Distributed Denial of Ser-
vice (DDoS) attack. This would cause a high message load
on the backend that is almost impossible to be filtered.

5.2.2 Remote Command Execution

An attacker could use the command execution on the robot
to extract sensitive information from the robot like maps and
other sensor readings. This violates the privacy of the victim.
An attacker gains access to the victim’s local network via
the vulnerability. The access can be used to attack further
devices inside the local network which would be protected by
the firewall of the network otherwise. The attacker can also
use the exploit to execute a DoS attack against the robot if
he executes a command which bricks the robot. Last but not
least the exploit could be used to build a botnet consisting of
Neato robots, which can be utilized for DDoS attacks.

5.3 General
We finalize the discussion with general security-related obser-
vations.

Update Process The update process for the older connected
series is not user-friendly. Updating the Neato BotVac Con-
nected requires users to download firmware to a correctly
formatted USB stick which has to be then plugged in with a
special cable. Finally, the update process has to be invoked
manually. We assume most customers will not update their
robots, unless they are provided with a over-the-air (OTA)
update functionality, as it is featured by the most recent mod-
els. Customers could be forced to do updates by locking their
robots, however this might cause angry customer feedback.

Responsible Disclosure Establishing contact with Neato
turned out to be more of an obstacle than expected. After
first contacting them about our findings on March 12, 2018,
customer support repeatedly claimed to have forwarded our
messages to development, which was later disputed. Even
sending a PoC Python script for the cloud-based unauthen-
ticated command execution was ignored. In fact, it was not
until November 27, 2018 when we were finally approached
by Neato core development. Afterwards, the issues were fixed
in a timely fashion and Neato even provided us with the latest
Neato BotVac Connected D7 for further testing.

6 Conclusion

In this paper we presented multiple attacks on the Neato
and Vorwerk ecosystems, which ultimately lead to various
possible security breaches. Amongst them are those to start
and pause the robot, extract a map of the victim’s apartment,
read arbitrary sensor data, leak customer public IP addresses,
and even gain access to the local network of a customer.

On a first glance, Neato did a very good job in securing
their connected vacuum cleaners: secure boot and mutual
authentication between robots and the cloud exceeds what is
done for most IoT products. Their robots are in the upper price

range and the customer receives premium security features in
return. Dissecting their robots was not only challenging, but
also now provides interesting insights in building secure IoT
applications and other large-scale connected scenarios.

However, Neato followed a hard shell, soft interior ap-
proach. Once an attacker is inside the system with access
to all binaries, many security best practices were missing: no
privilege separation, no operating system security features,
no binary obfuscation, and hand-written cryptography. Espe-
cially the cryptography part looks well-done from the outside
and represents solid security without knowledge of the exact
parameters used in the computation. Their implementation
illustrates how scientifically proven strong theoretical security
primitives still fail in practice. The mistakes were present over
multiple years without being noticed by the developers, thus
indicating a need for better books and standards to be guided.

Our analysis shows that cryptography on current devices
is flawed and does not provide sufficient security. Neato will
need to strictly filter invalid requests in the cloud to prevent
attacks, which is not possible for targeted attacks on individual
robots. To maintain security in a targeted attack scenario,
users need to protect their robot’s serial_id by any means:
they should buy robots exclusively from the vendor, not throw
away the original packaging (or shred it), use a separate WiFi,
and prevent physical access to the robot by any third parties.

From a customer perspective, more research on which data
is shared depending on the vacuum cleaner model would be
interesting. Collected and accessible data contains a lot of
information and meta data about the customer’s everyday life.
This includes the location of residence, apartment size and
furniture, number of inhabitants including pets, unencrypted
traffic exchange on the robot’s WiFi, daily scheduling, and
more. This information is sensible enough to be worth all the
protection mechanisms discussed in this paper.

Finally, we want to encourage the use of the knowledge
gathered in this paper by the existing Neato and Vorwerk
communities to build smartphone apps and gateways with
additional features and capabilities.

Acknowledgments

We thank Neato for taking our responsible disclosure serious,
patching their systems as fast as possible, and providing us
with more testing hardware after the first report. Moreover, we
thank Max Maass for co-supervising Fabian’s Master thesis.

This work has been supported by the DFG as part of project
C.1 within the RTG 2050 “Privacy and Trust for Mobile Users”
as well as the German Federal Ministry of Education and Re-
search (BMBF) and the Hessen State Ministry for Higher Edu-
cation, Research and the Arts (HMWK) under the joint grant
for the National Research Center for Applied Cybersecurity.

References

[1] Amazon Web Services, Inc. Amazon Web Services.
https://aws.amazon.com/. Accessed 2019-02-25.

[2] Maggie Astor. Your Roomba May Be Mapping Your
Home, Collecting Data That Could Be Shared. NY
Times, July 2017.

[3] Blackberry QNX. QNX Operating Systems. https:
//blackberry.qnx.com/en. Accessed 2019-03-26.

[4] Blackberry QNX. system() - Execute a system com-
mand. http://www.qnx.com/developers/docs/6.
5.0SP1.update/com.qnx.doc.neutrino_lib_ref/
s/system.html.

[5] P. Jones D. Eastlake. US Secure Hash Algorithm 1
(SHA1). https://tools.ietf.org/html/rfc3174.
Accessed 2019-03-04.

[6] T. Hansen D. Eastlake. US Secure Hash Algorithms
(SHA and HMAC-SHA). https://tools.ietf.org/
html/rfc4634. Accessed 2018-05-20.

[7] Dennis Giese and Daniel Wegemer. Unleash your
Smart-home Devices: Vacuum Cleaning Robot Hacking.
https://media.ccc.de/v/34c3-9147-unleash_
your_smart-home_devices_vacuum_cleaning_
robot_hacking, December 2017.

[8] Jeremi M Gosney. 8x Nvidia GTX 1080 Ti Hashcat
Benchmarks. https://gist.github.com/epixoip/
ace60d09981be09544fdd35005051505. Accessed
2018-05-20.

[9] R. Canetti H. Krawczyk, M. Bellare. HMAC: Keyed-
Hashing for Message Authentication. https://www.
ietf.org/rfc/rfc2104.txt, 1997.

[10] Jason Kielpinski. Security in a Vacuum: Hack-
ing the Neato Botvac Connected, Part One.
https://www.nccgroup.trust/us/about-us/
newsroom-and-events/blog/2018/march/secu
rity-in-a-vacuum-hacking-the-neato-botvac-
connected-part-1/, March 2018.

[11] Jason Kielpinski. Security in a Vacuum: Hack-
ing the Neato Botvac Connected, Part Two.

https://www.nccgroup.trust/uk/about-us/
newsroom-and-events/blogs/2018/april/secu
rity-in-a-vacuum-hacking-the-neato-botvac-
connected-part-2/, April 2018.

[12] ARM Ltd and ARM Germany GmbH. As-
sembler User Guide: General-purpose registers.
http://www.keil.com/support/man/docs/armasm
/armasm_dom1359731135351.htm.

[13] ARM Ltd and ARM Germany GmbH. As-
sembler User Guide: Program Counter. http:
//www.keil.com/support/man/docs/armasm/arm
asm_dom1359731138020.htm.

[14] Amrit Mundra and Hong Guan. Secure Boot on Embed-
ded Sitara Processors. http://www.ti.com/lit/wp/
spry305a/spry305a.pdf, September 2018.

[15] Neato. Programmer’s Manual v3.1. https:
//github.com/jeroenterheerdt/neato-serial
/blob/master/XV-ProgrammersManual-3_1.pdf,
2015.

[16] Neato Robotics. Botvac Connected. https:
//www.neatorobotics.com/robot-vacuum
/botvac-connected-series/botvac-connected/.
Accessed 2018-05-20.

[17] Neato Robotics. Neato Developer Network. https://
developers.neatorobotics.com/. Accessed 2018-
05-20.

[18] Salesforce.com. Heroku Cloud Application Platform.
https://www.heroku.com/. Accessed 2019-02-25.

[19] Fabian Ullrich. Analysing and Evaluating Interface,
Communication, and Web Security in Productive IoT
Ecosystems. Master thesis, TU Darmstadt, May 2018.
Supervised by Jiska Classen and Max Maass.

[20] Vorwerk. Annual Report 2017. https:
//annual-reports.vorwerk.com/fileadmin/
pdf/Vorwerk-Annual-Report-2017.pdf, 2018.

[21] J. Wetzels and A. Abbasi. Dissecting QNX.
https://recon.cx/2018/brussels/resources/
slides/RECON-BRX-2018-Dissecting-QNX.pdf,
2018.

