
Taking a Look into Execute-Only Memory

Marc Schink
Fraunhofer Institute AISEC

marc.schink@aisec.fraunhofer.de

Johannes Obermaier
Fraunhofer Institute AISEC

johannes.obermaier@aisec.fraunhofer.de

Abstract
The development process of microcontroller firmware often
involves multiple parties. In such a scenario, the Intellectual
Property (IP) is not protected against adversarial developers
which have unrestricted access to the firmware binary. For
this reason, microcontroller manufacturers integrate eXecute-
Only Memory (XOM) which shall prevent an unauthorized
read-out of third-party firmware during development. The
concept allows execution of code but disallows any read ac-
cess to it. Our security analysis shows that this concept is
insufficient for firmware protection due to the use of shared
resources such as the CPU and SRAM. We present a method
to infer instructions from observed state transitions in shared
hardware. We demonstrate our method via an automatic re-
covery of protected firmware. We successfully performed
experiments on devices from different manufacturers to con-
firm the practicability of our attack. Our research also reveals
implementation flaws in some of the analyzed devices which
enables an adversary to bypass the read-out restrictions. Alto-
gether, the paper shows the insufficient security of the XOM
concept as well as several implementations.

1 Introduction

Embedded systems and microcontrollers in particular became
popular for a number of application fields like robotics, trans-
portation and medicine. Concepts such as the Internet of
Things (IoT) even increase their pervasiveness in more areas
in industry as well as in consumer products. As a consequence,
such devices comprise increasingly complex software, mak-
ing the contained Intellectual Property (IP) more valuable to
adversaries. Common protection techniques prevent firmware
read-outs by disabling the debug interface of a microcontroller.
Such mechanisms are applicable against outside attackers that
are not involved in the firmware development process.

However, complex software is often not developed by a
single company but built upon software provided by other
companies, so called third-party software. In a multi-party

development process, there is no protection against adversar-
ial developers and they have unrestricted access to the binary
code. Therefore, every developer is able to reverse engineer
or copy the software, and thereby pose a threat to the con-
tained IP. Since developers require debug interface access
and privileged code execution on a device, common firmware
protection mechanisms that disable the debug features are not
applicable. For that reason, a firmware protection technique
against adversarial developers in multi-party development
scenarios is required. In such a scenario, the firmware is de-
ployed and secured on the device before handing it over to the
next developer. As a consequence, developers need physical
access to the device such that their firmware can be devel-
oped and deployed in a trusted environment. In summary, a
security concept for multi-party development needs to protect
firmware against an adversarial developer with the follow-
ing capabilities: physical access to the microcontroller, its
integrated debug interface as well as arbitrary and privileged
code execution. Hardware modification capabilities are not
considered because they may be detectable by customers or
other involved parties of the development process.

An approach that enables firmware protection for embed-
ded devices and microcontrollers in multi-party development
environments has been described by ARM [24]. This ap-
proach is based on eXecute-Only Memory (XOM) which
allows solely the execution of code but prevents any read or
write access to it. This feature is present in various micro-
controllers from different manufacturers. Also, it has gained
attention through support in toolchains and the embedded sys-
tems community [5, 17]. While the article by ARM notes that
adversaries might be able to partially guess protected code
by observing changes in CPU registers an SRAM content,
the article also states that such an attack requires significant
effort. However, no details nor evidence from real embedded
systems are provided.

For this reason, this paper presents the following contribu-
tions:

• An analysis of XOM as protection technique against
unauthorized code read-out.



• An evaluation and discovery of flaws in the XOM con-
cept of several ARM Cortex-M based microcontrollers.

• A general procedure to automatically recover firmware
protected by XOM.

• A practical evaluation of code recovery attacks on de-
vices from different manufacturers.

• The discovery and exploitation of further implementa-
tion flaws that allow reading XOM protected code.

1.1 Related Work

Code protection mechanisms have been investigated by sev-
eral researchers and conceptual as well as implementation
flaws were discovered. Obermaier and Tatschner presented
three (non-)invasive attacks against the firmware read-out
protection of STM32F0 devices [11]. Goodspeed and Fran-
cillon demonstrated an attack which leverages the bootloader
implementation of MSP430 microcontrollers to dump the
protected flash memory content [4]. They describe how to re-
cover specific instructions from its unknown firmware based
on whether the device performs a reset after a code injec-
tion attack. The found instructions are then used as gadgets
for a Return-Oriented Programming (ROP) attack to circum-
vent the read-out protection. Bittau et al. describe how to
recover specific instructions to mount a ROP attack on un-
known code [3]. A similar attack which targets the Intel Soft-
ware Guard Extensions (SGX) was presented by Lee et al. [6].
The software in the secure enclave can be executed but the
binary is unknown to the attacker, similar to XOM. The au-
thors use an exception signal to guess instructions inside the
enclave. Again, only very specific instructions are recovered
for a subsequent ROP attack.

These results are only partially applicable to XOM pro-
tected memory. Despite the situation of a read-out protected
memory is similar, entirely recovering protected code has
never been shown to be feasible.

2 Execute-Only Memory

In this section, we start with a description of the general idea
behind eXecute-Only Memory (XOM) as firmware protection
technique and its application for multi-party development
scenarios. Subsequently, we explain the conceptual weakness
that arises from it, and how this can be exploited to circumvent
the protection.

2.1 General Concept

The fundamental idea behind XOM-based software protection
mechanisms is to ensure confidentiality and integrity by pre-
venting read-outs and manipulations of the respective code,
and thereby protect the contained IP.

Third-party
library

Execute-tonly
memory

Execute-only
memory

Normal
memory

Function
call

Function
call

Third-party
library

End user
application

Figure 1: Flash memory with end user application and two
third-party firmware components marked as execute-only.

Some approaches exist to integrate this concept into desk-
top and server systems [22,23]. Since an adversary with physi-
cal access can easily probe and read-out their main memory or
data storage, the CPU is the only trusted hardware component.
The encrypted code is stored in memory and is decrypted and
executed on-demand within the CPU.

Small embedded systems and microcontrollers in partic-
ular are usually based on a single chip incorporating CPU
and memory. Thus, probing and data read-out of the memory
is impossible without invasive hardware attacks. Since the
firmware can only be accessed by components within the de-
vice, such as the processor, XOM is implemented by partially
restricting modifications and read-outs of the flash memory
while allowing instruction fetches. Encryption of the code
is not necessary. This enables protection against unintended
or malicious code read-outs, for example, data leakage bugs
due to missing bound checks. Also, it provides protection
against malicious or accidental firmware modifications which
increases the safety of a system.

In a multi-party firmware development scenario, XOM al-
lows developers to deploy their software on a microcontroller
and subsequently mark it as execute-only. After that, the mi-
crocontroller including the deployed software can be utilized
by other developers but the software is protected against ma-
licious read-outs. Figure 1 illustrates an example use case
where the flash memory contains two libraries together with
an end user application. The libraries are deployed on the
device by third-party software providers. Since both libraries
are placed inside the XOM, they can be utilized but are pro-
tected against read-outs and modifications by the developer
of the end user application.

2.2 Conceptual Weakness

The combination of XOM as a firmware protection technique
and the extensive capabilities of an adversarial developer
results in a conceptual weakness.



Instructiont execution

2

mov r0, #23
nop

? ? ?
? ? ?
? ? ?

Instruction

Input state

Output state

1

3

0x0000 0802
0x0000 0804
0x0000 0806
0x0000 0808
0x0000 080a

Memory address

Figure 2: Execution flow to gather system state changes.

In contrast to a Trusted Execution Environment (TEE) that
provides isolated code execution, XOM provides only sepa-
rated flash memory regions but shares all other resources, such
as CPU and SRAM. Even though the read-out restrictions
of XOM prevent direct access to the firmware, the execution
on shared resources leaks information about the protected
code. Once an instruction is fetched, whether execute-only
or regular code, the same resources are used for execution,
and thereby the protection vanishes. Due to its extensive ca-
pabilities, an adversarial developer is able to execute code
in XOM and observe its effect on these resources. The ad-
versary exploits the CPU as so called instruction oracle to
infer information about the protected instructions. In the fol-
lowing, we call a system state the accessible part of these
shared resources. A system state includes, but is not limited
to, the CPU registers as well as the SRAM content. Based on
the changes in the system state, an adversary is able to infer
information about executed instructions. This is what we call
instruction recovery.

In Figure 2, an exemplary illustration of an XOM disas-
sembly is depicted, unknown instructions are represented by
question marks. The figure shows the three necessary steps
to gather system state changes from an unknown instruction
to be recovered. We denote such an instruction as target in-
struction. In this example, it is located at 0x0000 0806. The
system states before and after executing a target instruction
are referred to as input and output system state, respectively.
The steps to gather system state changes caused by the target
instruction are the following:

1. Setup of the system input state for the target instruction.

2. Execution of the target instruction inside the XOM.

3. Read-out of the modified system state.

The modification (1) and read-out (3) of the system state
require only the common capabilities of a developer. In or-
der to obtain system state changes caused only by the target
instruction (2), it must be executed individually. An adver-
sary can achieve this by utilizing the microcontroller’s debug
capabilities and its single-stepping feature.

A more general way to gather system state changes for in-
struction recovery is possible by utilizing an interrupt to exe-
cute only the target instruction. For example, a timed interrupt

can be used to limit code execution to the target instruction
only. Once the CPU reaches the interrupt handler, its state
can be obtained. Even though the exception entry modifies
the Program Counter (pc) and other registers, the state after
the execution of the target instruction can be restored from
the stack. Hence, we call this approach interrupt-driven in-
struction recovery. Its advantage is that it does not require any
debug capabilities but only privileged code execution on the
target device.

2.3 Instruction Recovery
Using either the single-stepping or interrupt-driven approach,
we are able to obtain system state changes from a target in-
struction, and thus everything we need for instruction recovery.
Based on the setup depicted in Figure 2, we describe the basic
idea of the recovery process with a single set of input and
output state, as listed in Table 1. For simplicity, the system
states only comprise two registers. Considering the difference
of the pc between input and output state, we deduce that the
target instructions must be 16 bit wide. The modification of
r0 does not clearly identify the target instruction. It may result
from an add r0, #0x1f, but also other instructions such as
ldr and mov are possible. However, we can already exclude
branch instructions because they never modify r0. In order to
fully recover the target instruction, additional input states and
their corresponding output states are necessary.

Table 1: Exemplary input and output system state for an un-
known target instruction.

Register Input state Output state

r0 0x23 0x42

pc 0x0000 0806 0x0000 0808

Instruction recovery requires observable system state
changes which are not available under some conditions. An
article about XOM already lists various situations for which
no change in system state is observable [24]:

1. Store instruction operating on a write-only location

2. Data processing instruction producing the same result as
the previous destination register value

3. Compare or test instruction with unchanged result flags

4. Conditional branch that is not taken

5. Execution of a memory barrier or hint instruction

However, since ARM Cortex-M devices comprise a load-
store architecture, every data processing and memory instruc-
tion operates on the core registers of the CPU, and thus can
be manipulated by an adversarial developer. As a result, the



ambiguities (1) to (4) can be resolved by choosing appropriate
input system states. The input system state for a particular
instruction is chosen such that it propagates its unique char-
acteristics into the system output state, and thereby can be
distinguished from other instructions. A single instruction
may be executed multiple times with different input states
in order to be fully identified. Some instructions (5) do not
necessarily depend on an accessible part of the system state
nor alter it in an observable manner. Nonetheless, including
information, such as a side-channel for the execution time of
an instruction, might be an additional feature to make them
recoverable.

3 Device Analysis

In the following, we analyze XOM implementations for multi-
party firmware development from different manufacturers. We
focus on how to obtain system state changes that leak infor-
mation about protected instructions. All examined devices are
listed in Table 6 in Appendix A.1.

3.1 STM32 Devices
A prominent XOM implementation is called Proprietary Code
Read-Out Protection (PCROP) and was developed by STMi-
croelectronics. Various STM32 microcontroller families com-
prise this feature, ranging from the low-power STM32L0
series to the high-performance STM32H7 series [14, 15].

The STM32Lx and STM32F4 devices do not restrict any
debug capabilities such as single-stepping when executing
protected code. Changes in the system state, such as CPU
registers and SRAM content, are observable. Hence, an adver-
sary can gather system state changes of protected instructions
and can base code recovery attacks thereon.

In contrast, the STM32F7 and STM32H7 devices incor-
porate the core debug functionality into the XOM security
concept. The CPU cannot be halted via the debugger while ex-
ecuting protected code. Attempts to perform single-stepping
inside the XOM are ignored. However, the CPU can be halted
whenever code outside the secured memory is executed. For
example, when the processor executes a function or an in-
terrupt handler implemented outside the secure code region.
Interrupts will still be handled and allow therefore to halt the
CPU whenever desired. For that reason, target instructions
inside the XOM can be executed with arbitrary system states
and the corresponding output states are observable with the
interrupt-driven recovery approach.

3.2 Tiva C and MSP432 Devices
Texas Instruments implements XOM as firmware protection
technique in various device families [18, 19, 21]. The Tiva C
and MSP432E4 series do not restrict debug capabilities dur-
ing execution of protected code, and thus single-stepping

is possible. On the contrary, the MSP432P4 series restricts
the debug features and prevents to halt the CPU while ex-
ecuting protected code. It disconnects the debug interface
on single-stepping attempts inside a protected code region.
Also, SRAM access during execution of protected code is
blocked to avoid data read-outs via the debug interface [20].
Nonetheless, whether during single-stepping on Tiva C and
MSP432E4 devices or once the CPU returns from execution
of secured memory on MSP432P4 microcontrollers, system
state changes caused by protected instructions are observable
to an adversary.

A unique feature of the MSP432P4 series allows the user to
perform load operations inside the secured memory. Thereby,
data placed within the XOM is accessible by the protected
code. This feature can be enabled during initial configuration
and additionally needs to be unlocked by the protected code
itself. Load operations from secured memory are disabled by
default and are not recommended when utilizing XOM for IP
protection according to the data sheet [19].

3.3 Kinetis Devices

The Kinetis microcontroller series by NXP Semiconductors
integrates a XOM-based firmware protection feature in vari-
ous sub-families [8–10].

The corresponding application note for these devices indi-
cates potential security issues when debug access is enabled
and consequently limits the use-case of the firmware pro-
tection. The same document proposes to disable the debug
interface as mitigation against potential attacks [7]. Neverthe-
less, to the authors’ knowledge, there is no publicly available
security analysis of this firmware protection technique. For
that reason, the affected devices are included in this research.
Similar to most of the analyzed devices, single-stepping in-
side the XOM is possible to obtain system state changes and
with that also code recovery attacks.

This microcontroller family allows pc-relative load instruc-
tions inside protected code regions. This enables protected
code to access constant values, so called literal pools, located
in XOM. These instructions can always be used and do not
need to be explicitly enabled [7].

4 Code Recovery Attack

In the following section, we describe in more detail how the
instruction recovery process works and how the necessary
input states are designed. Based on that, we present a setup to
recover protected code and evaluate it on two devices from dif-
ferent manufacturers. Subsequently, a proof of concept setup
for interrupt-driven code recovery is presented. We finish
this section by elaborating the limitations for code recovery
attacks and discuss possible countermeasures.



ARM Cortex-M
processor

Instruction
solver

Input state
generator

Output
state

Input
state

Possible
instruction(s)

Figure 3: Basic components and flow of the instruction recov-
ery process.

4.1 Recovery Process
In Section 2.3, we explained how to recover instructions from
a high level perspective. In what follows, we describe a pro-
cess that allows instruction recovery in an automated fashion.

The three steps outlined below are executed as long as a tar-
get instruction is not fully determined and further input states
are available. The flow diagram of this process is illustrated
in Figure 3 and is made up of the following steps:

1. Input state generation: The input state generator cre-
ates system states based on all possible candidates for
the target instruction. A well chosen input state for the
initial iteration helps reducing the number of possible
candidates early in the recovery process, thereby decreas-
ing the required iterations. For the second and following
iterations, the input state generator takes the result of
the previous iterations into account to generate the next
system input state.

2. Instruction execution: After a suitable system state is
generated, the CPU executes the, still unknown, target
instruction and produces the system output state. In this
step, the CPU is exploited as instruction oracle that pro-
vides information about the target instruction.

3. Instruction solving: During the final step, the instruc-
tion solver rules out instructions based on the input and
output state of the system. The solving procedure is di-
vided into the following steps:

• Pre-check: This step is used to filter out possible
instructions by simple rules based on the input and
output state. The goal is to cancel out instructions
in an early stage before performing the more com-
plex and time consuming enumeration and verifi-
cation steps. For example, only some instructions
are able to update the processor status flags, ruling
out the others.

• Enumeration: This step is performed only once
for a target instruction and enumerates all possible

Immediate
offset

Register offset

i5 i6

i29 i30

i7

i31

a5 a6 a7

00000x2000

00600x2000

00800x2000

Push

Pop

#0 #0 #0

a0 a1 a2

i0 i1 i2

i24 i25 i26

#0 #0 #0

#0 #0 #0 #0 #0 #0

00a00x2000

00c00x2000

...

031

ID

Figure 4: SRAM content of input state for memory instruc-
tions.

instructions based on the initial input and output
state.

• Verification: During this step, each possible in-
struction is evaluated on the input state and the
result is checked against the observed output state
of the target instruction. Instructions leading to in-
correct results are discarded and will no longer be
considered.

After this process, there may be multiple possibilities for a
target instruction because some properties cannot be inferred
from the system state. We elaborate on this and other limita-
tions of the presented recovery process later in Section 4.5.

4.2 Design of System Input States
In what follows, we describe how input states are designed in
order to identify instructions with their individual properties.

The input states are tailored for the ARMv6-M architecture
and its instruction set. We chose this architecture because it
is the common basis for all the examined devices. We exem-
plarily cover several prevalent instruction groups and describe
how to build input states to recover them.

4.2.1 Regular Load and Store Instructions

In general, a memory instruction comprises a destination reg-
ister rt, an address base register rn and either an immediate
offset value imm or an offset register rm. For example, ldr
rt, [rn, #imm] denotes a load instruction with immedi-
ate offset and ldr rt, [rn, rm] with register offset. The
ARMv6 architecture specifies three base register types: the
lower registers r0 to r7, the Stack Pointer (sp) and the Pro-
gram Counter (pc). In this section, we cover only the first
one. The other two types will be described subsequently. The
architecture supports memory operations with different prop-
erties like element sizes and signedness. In the following, we
explain how to recover 32 bit memory instructions.

For code recovery, the SRAM content and the register val-
ues are chosen such that executing a memory instruction will



consecutively reveal the base and destination register as well
as offset parameters. Figure 4 illustrates the SRAM layout
and the corresponding addresses. The first part of the memory
is dedicated to instructions with immediate offset. It com-
prises 32 words, denoted as i0 to i31, corresponding to each
possible immediate offset value. Similarly, the second part
targets instructions with register offset and therefore contains
eight words, denoted as a0 to a7. Each word corresponds to a
possible offset register r0 to r7.

The SRAM content is chosen such that each word contains
a 32 bit unique identifier (ID), as depicted in the upper re-
gion of Figure 4. When a load instruction is being executed,
a memory word appears in a register, thereby revealing its
destination register as well as the source address and thereby
its underlying offset. All register values are chosen to dif-
fer from the memory words, thus, loading a memory word
will always modify the destination register’s value. The same
applies when storing a register value to memory.

Table 2: Register assignment of input state for memory in-
structions.

Register Value Register Value

r0 0x80 r5 0x2000 0000

r1 0x2000 0000 r6 0x8c

r2 0x84 r7 0x2000 0000

r3 0x2000 0000 sp 0x2000 00c0

r4 0x88

However, no register assignment exists that can guarantee
that solely valid SRAM addresses are accessed. The reason
is that we do not know the base register of the memory in-
structions in advance and might thereby access an invalid
address which causes a hard fault. This being the case, we use
a straight-forward assignment for r0 to r7 as listed in Table 2.
Half of the registers contain the SRAM offset address, while
the others contain offset values pointing to the region dedi-
cated to instructions with register offset. This has shown to be
an adequate trade-off between covering immediate/register
offset instructions and avoiding hard faults.

The recovery process starts with the aforementioned input
state and is illustrated in the following example. By executing
the unknown instruction, we observe that the memory value
of i5 was written to r2. This implies that a load instruction
with r2 as destination register was executed. The memory
word i5 is located at address 0x2000 0014. We infer the base
address as 0x2000 0000 and an immediate offset of 20 bytes.
There are no other instructions that are able to load this mem-
ory word for the given input state. Since the base address
is present in multiple registers, the base register rn is either
r1, r3, r5 or r7. At this point, we partially recovered the in-
struction as ldr r2, [rn, #20]. In the next iteration of the

recovery process, we individually increment the values of the
possible base registers by 0, 4, 8 and 12 such that they point
to different memory addresses. After executing the instruction
again, we observe that the value of i7 was written to r2. This
memory word is located at address 0x2000 001c. Given the
immediate offset of 20 bytes, we can infer r5 as the base
register with the address 0x2000 0008 since 0x2000 001c =
0x2000 0008 + 20. Finally, the memory instruction is fully
recovered as ldr r2, [r5, #20].

Store instructions are handled in a similar manner. The
SRAM is checked for any changes caused by store instruc-
tions. The address of the stored word enables us to infer the
addressing mode including the base register and offset. The
value written to the memory reveals the source register of the
store instruction.

Depending on the target memory instruction, multiple itera-
tions are required to resolve ambiguities. This is automatically
handled by our framework which selects the next input states
accordingly. Some instructions might even lead to hard fault
exceptions due to accessing invalid memory addresses. For
example, when r1 and r3 are used as base and offset register,
respectively. Nevertheless, any information, including the oc-
currence of hard faults, facilitates narrowing down the set of
possible memory instructions.

4.2.2 Push and Pop Instructions

These memory instructions use the sp as base register and
have a set of registers to load or store 32 bit values. Because
they have a fixed base register, we only need to distinguish
between both instructions and recover their register set. For
example, the register set of push {r0, r4} contains r0 and
r4. A register set can contain up to eight registers from any
of the registers r0 to r7 and either the Link Register (lr) or
pc for a push and pop instruction, respectively.

Table 3: Register assignment of input state for push and pop
instructions.

Register Value Register Value

r0 0xf0 r7 0xf7

... ... sp 0x2000 00c0

r6 0xf6 lr 0xf8

Whether an instruction is a push or pop is distinguished
by the modification of the sp, it decreases for a push and
increases for a pop instruction. The remaining property that
needs to be recovered is the register set. For this, we use the
lower half of the SRAM as depicted in Figure 4. The memory
layout is split into two parts for push and pop, respectively.
The memory words in this region do not require a special
content but must be distinguishable from the register values.



This ensures that an instruction always causes observable
changes in the registers or the memory content. For this input
state, we use a zero value for all memory words. The regis-
ter assignment for the recovery process is listed in Table 3.
It ensures that both instructions operate on their designated
memory region. In order to identify the register set of a push
instruction, we use unique register values for all possible reg-
isters r0 to r7 and lr. Once a push instruction is executed,
the unique register values are written to the SRAM and iden-
tify the corresponding registers. For example, a push {r4,
r7}, writes the register values 0xf4 and 0xf7 into the first
two words of the dedicated memory region. The register set
of a pop instruction can clearly be identified by the modified
register values. For example, a pop {r0, r7} loads a zero
value into the registers r0 and r7. The same holds for the
special case where the pc is included in register set.

4.2.3 PC-Relative Load Instructions

These instructions are similar to regular load instructions with
immediate offset but use the pc as base register. They are
used to load constant values placed in code memory. Due to
the read-out restriction of XOM, literal data cannot be located
within the secured memory region, and thus the immediate
value relative to the pc cannot be determined. For that reason,
the recovery process represents pc-relative loads by the literal
data instead of the immediate offset. This input state is also
necessary for devices that do not support memory loads from
protected memory. The reason is that pc-relative loads inside
the XOM may access unprotected memory regions nearby.

The input state for regular memory instructions already
narrows the target instruction down to the group of load in-
structions. The only ambiguity that may arise is that literal
data is equal to one of the SRAM words in Figure 4. In that
case, a pc-relative and regular load cannot be distinguished
from each other. We resolve this ambiguity with a special
memory address assigned to all possible base registers of reg-
ular load instructions. The address is chosen such that it is
not mapped in the system address space and any read causes
a fault. For example, a possible address is 0x8000 0000. If
the target instruction is a regular load, a fault occurs because
every base register contains an illegal memory address. Oth-
erwise, the literal data is loaded because pc-relative loads are
independent of the assigned base registers. This way, we are
able to recover pc-relative load instructions.

4.2.4 Branch Instructions

There are multiple instructions that can manipulate the pc and
thereby perform a branch. We start with a description of how
to recover branches that use a register to specify the target
instruction address: blx, bx, mov and pop. In order to identify
this register, we assign unique values to all possible registers.
Table 4 shows the corresponding register assignment. The

Least Significant Bit (LSB) of every register value is cleared
to ensure that blx, bx and pop instructions change the Thumb
state, making them distinguishable from a mov instruction.
Since the pop instruction is already covered by the procedure
to recover push and pop instructions, we use the same SRAM
and sp configuration as described before. The blx, bx and
pop instructions are clearly identifiable by how they modify
the lr and sp.

Table 4: Register assignment of input state for branch instruc-
tions.

Register Value Register Value

r0 0x2000 00e0 r7 0x2000 0060

... ... ... ...

r6 0x2000 0050 lr 0x2000 00d0

The other group of branch instructions use an immedi-
ate value that encodes the branch address as difference be-
tween the current and target instruction address, hence called
pc-relative branches. The immediate value is recovered by
calculating the difference of the pc between the output and
input state. To establish a clear distinction between the for-
mer group of branch instructions, we use the SRAM address
0x2000 0000 as base value for the register assignment, as
shown in Table 4. The distinction arises from the fact that
XOM-protected code is executed in a different address space,
usually at its beginning. This way, pc-relative branches with
their limited range cannot intersect with the target address of
the former branch instruction group. As a consequence, we
only need to distinguish between the two pc-relative branches
b and bl. Since only the latter modifies the lr, both instruc-
tions can be unambiguously recovered. The cleared LSB of
the lr ensures that a modification is always observable.

Conditional branches, such as beq, are special b instruc-
tions and require additional input states to be recovered. We
use multiple input states that modify the corresponding flags
in the Application Program Status Register (APSR) to enforce
all possible branching conditions. With the help of the instruc-
tion timing, we are able to determine whether a branch was
taken or not taken and thereby recover the branch condition.
We are able to recover every branch instruction and, except for
conditional ones, need only a single input state and iteration
in the recovery process.

4.3 Code Recovery via Single-Stepping
In the previous sections, we showed how to gather system
state changes from a device, how to automatically recover
instructions and how the corresponding input states are de-
signed. With that, we have all the building blocks necessary
for a code recovery attack on a microcontroller.



Target device

JTAG / SWD

Debug
probe

Host device

USB
OpenOCD

Code recovery
framework

Tcl RPC

Recovered
assembly code

Figure 5: Setup for code recovery utilizing the single-stepping
feature of the target device.

We chose the Kinetis KV11 and STM32L0 microcon-
trollers as target because they comprise the ARMv6-M archi-
tecture which our system input states are designed for. Also,
they allow single-stepping inside the XOM which allows us to
gather system state changes by utilizing the integrated debug
features. We employ Python to implement a code recovery
framework based on the process explained in Section 4.1 and
input states similar to those described in Section 4.2.

Figure 5 depicts the code recovery setup with all its compo-
nents and their interconnections. We use the integrated debug
probes of the development boards to establish a connection
between the host device, that runs the code recovery frame-
work, and the target device. On the host device, Open On-Chip
Debugger (OpenOCD) is used to interface the debug probes.
The code recovery framework uses OpenOCD to orchestrate
the recovery process.

Table 5: Evaluation of code recovery via single-stepping on
Kinetis KV11 and STM32L0 microcontrollers.

Target device Flash memory Instruction
recovery time

Flash
recovery time

Kinetis KV11 128 KiB 2.33 s ∼ 42 h

STM32L0 192 KiB 1.64 s ∼ 45 h

The code coverage and the recovery speed are the key indi-
cators whether the presented attack is practicable and thereby
poses a threat to firmware protected by XOM. In order to
determine the recovery speed, we used the filter function
arm_conv_partial_opt_q15() of the CMSIS-DSP library
as benchmark. Due to its broad coverage of the ARMv6-M
instruction set, we chose this filter in favor of others, including
one that is used in an example scenario [12] for the PCROP.
Table 5 shows the results of the performance evaluation for
both microcontrollers. On average, it takes 2.33 s and 1.64 s
to recover an instruction from a Kinetis KV11 and STM32L0,
respectively. The variation may be due to the different target

devices or debug probes. The driver implementation of the
debug probes in OpenOCD may also have an influence. How-
ever, we did no further investigation on this topic. Given the
flash memory size of both microcontrollers, we estimated the
time it takes to recovery the whole code. For this we assume
the worst-case where the entire flash memory is protected and
only 16 bit wide instructions are used. As a result, the entire
flash memory can be recovered in less than two days on both
devices. We consider these results as a reasonable amount of
time for an adversary to perform code recovery attacks in a
multi-party development scenario. In reality, an attack will
even succeed much faster as only a part of the flash memory
is usually marked as execute-only. In terms of code coverage,
we are able to fully recover the protected function with a few
limitations described in Section 4.5

In summary, we are able to recover the code from secured
memory within a reasonable time, thus demonstrating the
practicality of code recovery attacks against XOM-protected
firmware and its contained IP.

4.4 Interrupt-Driven Code Recovery

The previously described attack uses the single-stepping
feature of the debug interface. Since the STM32F/H7 and
MSP432P4 devices prevent this with a more advanced secu-
rity concept, the previous approach is not applicable to obtain
system state changes.

We use the interrupt-driven code recovery approach as ex-
plained in Section 2.3 to circumvent this security concept.
It needs malicious code on the target device to apply and
read-out system states as well as execute the target instruc-
tions. This code could be injected and executed on the target
device via a vulnerability or a regular firmware update mech-
anisms. We implemented a proof of concept that abuses the
SysTick timer to generate interrupts after the target instruc-
tion is executed. The accuracy is achieved by clocking the
timer with the core clock frequency. Therewith, we are able to
obtain the system state changes caused by the target instruc-
tion. The malicious code is executed in SRAM and requires
no modification of the flash memory. We use UART as in-
terface between the host and the target device which allows
us to mount an attack even if the debug interface is disabled.
The setup is depicted in Figure 6. Since we are able to ob-
tain system state changes of protected instructions, a similar
procedure as described before can be applied to carry out a
code recovery attack. We modified the recovery framework
for a proof of concept and evaluated this approach in a semi-
automatic fashion for different groups of instructions on the
STM32F/H7 and MSP432P4. The limitations of this approach
are described in Section 4.5.

This setup has also been successfully tested on devices
that do not restrict single-stepping inside the XOM, such as
the Kinetis KV11 device family. This enables code recovery
attacks even on devices with a disabled debug interface.



Host device

UART Code recovery
framework

Target device Recovered
assembly code

Figure 6: Setup for code recovery utilizing the interrupt-driven
approach.

4.5 Limitations
Instruction recovery based on observing the results of differ-
ent inputs has the fundamental limitation that some instruc-
tions cannot be identified unambiguously because they are
identical from an algorithmic perspective.

This applies to instructions with commutative properties.
For example, the instructions add r0, r1, r2 and add r0,
r2, r1 are equal and indistinguishable. Moreover, some in-
structions can be represented by different binary encodings
that are equal from an algorithmic point of view. This limita-
tion is negligible as none of these affect the correct functional-
ity of the extracted code. We counter these ambiguities in the
recovery framework by a post-processing step which chooses
the resulting instruction based on recommendations of the
architecture specification [2] and heuristic rules. However,
some instructions pose a limitation to the recovery process.
Nevertheless, they are comparatively rare and are needed only
for special purposes. Table 7 in Appendix A.2 lists the instruc-
tion groups of the ARMv6-M architecture and to what extent
they can be recovered.

The interrupt-driven code recovery approach that we use
to overcome the disabled single-stepping feature introduces
further limitations. At first, the search space increases because
the expiration value of the SysTick timer needs to be adapted
to the execution time of the unknown instruction. It may
be necessary to execute the unknown instruction multiple
times with increasing timer values until the instruction is
executed. Apart from that, the execution of only a single
instruction cannot be guaranteed on the STM32F/H7 series.
Multiple instructions may be folded and executed during a
single step which further increases the search space. Finally,
instructions that influence the interrupt behavior, such as cps,
are problematic for this approach since it uses an interrupt to
obtain the output system state. Special care must be taken for
these instructions such that the protected code is not executed
in its entirety if the interrupt is not triggered. Altogether,
the limitations are comparatively small and do not prevent
extraction of IP.

4.6 Mitigation
Since the discovered issues are founded within the devices’
immutable hardware, there exists no fix but only mitigations.

Software based countermeasures are mostly ineffective since
adversaries can command the control flow. A debug probe
as well as malicious code can both take over full system con-
trol, thus, there is no possibility to detect or prevent an attack
from within the protected code because every instruction is
executed in isolation. As a consequence, there are no counter-
measures except disabling the debug interface and restricting
any execution of privileged code on the device. However, this
prevents firmware development in multi-party environments,
thereby nullifying the advantage of XOM.

From a hardware development point of view, an appropriate
countermeasure against the presented attack would be a TEE,
such as ARM TrustZone, that executes protected firmware in
a separate execution environment.

5 Exploiting Implementation Flaws

Besides the conceptual weakness of the evaluated XOM-
based protection mechanisms, our research uncovered flaws
in their hardware implementation. The missing isolation be-
tween protected and unprotected code allows adversaries to
exploit these vulnerabilities and bypass the read-out restric-
tions. In this section, we describe our findings and how they
can be developed into a vulnerability. The results are listed in
Table 6 in Appendix A.1 as read-out vulnerabilities.

5.1 STM32F7 Devices
The additional and dedicated Instruction Tightly-Coupled
Memory (ITCM) bus between flash module and processor
is a unique feature of the STM32F7 microcontroller. The
flash module is accessible via two different address ranges
starting from 0x0800 0000 and 0x0020 0000 for the AMBA
High-performance Bus (AHB) and the ITCM bus, respec-
tively [1,13,15,16]. An analysis of this additional bus revealed
that data transfers from the flash memory are blocked, with a
single exception: data transfers initiated by the AHB Access
Port (AHB-AP) are not blocked correctly. As a consequence,
the protected code on these devices can be read-out via the
debug interface without any restrictions, thereby circumvent-
ing the security feature. We assume that every access via the
AHB-AP through the ITCM bus is erroneously executed as
an instruction fetch instead of a data transfer which is why
reads are not filtered correctly.

5.2 Kinetis Devices
The Kinetis microcontrollers support pc-relative loads inside
the XOM [7]. We found out that not only pc-relative but all
load instructions inside a secured memory region can read
from it. This is of particular importance because it poses a
threat to the confidentiality of the contained code: regular load
instructions inside the XOM can be exploited to circumvent
its read-out restrictions.



Since input and output state are accessible to an attacker,
regular load instructions can be executed with an arbitrary
base register value pointing to the secured memory to read the
code and expose it to the output state. A gadget is a sequence
of instructions inside the secured memory suitable to extract
its content. The steps are the following:

1. Setup of the system state such that the gadget is executed
and reads from the protected memory.

2. The gadget is executed and loads the protected memory
into its destination register.

3. A deliberate interrupt takes place to prevent execution of
further instructions. This ensures that destination register
value is not altered by subsequent instructions.

4. The protected content in the destination register is ex-
posed to the system state and accessible to an adversary.

A gadget for Kinetis devices with ARM Cortex-M0+ pro-
cessor consists of a single regular load instruction. Microcon-
trollers with ARM Cortex-M4 processor require that a certain
number of non-load instructions are executed when entering
the XOM and before a load operation is carried out. We found
out that in contrast to the corresponding data sheet [7], a single
preceding non-load instruction is sufficient. As a result, a reg-
ular load operation preceded by a single non-load instruction
forms a suitable gadget. The code recovery process explained
in Section 4 can be used to find an applicable gadget inside
the secured memory. Depending on the gadget’s surrounding
instructions, it may be possible to relax the timing constraints
for the interrupt (3). Thus, additional instructions located after
and/or before the actual gadget can be executed without im-
peding the code extraction. We employ a similar approach as
for the interrupt-driven code recovery to automatically extract
protected code.

5.3 MSP432P4 Devices
The MSP432P4 series also allows load operations inside the
secured memory, which leads to the assumption that it has the
same code read-out vulnerability as the Kinetis devices.

Besides the initial configuration, this feature needs to be
enabled by writing a certain key into an unlock register from
within the secured memory. The very same approach as pre-
viously explained for the Kinetis devices can be utilized to
execute a store instruction in a way that the key is written
from within the secured code. Once unlocked, we expected to
be able to perform code read-outs via a regular load instruc-
tion, similar to the approach for the Kinetis devices. However,
we encountered a countermeasure that automatically locks
the data access whenever code execution leaves the secured
memory. As a consequence, the unlock and code read-out
instructions need to be carried out without executing code
outside the secured memory in between. Hence, a suitable

gadget comprises a store instruction followed by a regular
load instruction. To cope with the 16 bit unlock key, the store
must be at least a half-word operation. Since we have to carry
out both instructions without interruption, the base registers
must be distinct such that both can be assigned individually
before executing the gadget. The target registers must be dif-
ferent from the base register but apart from that we have no
other constraints. The addressing mode of both instructions
is not of major importance because the base register values
can be adjusted to compensate potential offsets. Such gadgets
are not unusual and can be found in various functions of the
CMSIS library, for example. In general, there are many other
instruction combinations that can be utilized as gadget. Like
for the Kinetis devices, interrupt-driven code recovery can be
utilized to find and automatically execute gadgets inside the
secured code.

6 Conclusion and Outlook

In this paper, we evaluated XOM as firmware protection mech-
anism against adversarial developers in multi-party devel-
opment scenarios. We conclude that analyzed implementa-
tions of XOM are inadequate to provide sufficient security
for their intended usage. None of the analyzed devices pro-
vide sufficient protection of the firmware once an adversary
has debug access or is able to execute privileged code on a
microcontroller. A firmware protection technique for general
multi-party development requires strict and hardware-backed
isolation between different protection domains as provided by
TEEs. This would have also prevented the exploitation of the
hardware vulnerabilities we identified during our research.

Our methods can be extended by an implementation of
input states for the ARMv7-M architecture and thereby en-
able full code recovery on other affected microcontrollers.
Additionally, enhanced debug and trace features, such as the
Data Watch and Trace (DWT) component, could be taken
into account to accelerate the recovery process. Finally, there
may be other devices and even architectures utilizing XOM as
protection mechanism for multi-party firmware development
that shall be analyzed for comparable issues.

7 Responsible Disclosure

As part of a responsible disclosure process, we informed the
security teams of all affected manufacturers about our find-
ings. Technical and detailed information were provided more
than 120 days prior to the publication of this paper. On the re-
quest of the manufacturers and due to the variety of deployed
devices utilizing XOM, we decided to not publish the code
recovery framework nor other exploits at this point in time.

We thank Texas Instruments and NXP Semiconductors for
their quick response and constructive discussion during the
entire process.



References

[1] ARM Limited. DDI 0489: ARM Cortex-M7 Technical
Reference Manual, 2014. Rev. B.

[2] ARM Limited. DDI 0419: ARMv6-M Architecture Ref-
erence Manual, 05 2017. Rev. D.

[3] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazières, and Dan Boneh. Hacking blind. In Pro-
ceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pages 227–242, Washington, DC, USA,
2014. IEEE Computer Society.

[4] Travis Goodspeed and Aurélien Francillon. Half-blind
attacks: Mask rom bootloaders are dangerous. In
Proceedings of the 3rd USENIX Conference on Offen-
sive Technologies, WOOT’09, pages 6–6, Berkeley, CA,
USA, 2009. USENIX Association.

[5] Mickael Guene. ARM: Add support for thumb1
PCROP relocations. https://sourceware.org/ml/
binutils/2015-12/msg00027.html, 2015.

[6] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent ByungHoon Kang. Hacking
in darkness: Return-oriented programming against se-
cure enclaves. In USENIX Security Symposium, pages
523–539. USENIX Association, 2017.

[7] NXP. AN5112: Using the Kinetis Flash Execute-Only
Access Control Feature, 04 2015. Rev. 0.

[8] NXP. K82P121M150SF5RM: K82 Sub-Family Refer-
ence Manual, 09 2015. Rev. 2.

[9] NXP. KV31P100M120SF7RM: KV31F Sub-Family Ref-
erence Manual, 02 2016. Rev. 4.

[10] NXP. KV11P64M75RM: KV11 Sub-Family Reference
Manual, 05 2017. Rev. 4.

[11] Johannes Obermaier and Stefan Tatschner. Shedding too
much light on a microcontroller’s firmware protection.
In 11th USENIX Workshop on Offensive Technologies
(WOOT 17), Vancouver, BC, 2017. USENIX Associa-
tion.

[12] STMicroelectronics. AN4701: Proprietary code read-
out protection on microcontrollers of the STM32F4 Se-
ries, 11 2016. Rev. 3.

[13] STMicroelectronics. AN4667: STM32F7 Series system
architecture and performance, 02 2017. Rev. 4.

[14] STMicroelectronics. RM0376: Ultra-low-power
STM32L0x2 advanced Arm-based 32-bit MCUs, 12
2017. Rev. 5.

[15] STMicroelectronics. RM0433: STM32H7x3 advanced
ARM-based 32-bit MCUs, 08 2017. Rev. 3.

[16] STMicroelectronics. RM0431: STM32F72xxx and
STM32F73xxx advanced ARM-based 32-bit MCUs, 03
2018. Rev. 2.

[17] Erich Styger. Execute-only code with gnu and
gcc. https://mcuoneclipse.com/2018/07/14/
execute-only-code-with-gnu-and-gcc/, 2018.

[18] Texas Instruments. SPMS376: TivaTM C Series
TM4C123GH6PM Microcontroller Data Sheet, 05 2014.
Rev. E.

[19] Texas Instruments. SLAA660: Software IP Protection
on MSP432P4xx Microcontrollers, 11 2016. Rev. B.

[20] Texas Instruments. SLAU356: MSP432P4xx
SimpleLinkTM Microcontrollers Technical Refer-
ence Manual, 12 2017. Rev. H.

[21] Texas Instruments. SLAU723: MSP432E4
SimpleLinkTM Microcontrollers Technical Refer-
ence Manual, 10 2018. Rev. A.

[22] David Lie Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. SIGOPS Oper. Syst. Rev., 34(5),
November 2000.

[23] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure
processor for inhibiting software piracy and tampering.
In Proceedings of the 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 36,
Washington, DC, USA, 2003. IEEE Computer Society.

[24] Joseph Yiu. What is execute-only-memory (xom)?
https://community.arm.com/processors/b/
blog/posts/what-is-execute-only-memory-xom,
07 2017.

https://sourceware.org/ml/binutils/2015-12/msg00027.html
https://sourceware.org/ml/binutils/2015-12/msg00027.html
https://mcuoneclipse.com/2018/07/14/execute-only-code-with-gnu-and-gcc/
https://mcuoneclipse.com/2018/07/14/execute-only-code-with-gnu-and-gcc/
https://community.arm.com/processors/b/blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/processors/b/blog/posts/what-is-execute-only-memory-xom


A Appendix

A.1 Analyzed devices
Table 6 lists all evaluated devices, whether the integrated single-stepping feature is available in XOM, their vulnerabilities and
associated CVE numbers. The code recovery and read-out vulnerabilities refer to the attacks described in Section 4 and Section 5,
respectively.

Table 6: Analyzed microcontrollers with their XOM-related properties, vulnerabilities and CVE numbers.

Manufacturer Device family Device under test Single-stepping Vulnerability CVE

STMicroelectronics

STM32L0 STM32L072CZ (Z)

Yes Code recovery CVE-2019-14236
CVE-2019-14238

STM32L1 STM32L152RC (V)
STM32L4 STM32L432KCU6 (Z)
STM32F4 STM32F429ZI (Y)

STM32F7 STM32F722ZET6 (A)
No Code recoveryb / read-outc

STM32H7 STM32H743ZIT6 (Y) Code recoveryb

NXP Semiconductors
K8x MK82FN256VLL15 (1)

Yes Code recovery / read-outa CVE-2019-14237
CVE-2019-14239KV1x MKV11Z128VLF7 (0)

KV3x MKV31F512VLL12 (1)

Texas Instruments
TM4C12x

TM4C123GH6PM (B2)
Yes Code recovery

CVE-2018-18056TM4C1294NCPDT (A2)

MSP432 MSP432E401Y (A2) Yes Code recovery
MSP432P401R (D) No Code recovery / read-outa

a Code extraction gadget (data access for MSP432P4) required.
b Limited code recovery, see Section 4.5.
c Debug interface access required.

A.2 Code Recovery
Table 7 shows all instruction groups of the ARMv6-M architecture and to what extent they can be recovered. Every group marked
with 3 is fully recoverable, whereas (3) indicates that at least one instruction is not fully recoverable. Ambiguities that are equal
from a functional perspective are not shown in detail for the sake of clarity. Instructions that cannot be recovered because they
are indistinguishable form instructions with a different functional behaviour are maked with 7 and are explicitly listed.

Table 7: Recoverability of the ARMv6-M instruction set.

Instruction Recoverable Ambiguity Comment

Branch (3) - All ambiguities are equal from a functional
perspective.

Data processing (3) - All ambiguities are equal from a functional
perspective.

Shift (3) - All ambiguities are equal from a functional
perspective.

Multiply 3 - -

Packing and unpacking 3 - -

Miscellaneous data-processing 3 - -

Status register access 3 - -

Load and store (3) - All ambiguities are equal from a functional
perspective.

Miscellaneous

dmb 7
dsb Rarely used instruction. For example, it is used

when modifying the vector table.isb



Table 7: Recoverability of the ARMv6-M instruction set.

Instruction Recoverable Ambiguity Comment

dsb 7
dmb Rarely used instruction. For example, it is used

when configuring a Memory Protection Unit (MPU).isb

isb 7
dmb Rarely used instruction. For example, it is used

when configuring an instruction cache.dsb

nop 7

mov rd, rd

-
add sp, sp, #0
sub sp, sp, #0

yield
sev

sev 7 nop
Rarely used instruction. For example, it is used for

signaling in multi-processor devices.

yield 7 nop
Usually not supported and implemented as nop. Not

supported by any of the analyzed devices.

Exception-generating

svc #imm (3) - The imm value is not recoverable but also cannot be
used in XOM.

bkpt #imm (3) - Used for debug purpose only. The imm value is not
recoverable but also cannot be used in XOM.


	Introduction
	Related Work

	Execute-Only Memory
	General Concept
	Conceptual Weakness
	Instruction Recovery

	Device Analysis
	STM32 Devices
	Tiva C and MSP432 Devices
	Kinetis Devices

	Code Recovery Attack
	Recovery Process
	Design of System Input States
	Regular Load and Store Instructions
	Push and Pop Instructions
	PC-Relative Load Instructions
	Branch Instructions

	Code Recovery via Single-Stepping
	Interrupt-Driven Code Recovery
	Limitations
	Mitigation

	Exploiting Implementation Flaws
	STM32F7 Devices
	Kinetis Devices
	MSP432P4 Devices

	Conclusion and Outlook
	Responsible Disclosure
	Appendix
	Analyzed devices
	Code Recovery


