Automatic Wireless Protocol Reverse Engineering

Johannes Pohl

ARTIFACT
EVALUATED

rusenix
ASSOCIATION

University of Applied Sciences Stralsund, Germany

Andreas Noack
University of Applied Sciences Stralsund, Germany

Abstract

Internet of Things manufacturers often implement their own
wireless protocols in order to save licensing fees. Deviating
from standard, however, sometimes paves the way for critical
attacks such as stolen cars or house breaks without physical
traces. For a security analysis of such proprietary protocols,
researchers use Software Defined Radios and dedicated de-
modulation tools. But when reverse engineering is necessary,
researchers are left alone and need to find protocol fields
manually in a time-consuming and tedious process.

We contribute a framework designed for field inference
of wireless protocols. In contrast to previous research, our
algorithm operates on the physical layer and, moreover, takes
wireless specifics such as Received Signal Strength Indicators
into account. Furthermore, the algorithm is robust against er-
rors that are common in wireless communication. Our contri-
bution not only performs a bootstrap of completely unknown
protocols but also considers prior knowledge such as partici-
pant addresses or known field positions in order to increase
accuracy. An implementation is published as part of the open
source software Universal Radio Hacker and is a first step
towards a default security analysis for proprietary wireless
protocols similar like a port-scan is for traditional security.

1 Introduction

Global manufacturers flood the Internet of Things (IoT) mar-
ket with a huge number of devices such as smart light bulbs or
door locks. The wireless communication between devices of-
ten uses proprietary protocols designed under size and energy
constraints whereby security is only a secondary factor. This
leads to serious threats for customers ranging from stolen cars
to burglars silently breaking into their houses.

The security investigation of unknown wireless protocols
involves many challenges. Researchers capture the device
communication with a Software Defined Radio (SDR) and,
subsequently, demodulate the signal with dedicated software
solutions [5, 17]. Those tools provide communicated bits to

researchers but leave them alone with reverse engineering of
the actual protocol. This is a tedious process and a significant
obstacle before the real security analysis begins.

The problem of automatic protocol reverse engineering is
well studied by several authors as summarized in the survey
of Narayan et al. [15]. The published solutions work with
high accuracy, but cannot be applied to the wireless setting for
two reasons. First, most of them are designed for text-based
protocols like HTTP while wireless IoT protocols are rather
binary. Second, all of them work on the application layer, i.e.,
they rely on information from lower layers like IP addresses.

Since the related work is not designed for the specific wire-
less setting, we present an algorithm that can infer protocol
fields from network traces of IoT devices. Our algorithm con-
siders specifics of wireless communications like Received
Signal Strength Indicator (RSSI) and uses statistical methods
in combination with heuristics to find physical layer fields.

The main goal of our algorithm is to perform a bootstrap
of an IoT protocol in order to simplify the subsequent manual
analysis. Moreover, the algorithm is able to work with prior
knowledge, that is, find missing fields with an incomplete
protocol specification. We make the following contributions:

e An extendable framework for inferring message formats
of physical layer protocols, prepared for the specifics of
wireless protocols.

e A framework that performs a complete bootstrap of
unknown protocols and also considers prior knowledge
such as participant addresses to enhance accuracy.

e Heuristics for field semantics Preamble, Sync, Length,
Address, Sequence Number and Checksum.

We provide an initial step to find security leaks in propri-
etary wireless protocols in the same way port scanning is a
standard procedure for security analysis of conventional sys-
tems. Many IoT attacks can be evaluated once the physical
structure of the protocol is known, for example, manipulating
the sequence number of a message may lead to desynchro-
nization of devices under certain conditions.

2 Terminology and Design Assumptions

The main objective of protocol reverse engineering is to infer
the protocol format that involves the message format and the
protocol state machine. In this paper we focus on inferring
the message formats and leave inferring the state machine for
future work. The message format defines the order and type
of fields in a message. A message field is a finite information
sequence with known length and position, and a certain field
semantic such as address, checksum or length in bytes. We
further introduce the term label. We define label as an esti-
mation for a field, that means a label aims to have same start,
end and semantic as a field.

Problem Definition Our goal is to infer the message for-
mats from captured messages (network traces) of a wireless
communication. We make the following design assumptions:

e All protocol messages include a specific start of data
sequence, that is, a sync word with length > 1 bit, usually
after the preamble.

e A single message does not contain more than one pream-
ble and sync word. This could be different in practice if
the physical pause between messages is very short.’

e The number of captured messages will probably be lim-
ited due to legal transmission limits.

e Protocols are length-efficient binary protocols with no
separators or redundancy and high entropy.

e Messages can be (partly) broken due to transmission and
demodulation errors.

e We only have network traces and no additional data like
source codes or program binaries.

3 Automatic Wireless Reverse Engineering

The proposed algorithm is divided into two main phases. First,
a preprocessing is performed to align messages. Second, field
inference engines work on these aligned messages to infer pro-
tocol fields and message types. Refer to fig. | for an overview.
The algorithm also works for protocols that include nibble
sized fields. This is an important difference to related ap-
proaches because as we work on the physical layer we cannot
be sure that information is byte aligned. An example for a
protocol with nibble fields is the Oregon Scientific RF Proto-
col [2]. In the following sections we assume the protocol is
completely unknown, that is, no prior knowledge is available.
We show in section 3.8 how to consider prior knowledge.

'One solution is to add a message splitting functionality to our prepro-
cessing from section 3.1. This works by iteratively applying our sync word
finding and alignment procedures for full message and not stop after first
occurrence. We could, however, not observe such short physical pauses for
real devices so that this feature may not be needed in practice.

Raw data with messages and RSSI

Preprocessor (sec. 3.1)

0.31dBm
0.75dBm
0.80dBm R
0.27dBm | AA AA D9 02 37 DD " |[AA AA DS 02 37 DD
0.34dBm
0.79.Bm

1

Checksum Engine SEQ Nr Engine Address Engine Length Engine
(04 1337 01 28]||[04 1337 01 28]/ |[04 13 37 01 28] |[04 13 37 01 28]
(02 13 EB] (02 13 EB] (02 13 EB] (02 13 EB]
[04 37 13 02 7B]||[04 37 13 02 7B]| |[04 37 13 02 7B]| [[04 37 13 02 7B]
02 37 DD | 02 37 DD | 02 37 DD | 02 37 DD |
04 13 37 03 26| |[04 13 37 03 26]||[04 13 37 03 26]||[04 13 37 03 26|
02 13 EB| 02 13 EB| 02 13 EB| 02 13 EB|

see section 3.6

see section 3.5

see section 3.4

see section 3.3

Result: Aggregated protocol fields |

sec 1 }.
Message Type 1 (DATA) section 3.7

Preamble || SYNC H LEN H DST H SRC H SEQ H CRC ‘

Message Type 2 (ACK)

’ Preamble H SYNC H LEN H DST H CRC ‘

Figure 1: Overview of proposed algorithm

3.1 Preprocessing

The first step of the algorithm is to align messages based on
possibly unknown sync words. We refer to this process as pre-
processing. We split the preprocessing task into three steps.
First, we identify the preamble of a message. Second, we
derive the sync word(s) from the messages. Third, we create
an alignment vector which stores the end of synchronization
for each message. Splitting this task has an advantage: If sync
words are known previously they can be entered by the user
and our algorithm skips the first two steps.

In case sync words are not known beforehand, they need
to be extracted from captured messages. The basic idea is
to search for the first differing bit behind the preamble. This
basic approach has three problems:

1. The preamble length can vary between messages.
2. Protocols may use more than one sync word.

3. Bits may be flipped or missing due to transmission errors
in certain messages.

We tackle the first problem by determining the preamble
length for each individual message, the second one by looking
for a synchronization length instead of a specific sync word
and the third one by creating histograms over all messages
in order to be robust against errors in single messages. We
explain how we do this in the following sections.

3.1.1 Finding the preamble

The purpose of a preamble is to synchronize the receiver.
Therefore, it consists of a fixed pattern of alternating zeros
and ones. Formally, we can define a preamble as

(anbm)k (1)

with a,b € {0,1}, a # b and n,m,k € N*. For example, a
common preamble is 10101010 withn =m =1 and k =4.

This formal representation of a preamble allows us to de-
sign a straight-forward algorithm for finding it. First, we get
a by evaluating the first bit of the message. This also yield
b because it is the inverse of a. Second, we look for the first
occurrence of b to learn n and for the first occurrence of a
behind the first b to learn m. Last, we count how often the
pattern a”*b™ repeats in order to get k.

The algorithm is very prone to errors. Especially in wireless
communications we must expect bits to be missing, wrongly
inserted or even flipped. From error characteristic experi-
ments with Software Defined Radios, we know that such er-
rors mostly occur at the beginning of a message. We take this
into account by shifting the start value until we find a pream-
ble with sufficient length, that is, we skip more and more bits
at the beginning of a message. In experiments k > 2 turned
out to be a good value for sufficient preamble length.

The preamble search is just a preparation for identifying
sync words in the next step. Therefore, the preamble should
not interfere with the sync word. This can, however, happen
if the sync word starts in the same way as the preamble ends.
Consider the example with (10)* in Figure 2:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1f1 61 0 1 0 1 06(1 6 0 1
211 61 61 61 6|0 1 1 0
3/1 61 61 0 1 0 1 06(1 6 0 1

Figure 2: Messages with varying syncs and preambles

The first two messages share the eight bits preamble
10101010 while the third message has a ten bit preamble.
The sync word for first and third message is 1001 while for
second message it is 0110. In the first message, the algorithm
finds position 10 as preamble end. This is wrong, because
positions 9 and 10 are part of the sync word, therefore, the
preamble size should be decreased by two (— 8). For the sec-
ond message, the algorithm finds position 8 as preamble end
and shall not decrease the preamble length by two (= n+m).

How can the algorithm know whether to decrease the
preamble length or not? The answer is, it cannot know at
this point. Therefore, we save both lengths in two vectors that
hold the lower 1 = (8,6, 10) and upper u = (10,8, 12) bounds
for the preamble ends of each message, respectively.

3.1.2 Sync Word Identification

In the previous section we roughly estimated the preamble
ends and now search for the specific sync word(s) in the
protocol with the help of this information.

Calculating Difference Matrix We calculate a difference
matrix D where d;; denotes position of the first difference
between message i and j. If there is no such difference, that
is, messages are equal or one message is a prefix of the other
we set d;; = 0. For example, when calculating the difference
matrix for the messages in fig. 2 we get

—_—

0 9 11
D=0 0 9

0 0 O
Note that we just calculate the upper triangle of the difference
matrix because the comparison order does not matter.

Finding sync words With preamble end vectors 1 and u
from section 3.1.1 and difference matrix D from section 3.1.2
we determine sync word candidates as follows: We iterate over
all difference positions d;; in D greater than zero, whereby
each position represents a possible ending of the synchro-
nization word. For each sync end d;; > 0, the raw preamble
ends {l;,1;,u;,u;} for messages i and j indicate possible sync
starts and we save all resulting sync word candidates. We
perform these steps for every message pair and count the oc-
currence of sync word candidates yielding a histogram of
possible sync words. After that the algorithm combines candi-
dates with a common prefix in the histogram and determines
the most probable sync length. > This way, the search for the
sync word gets more robust against transmission errors and
can even deal with different sync words. Finally, we take the
most frequent sync length s; from the histogram and return
all found sync words with length s;.

Message Alignment Once sync words are known, the algo-
rithm aligns messages on them. If multiple sync words appear
in a message, we align on the first occurring sync word. For
further processing we remove the sync word and everything
before from the messages and pass the aligned and cropped
messages to the field inference engines. This way, the subse-
quent engines can work on reduced information and, more
importantly, the messages are aligned on the sync word so
that differential analyses are not biased by bit shifts.

2In theory, protocol sync words can vary in length. The algorithm can
deal with this by choosing sync lengths whose frequencies are above a certain
threshold. We think, however, that a varying sync word length is not common
in practice, so we assume it to be constant for a protocol in this paper.

3.2 Field Inference Overview

Once messages are aligned properly, we can infer field seman-
tics from captured messages. For this reason, our algorithm
consists of dedicated Field Inference Engines that work with
scoring functions to find the right label for a protocol field. In
general, this process consists of three steps:

1. Assign messages to engine-specific clusters. For exam-
ple, the length engine clusters messages based on their
physical length in bytes.

2. Find common ranges, that is, identical sequences at
same positions inside and/or between clusters.

(a) Score common ranges with an engine-specific scor-
ing function.

(b) Return common ranges with highest score if they
surpass a minimum SCore Smin-

(c) If possible, merge the resulting ranges.

3. Add found labels to the current message type. If neces-
sary, create new message types based on found labels.

Common Ranges The search for common ranges is a cen-
tral part of every engine and must be robust against errors in
single messages. We find common ranges by comparing the
aligned messages column-wise and search for columns with
equal values. In order to be tolerant against errors, we view a
range as common if at least o percent of column values are
equal for every message, whereby an o between 70% and 95%
turned out to be a good compromise between accuracy and
error-tolerance in practice. Having found a common range,
we save its start, length and value together with the message
indices this ranges applies to. An example is shown in fig. 3.

mi ;[ABCDEF 11 | Start: 5

|

|

Common | . !
my:[1234EF22] - -=----- . Length: 2 |
i Value: EF |

m3 : [56 78 EF 37 l

Figure 3: Example for common range of three messages

Messages: 1,2,3

!
!
L e e e e m —— - o 1

We describe the engine specific scoring functions and clus-
ter features in the following sections.

3.3 Length Field Engine

A length field contains the size of following data, usually
in bytes. In order to find length fields we cluster messages
by their physical length in bytes. For each cluster we calcu-
late the normalized histogram of common bits and identify
ranges where at least eight bits are equal for o percent of the
messages. In experiments o0 = 0.7 produced good results.

Next, we rule out equal valued ranges across clusters be-
cause values must differ for messages with other physical
lengths. All remaining ranges are scored with the function:

1
S = .
l+k-p

whereby s is the score, ¢ the target length, that is, the message
length in bytes, p the start position of the common range and
v the decimal interpreted value, whereby both little endian
and big endian interpretations are tested. The constants ¢ and
k are used to control the scoring function’s decay, whereby in
our experiments ¢ = 2 and k = 0.25 produce good results.

The idea of the function is to yield lower scores for high
start positions because we expect length fields rather to ap-
pear at the beginning of messages. We evaluate the scoring
function for a sliding window over common range values with
standard integer window sizes between 8 and 64 bits, in order
to find usual sized length fields.

e

D=

(1) 2)

3.4 Address Field Engine

We split the address field search into three steps as shown in
fig. 4. First, the engine assigns a participant to every message.
Second, the engine searches possible addresses of involved
participants. Finally, the engine finds positions of address
fields based on these possible addresses.

Input

mp :|AABB1234
mp : |AABB67 89
m3 | BBAA4711
my | BBAA1337

\
7

Result

Address positions:

SRC: 0—1 DST: 2-3 Find possible addresses

\

Alice: AA, BB
Bob: BB, AA

Participants:
Alice: AA Bob: BB

Figure 4: Address Field Engine example for messages be-
tween Alice (address: AA) and Bob (address: BB)

3.4.1 Assign Participants

The engine begins with ensuring that every message has a
participant (= sending device) assigned, whereby we assume
the number of participants |P| to be known. The automatic
assignment has two strategies: First, if prior knowledge is
available and, more specifically, a source address label is
present in the message while a participant with this address is
known, this participant is assigned to the message.

The second strategy is more generic and relies on the Re-
ceived Signal Strength Indicator (RSSI) of a message. During
recording, devices are placed at different distances from SDR
and/or have different transmitting powers. Therefore, it can
be expected that messages of a certain participant have a sim-
ilar RSSI. In order to assign participants, the RSSIs of all
messages are clustered with |P| centers so that the highest
RSSIs are in first cluster, the second highest in second cluster
and so on. With this clustering we can assign a participant to
a message by looking up the cluster index of the message’s
RSSI. Users can control to which cluster a participant gets
assigned with a relative RSSI as shown in fig. 5.

Name Shortname Color Relative RSSI
1 Alice A L] vl o(low) v
2 Bob B B vl 1 v
3 carl | C | v | 2 (high) ~

Figure 5: Configuration of Relative RSSI

Note that only messages without an assigned participant
are considered in this routine. A message can already have a
participant assigned either through a prior run of this engine
or through manual assignment by the user. The routine skips
messages that already have a participant assigned.

3.4.2 Find Address Candidates

Once each message has a participant, the next task of the
engine is to find possible addresses for each participant. In
order to find address candidates, we start by clustering the
messages by participant and find common ranges within each
participant cluster. As a result, we have a set of common
ranges for each participant cluster. Then we compare the val-
ues of the individual common ranges pairwise for each pair of
participants and search for longest common substrings (LCSs)
in these values, for example, LCSS(CAFE1337, 1337CAFE) =
[CAFE, 1337]. If found, we add these substrings to address
candidates of both participants. If no common substring is
found we add both values as address candidates for both par-
ticipants to cover, e.g., ACK messages with only one address.

The address for a participant can also be previously known
either through a prior run of this engine or manual configu-
ration by the user. The search of address candidate for par-
ticipants with known address is skipped by the algorithm.
Moreover, we can filter address candidates when at least one
address is known beforehand: Since it can be assumed that
addresses in a protocol have a common length, all possible
addresses with a different length can be ruled out.

3.4.3 Find Address Fields

The final step of this engine is to find address positions and
infer address types, that is SRC or DST, based on the address
candidates determined in the previous step.

Find possible ranges We start by iterating through the mes-
sages of each participant. For each message the system finds
occurrences of address candidates and, if found, creates com-
mon range objects from their position in the message. If the
same position was already found in another message, the in-
dex of the current message is added to the existing indices of
the according common range object.

Scoring Subsequently, the common ranges are scored. The
scoring is based on two observations: First, addresses are
mostly located next to each other. Second, in acknowledge-
ment messages (ACKs) there may be only one address present.
This leads to two checks for a common range: Cross Swap
Check and ACK Check. The Cross Swap Check is successful
if two common ranges of different participants have swapped
values and one range starts right after the other range (fig. 62).
The ACK check verifies whether two common ranges of two
participants have same position but different values (fig. 6b).

Alice | AASE 1337
Bob | AASECAFE

(b) ACK Check

Alice | AA9E CAFE 133700 |
Bob [AA9E 1337 CAFE @0 |

(a) Cross Swap Check

Figure 6: Cross Swap check and ACK check example for
Alice (CAFE) and Bob (13 37)

The idea is to increase the score for a range if one of these
two checks is successful. Therefore, we increase the score by

NN—? whereby N, is the number of messages in this common
range and Np the number of messages of the current partici-
pant. This way, common ranges that apply for more messages
get a higher score. If both checks should be successful, the
score is only increased once. Ranges will be eliminated when
they do not surpass a minimum score. In our experiments a

minimum score of 0.1 produces good results.

Assign participant addresses The next step is to assign
addresses to all participants without a known address based on
the previously scored ranges and the address candidates from
section 3.4.2. We score an address candidate in the following
way: If the algorithm finds the address candidate in a message
together with another address candidate, we increase the score.
The underlying idea is, that the source address (=participant
address), is likely to be included in a message that contains
multiple addresses. On the other hand, when the message
only contains one address, this is probably rather a destination
address. Finally, we assign for each participant the address
candidate with the highest score.

Field type inference Having assigned the most likely ad-
dress to each participant, the next step is to infer address fields
from the found common ranges. In order to do this, we need
to distinguish between source address (SRC) and destination
address (DST). The rule is simple: If the common range value
is equal to the participant address we infer a SRC, otherwise a
DST label. Note, we only consider the highest scored ranges
to prevent multiple SRC and DST labels being inferred. As a
final step, we check for messages that were sent to broadcast:
First, we find all messages Mggc that have a SRC but no DST
label assigned. Second, we take the positions of DST labels
from messages with SRC label. Finally, we evaluate the value
of messages in Msrc at DST position and look if the address
appears multiple times but not as SRC address. If this is the
case, the algorithm takes this address as broadcast address.

3.5 Sequence Number Field Engine

Sequence numbers are increasing counters used for flow con-
trol and freshness in a protocol. We find sequence numbers
with a matrix of decimal differences E between adjacent mes-
sages. For example, if we take four messages with five bytes
as shown on the left in fig. 7 the matrix £ means, for example,
that m; and m; have a decimal difference of 1 at the first byte.
Moreover, all first bytes of the four messages differ by 1 so
the first byte is a good candidate for the sequence number.

mp 0104141337

my (0205181337 E (! ! 0 0\ my—m
— |1 0 O0) my—m

m3 [030A191337
0 0 ny —ms

my | 0407191337

[\
W
(98]
SIS

Figure 7: Matrix of decimal differences £ (mod 256)

In general, we look at columns of E that only contain con-
stants or zeros because sequence numbers may remain con-
stant between some messages. In order to deal with overflows
such as 255 — 0 we take the decimal difference modulo 256
or, more generally, 2" whereby n is the considered n gram
length and, e.g., is 8 for byte and 4 for nibble protocols.

The score s for a column of E is set to

0, if only zeros in column

#(most_common_value#0)—#zeros
#values ’

8
Il
—N—

else

Next, we create common range objects (section 3.2) from
all columns surpassing minimum score sp;, resulting in se-
quence number candidates. For longer sequence numbers,
these ranges must be merged. We merge two adjacent ranges
if they apply to the same messages (rows). Note, this applies
to both little and big endian sequence numbers.

3.6 Checksum Field Engine

Manufacturers of IoT devices can choose from a large pool of
checksum algorithms and variants whereby most of them can
be fine-tuned with additional parameters. Hence, it can be dif-
ficult to detect the right algorithm with correct parameters for
a checksum and, additionally, the correct range of data bits the
checksum was applied to. Fortunately, many manufacturers
use variants of the Cylic Redundancy Check (CRC) algorithm
and most of them put the checksum field at the end of all
protocol fields. For this engine, we assume that the protocol
uses only one variant and parameter set for all messages.

We apply a checksum search algorithm that differentiates
between CRC and other checksums. The CRC engine aims
to test all CRC parameters for each the datarange from the
beginning of the data up to the possible checksum field. For
efficiency reasons we contribute an algorithm that relies on
the homomorphic property of CRC that works as follows. In
a caching phase (fig. 8) we calculate all checksum values of
the bit sequence 1(0)"~! whereby n is the length of data up
to the CRC field candidate.

JoloToloo] - o]
CRC(1) [cache[0] |

Y ___crcao) cachef1]

”ﬁ/—/ CRC(100) »| cache[2]

“[ﬂj

cache[n]

Figure 8: Filling the CRC cache

Then we apply (fig. 9) all these cached CRC values step-
wise and in reverse order to the initial CRC value over the
complete datarange via XOR. This enables us to shift the start
position of the datarange window without having to calculate
the CRC over and over again. In this way we loop over the
most common CRC variants and parameters used in Internet
of Things communication, for example CRC16-CCITT.

[1111.1111.0001.0011.0111-- CRC

- 4
:>:> L CRC.p ; CRC

1111.1111.0001.0011.0011.0111 datarange[0:n]
G 1000.0000.0000.0000.0000.0000 crc() — cache[n]
= 111.1111.0001.0011.0011.0111 datarange[l:n]
— CRCy;y = CRCy:, @ cache[n]
— CRCy; = CRCyy @ cachen — 1]

Figure 9: Checking datarange using the cache

Sometimes there are several possible results for checksum
algorithm, parameters and datarange. If this is the case, our
algorithm outputs the result that works for the majority of
tested messages. The Checksum Field Engine returns the
position of the checksum field, the determined checksum
variant and it’s parameters and, additionally, the associated
datarange the checksum covers. Note, the engine is not limited
to CRC:s but can also detect more specialized checksums, for
example, the checksum algorithms used in the Wireless Short
Packet Protocol [13].

3.7 Message Type Assignment

The engines from previous sections return a set of labels. In
the next step, we group these labels into message types based
on their messages indices. If the indices match and the fields
do not overlap a new message type is created from these
fields and messages as shown in the example in fig. 10. If two
ranges with shared message indices overlap, we choose the
range with the highest score. For multiple overlapping ranges,
we choose the ranges that maximize the total score.

Found Field 1

Range: 0-42
Type: Length
Messages: 1,2,3

~

Found Field 2

Range: 12-42
Type: Checksum
Messages: 4,5,6

Found Field 3
Range: 42-60
Type: Address
Messages: 1,2,3,4

Fields: Fields: Fields:

Checksum Length, Address Checksum, Address

Messages: 5,6 Messages: 1,2,3 Messages: 4
Message type 1 Message type 2 Message type 3

Figure 10: Merging of found fields to infer message types

Having created the message types, the start and end indices
of the fields are updated so that they are absolute and not
relative to the sync word anymore. In other words, we reverse
the alignment transformation we made in section 3.1.2. More-
over, we add Preamble and Sync labels to the message types
in this stage based the information gathered in section 3.1.

3.8 Considering a priori knowledge

In previous sections we assumed that protocol specifications
are completely unknown. There are various potential sources
for (partial) protocol knowledge such as leaked documents or
stickers with addresses printed on investigated devices. In this
section, we show how to consider prior knowledge, that is,
partially known message types and fields to improve accuracy.
Note, this prior knowledge can also come from a previous run
of our system, so that even totally unknown protocols profit.

We assume a priori knowledge to be correct but not neces-
sarily complete, that is, messages may have a message type
assigned where not all fields are labeled. This leads to the
following rules when dealing with a priori knowledge:

1. Labels must not be changed.
2. Labels must not be removed from a message type.
3. Messages must keep their assigned message type.

The general idea of our solution is to run the previously
mentioned engines for each message type. For a totally un-
known protocol we assume all messages have a common
message type which entails no labels, so that the previous
description of our algorithm remains valid as a special case of
this more general algorithm. Our system considers non-empty
message types in the following way:

e Engines for fields that are already present in the message
type are skipped.

o All previously labeled ranges are ignored by the engines.

o If a new message type needs to be created (section 3.7)
the original message type is split, that is, it’s labels are
copied over to all newly created types.

Splitting message types may seem like a contradiction of
rule 3, but after splitting the new message types include the
same labels as the original message type so that only new
knowledge is added and prior labels remain unchanged.

Since our algorithm profits from prior knowledge, we run
it until no new fields are found in an iteration. The general
procedure is shown in listing 1.

i=o0

while new_fields_found and i < max_iterations:
i+ 1
for mt 1in existing_message_types:

new_fields = []

for engine 1in engines:

if field_of_engine not 1in mt:
new_fields.extend(engine.run(mt))

i=

Split message type if necessary
add_to_message_type(mt, new_fields)

Listing 1: Iterative algorithm

4 Experimental Validation

In this section we evaluate the accuracy and performance
of our algorithm. For accuracy evaluation, we use 8 gener-
ated protocols with different fields and number of involved
participants. An overview of the protocols is given in table 1.

The protocols vary strongly in field lengths and cover, for
example, messages with long preamble (72 bits), short syn-
chronization (4 bits), non-default preamble patterns (0x8888)

or even no preamble at all. Moreover, the byte order of length
and sequence number fields varies. The payload data for all
protocols is randomly generated. A detailed description of
these protocols is given in appendix A.

Given a set of messages M with expected fields E; for
message i, we define the accuracy a as

1 MIENE)
= — —_— 3
=L)

i=1

whereby F; are the found fields for message i. In the following
experiments we assume there is no prior knowledge available,
that is, only the captured messages and the number of involved
participants are presented to the algorithm.

4.1 Test against number of messages

Wireless communication tends to be efficient and, therefore,
not use many messages for a process such as switching on
a light bulb. Furthermore, legal transmission windows limit
the amount of messages a researcher can capture at a time.
In this experiment, we investigate the effect of the number of
captured messages on the accuracy of our algorithm. It can
be expected that the accuracy increases when more messages
are available to the algorithm. Results are shown in fig. 11.

[[
100 9-0-0-9-0- NN o
l i
!)
/I //I
80 - L od 1% 1
2R e n beeogod
© L/ muEEaw u
g 60 |- =
> !
Q
< !
= 40 ;
8 []
<
20 |- —@— Protocol | —m— Protocol 2 | |
—@— Protocol 3 —«— Protocol 4
—4— Protocol 5 Protocol 6
0r - - - Protocol 7 - ®- - Protocol 8 ||
| | | | |

|
0 5 10 15 20 25

Number of messages

Figure 11: Accuracy for increasing number of messages

The accuracy reaches 100% for all protocols when more
than 17 messages are available to the algorithm. For six of
the protocols the algorithm infers fields with 100% accuracy
when at least 7 messages are available. Protocol 5 and 7 need
more messages than other protocols to reach full accuracy
because three or four participants are involved in their com-
munication so more messages are needed to infer participant
addresses and find position of address fields.

4.2 Test against errors

We investigate how messages with errors affect the accuracy
of our algorithm because broken messages are common in
wireless captures. In this experiment, we create broken mes-
sages by setting the bits to random values beginning at a
random message position. This is the worst case for the algo-
rithm because some data remains valid in broken messages.

To calculate the accuracy for this experiment, we only con-
sider non-broken messages in eq. (3) because the algorithm
will not label broken parts of messages and the goal of this
experiment is to find out how resistant the algorithm is against
errors, that is, how many intact messages are labeled correctly
while having increasing number of broken messages.

We start for all protocols with a total of 30 messages, to
ensure they are labeled with 100% accuracy when no message
is broken. Then we start to increase the number of broken
messages. The result of this experiment is shown in fig. 12.

100 |- |
0001'\".\"..‘/%“'
80 - ': -
§ 1
R= 60 | i
'
Q
g
5 40| .
<

20 —e— Protocol 1 —=— Protocol 2
—e— Protocol 3 —e— Protocol 4

—+— Protocol 5 Protocol 6

0 | - -= - Protocol 7 - -~ - Protocol 8
| | | |

|
0 20 40 60 80 100

Percentage of broken messages

Figure 12: Accuracy for increasing number of messages with
error for a total of 30 messages with 100 runs per measurement

Results suggest, that the algorithm is quite robust against
errors. The majority of protocols are labeled with more than
80% accuracy when 20% of messages are broken.

4.3 Performance measurement

We evaluate the performance of our algorithm for an increas-
ing number of messages. In contrast to the previous section
we use real-world smart-home protocols to measure the per-
formance for practical protocols. We use three real world
captures for evaluation. First, the communication of two EnO-
cean devices using the Wireless Short Packet Protocol [13].
Second, a challenge-response procedure between a wireless
door lock and a remote control from german manufacturer
Homematic using the proprietary BidCoS protocol. Third,
a communication of two RWE Smarthome devices using a
unnamed proprietary protocol developed by eQ-3.

Table 1: Properties of tested protocols whereby x means field is not present and Np is the number of participants.

Comment Message Even/odd
Type message data

common protocol data 8/64 byte

2 unusual field sizes 2 data 8/64 byte

3 contains ackand 2 data 10/10 byte
CRC8 CCITT ack X

4 contains ack and 2 data 8/64 byte
CRC16 CCITT ack X

5 three participants 3 data 8/64 byte
with ack frame ack X

6 short address 2 data 8/64 byte

7 four participants, 4 data 8/8 byte
varying preamble ack X
size, varying sync kex 64/64 byte

8 nibble fields + LE 1 data 542/260 byte

We start with a number of eight messages because our
algorithm finds all physical fields in these real-world pro-
tocols when using at least eight messages. For every perfor-
mance measurement, the accuracy of field inference was 100%
throughout these experiments. The measurements were taken
on a computer with i7-6700K CPU@4.00GHz and 16GB
RAM. For every number of messages we take the mean of
100 performance measurements. Results are shown in fig. 13.

F i i i A

—— EnOcean N
0.6 [| - - - Homematic R
| RWE / |
E
§ 04/ I
= ’ |
£
2 0.2 |
N |

l l l l l
0 100 200 300 400 500

Number of messages

Figure 13: Algorithm performance for real-world smart-home
protocols with increasing number of messages

Results show that our algorithm performs in under one
second even for 500 messages. While the algorithm is de-
signed to work on few messages, it can also deal with a larger
number of messages. Therefore, a typical protocol capture
with around 10 messages can be bootstrapped by the algo-
rithm without a visible delay for the end-user. Since engines
of our algorithm work independently, the performance could
be further improved by parallelization. The results, however,
indicate this optimization is not required in practice.

Size of field in bit (BE=Big Endian, LE=Little Endian)

Preamble Sync Length SRC DST SEQNr CRC
16 8 8
72 16 8 24 24 16 (BE) X
16 16 8 16 16 8 8
16 16 8 X 16 X 8
16 16 8 16 16 X 16
16 16 8 X 16 X 16
16 16 8 16 16 8 X
16 16 8 X 16 X X
X 16 8 8 X 8 X
16 16 8 24 24 X 16
8 16 X X 24 X 16
24 16 X 24 24 X 16
4 4 16 (LE) X X 16 (LE) X

5 Related Work

In their survey Narayan et al. [15] describe several methods
for automated reverse engineering of network protocols. Most
of these algorithms are designed for application level proto-
cols like HTTP. In fact, we are not aware of a single approach
that focuses on the physical layer like our contribution. This
is a harder problem because we cannot use information from
lower OSI layers such as IP addresses.

Protocol Informatics (PI) [3] is a pioneer work in this
field. It uses the Needleman-Wunsch sequence alignment
algorithm [16] from bioinformatics to handle variable length
fields like USER alice and USER bob in FTP whereby the
username has a variable length. We do not use Needleman-
Wunsch algorithm as we do not expect variable length fields
or optional fields. We focus on physical layer binary protocols
and use a histogram to measure similarity between messages
because sequence alignment would be prone to transmission
errors that are common in wireless communications especially
if a Software Defined Radio is used for recording.

RolePlayer [12] and ScriptGen [14] are based on PI’s se-
quence alignment algorithm and infer the protocol state ma-
chine to the level necessary for adaptive replay. While they
are not designed purely for protocol reverse engineering they
can mimic both sides of a communication by learning the pro-
tocol from network traces, for example, in order to emulate
the command and control messages of a botnet.

Discoverer [11] improved this initial work. The authors
showed that Needleman-Wunsch algorithm is not suited for
messages with the same format as it would not consider, e.g.,
length fields. Their method is based on token classes (text or
binary) and Format Distinguisher (FD) fields such as \n or \ t.
A FD separates encapsulated protocols from each other, e.g.,
in CIFS/SMB protocol a NetBIOS header encapsulates an
SMB header, which in turn may encapsulate a RPC message.

Based on these FD fields they perform a recursive clustering to
the encapsulated protocols and finally merge results together.
Note, for wireless IoT protocols a distinction between text or
binary tokens is generally superfluous because these protocols
use a binary format for efficiency. Furthermore, IoT protocols
seldom rely on FD fields but rather preambles like 10101010.

Antunes et al. [1] boil down the problem of protocol reverse
engineering to building two finite automata: One automaton
describes the protocol format and the other one the protocol
state machine. The difficulty is to build the automata from
a limited sample set of the language represented by the au-
tomaton. Their approach is designed for text protocols with a
FIELD value structure such as USER bob. The space behind
USER is an easy detectable. Physical layer protocols, however,
do not consist of such a FIELD value structure.

The aforementioned approaches work on network traces.
In contrast to that several authors [6-8, 10, 18] investigate the
execution trace of the binary that implements the network
protocol. This is referred to as dynamic analysis and yields
additional information. For example, four consecutive bytes
can be identified as a DWORD, that is, a four-byte integer
if the execution trace reveals that they are processed as a
DWORD. We assume the program binary is not accessible
for analysis and therefore can not build on this idea.

The most comparable works to our approach are Field-
Hunter [4] and WASp [9]. FieldHunter is designed to infer
field types from network traces. Authors use statistical meth-
ods to identify interesting ranges in messages and propose
heuristics to derive field types. FieldHunter is designed to
work on both text-based and binary protocols but also op-
erates on a higher OSI layer as it, for example, uses IP ad-
dresses to infer host identifiers. WASp is a tool to automati-
cally analyze proprietary wireless byte protocols built on top
of IEEE 802.15.4. Additionally, WASp automatically gener-
ates spoofed packets based on found rules. Compared to our
work WASp relies on known field positions such as Preamble
or Length from the IEEE 802.15.4 standard.

Compared to previous work our contribution is novel in
two ways. First, our algorithm works on the physical layer
without making any assumption about the underlying proto-
col. Second, it is designed for wireless protocols, especially
those used in Internet of Things, and is optimized for smaller
datasets, that is, 10-100 messages compared to previous ap-
proaches that work on 1000-10000 messages. The reason for
this is that IoT communication cannot be as easily triggered
as, say, DNS because there are duty cycles on certain frequen-
cies and, moreover, you have to perform physical actions like
pressing a button in order to trigger messages.

6 Conclusion

We propose a framework for automatic protocol reverse en-
gineering especially aimed at proprietary wireless protocols
under consideration of their specifics such as RSSI and pream-

bles. Our solution can perform a bootstrap of an unknown
protocol but is also able to take prior knowledge into account.
We believe this will speed up and simplify security investiga-
tions of Internet of Things devices. The framework consists of
dedicated engines for inferring protocol fields such as Length
or Address and automatically creates message types based
on newly found and previously known fields (section 3.7).
In experiments, all fields of test protocols (appendix A) are
found with 100% accuracy if enough messages are captured.
A major design goal of the algorithm is to be robust against
errors. In experiments, field inference accuracy mostly stays
above 80% when 20% of messages contain random errors.

We verified our algorithm with three real-world protocols
(section 4.3) and it infers all physical fields when at least
eighth messages are available. While this is a limited test
set, we expect our solution to work on a variety of IoT wire-
less protocols as they share common structures, for example,
preamble and synchronization determined by hardware chips.

Finding fields in the payload such as an on/off bit of a
wireless socket or the temperature of a radiator valve is not in
the scope of this paper so it has to be manually performed by
the researcher. We believe, however, that finding preamble,
synchronization, addresses, sequence number and checksum
automatically will help security researchers because payloads
can be quickly identified when other fields are labeled.

Future work is the suggestion of attacks based on the found
fields and detection of cryptography in data payload as well.
Ultimately, an automated security score could be calculated
based on found cryptography and protocol complexity and,
thereby, giving the researcher an initial idea about the protocol
security right from the captured messages.

Availability

Our algorithm is available as open source software as part of
the Universal Radio Hacker [17] and integrated into its GUI
as shown in fig. 14. All shown labels and message types in
this screenshot were automatically found by the algorithm
after hitting the Analyze button.

Decoding errors for message:
aaaaaaaaaaaaaaaaaaa
0(0,00% s a4 s s a s oa s s a 7 4 9 a 7
O Mark diffs in protocol
S s a s a a2 s a2 s 6 7 & 8 & 71 & & 1 3

OShow only diffs in protocol
yyyyyyyyyyyyyyyyyyyyyy

o
‘ Posliee ' Bit: 1010 Hex: a Decimal: 10 1 column(s) selected

Message types

Labels for message #2
Name Edit Name Color Display format Order [Bit/Byte] Value

Bit MSB/BE 101010101010101010101010...
Bit MSB/BE 011001110110100001100111...
Decimal MSB/BE 6

Hex MSB/BE 1b6033

Hex MSB/BE 78289

Hex MSB/BE 322b (should be 322b)

= Default (rwe) = = preamble
Inferred #1 = synchronization
Inferred #2 = = length

= Inferred #3
Inferred #4

= destination ...
= source address

" = moEE O

Add new message type * checksum

Figure 14: Integration into URH

References

[1]

[5]

[6]

[10]

[11]

[12]

[13]

Jodo Antunes, Nuno Neves, and Paulo Verissimo. Re-
verse engineering of protocols from network traces.
pages 169-178.

aweatherguy. Oregon Scientific RF Protocol Descrip-
tion.

Ma Beddoe. Network protocol analysis using bioinfor-
matics algorithms.

Ignacio Bermudez, Alok Tongaonkar, Marios Iliofotou,
Marco Mellia, and Maurizio M. Munafo. Towards auto-
matic protocol field inference. 84:40-51.

Eric Blossom. GNU radio: Tools for exploring the radio
frequency spectrum. 2004:4.

J. Caballero, P. Poosankam, C. Kreibich, and Song D.
Dispatcher: Enabling active botnet infiltration using au-
tomatic protocol reverse-engineering. pages 621-634.

Juan Caballero and Dawn Song. Automatic protocol
reverse-engineering: Message format extraction and
field semantics inference. 57(2):451-474.

Juan Caballero and Dawn Song. Polyglot : Automatic
Extraction of Protocol Message Format using Dynamic
Binary Analysis Polyglot : Automatic Extraction of Pro-
tocol Message Format using. pages 317-329.

Kibum Choi, Yunmok Son, Juhwan Noh, Hocheol Shin,
Jaeyeong Choi, and Yongdae Kim. Dissecting Cus-
tomized Protocols: Automatic Analysis for Customized
Protocols based on IEEE 802.15.4. In Proceedings of
the 9th ACM Conference on Security & Privacy in Wire-
less and Mobile Networks - WiSec ’16, pages 183—-193.
ACM Press.

Paolo Milani Comparetti, Gilbert Wondracek, Christo-
pher Kruegel, and Engin Kirda. Prospex: Protocol spec-
ification extraction. pages 110-125.

Weidong Cui, Jayanthkumar Kannan, and Helen J Wang.
Discoverer: Automatic Protocol Reverse Engineering
from Network Traces. (2):199-212.

Weidong Cui, Vern Paxson, Nicholas C Weaver, and
Randy H Katz. Protocol-Independent Adaptive Replay
of Application Dialog. 4(4):279-293.

ISO. Information technology — Home electronic system
(HES) architecture — Part 3-11: Frequency modulated
wireless short-packet (FMWSP) protocol optimised for
energy harvesting — Architecture and lower layer proto-
cols.

[14]

[15]

[16]

(17]

(18]

Corrado Leita, Ken Mermoud, and Marc Dacier. Script-
Gen: An automated script generation tool for honeyd.
2005:203-214.

John Narayan, Sandeep K. Shukla, and T. Charles
Clancy. A Survey of Automatic Protocol Reverse Engi-
neering Tools. 48(3):1-26.

Saul B Needleman and Christian D Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. 48(3):443-453.

Johannes Pohl and Andreas Noack. Universal Radio
Hacker: A Suite for Analyzing and Attacking Stateful
Wireless Protocols. In 12th USENIX Workshop on Offen-
sive Technologies (WOOT 18). USENIX Association.

Gilbert Wondracek, Paolo Milani Comparetti, Christo-
pher Kruegel, Engin Kirda, and Scuola Superiore S.
Anna. Automatic Network Protocol Analysis. pages
1-18.

A Protocols

In this section we describe the protocols used for experiments
in section 4. The payload for each protocol was, if not stated
otherwise, 8 byte for every even and 64 byte for every odd
message. The payload data was randomly generated. The
sending participant was changed cyclical after each message
to ensure every participant sends a message. The only ex-
ception is for protocols that contain an ACK message type:
for such protocols an ACK is sent by the receiver for every
incoming message.

A.1 Protocol 1

There were 2 participants involved in communication: Alice
(0xdead) and Bob (0xbeef). The protocol has one message
type with the following fields:

e preamble: Oxaa

e synchronization: 0x1337
e length: 8 bit

e source address: 16 bit

e destination address: 16 bit

e sequence number: 8 bit

A.2 Protocol 2

There were 2 participants involved in communication: Al-
ice (0xdead0l) and Bob (6xbeef24). The protocol has one
message type with the following fields:

e preamble: Oxaaaaaaaaaaaaaaaaaa

e synchronization: 0x1337

length: 8 bit

source address: 24 bit

destination address: 24 bit

sequence number: 16 bit (big endian)

A.3 Protocol 3

There were 2 participants involved in communication: Alice
(0x1337) and Bob (0xbeef). The protocol has 2 message
types with the following fields:

e data

— preamble: Oxaaaa
— synchronization: 0x9a7d
— length: 8 bit

— source address: 16 bit

— destination address: 16 bit
— sequence number: 8 bit

— payload: 10 byte

— checksum: CRC8 CCITT

e ack

— preamble: Oxaaaa

— synchronization: 0x9a7d
— length: 8 bit

— destination address: 16 bit

— checksum: CRC8 CCITT

A.4 Protocol 4

There were 2 participants involved in communication: Alice
(0x1337) and Bob (0xbeef). The protocol has 3 message
types with the following fields:

e data

preamble: 0x8888

synchronization: 0x9a7d

length: 8 bit

source address: 16 bit

destination address: 16 bit

payload: 8 byte
checksum: CRC16 CCITT

o data2

preamble: 0x8888

— synchronization: 0x9a7d
— length: 8 bit

— source address: 16 bit

— destination address: 16 bit
— payload: 64 byte

— checksum: CRC16 CCITT

— preamble: 0x8888

— synchronization: 0x9a7d
— length: 8 bit

— destination address: 16 bit
— checksum: CRC16 CCITT

A.5 Protocol 5

There were 3 participants involved in communication: Alice
(0x1337), Bob (6xbeef) and Carl (0xcafe). The protocol has
2 message types with the following fields:

e data

preamble: Oxaaaa

synchronization: 0x9a7d
length: 8 bit

source address: 16 bit

destination address: 16 bit

sequence number: 8 bit

e ack
— preamble: Oxaaaa
— synchronization: 0x9a7d
— length: 8 bit
— destination address: 16 bit
A.6 Protocol 6

There were 2 participants involved in communication: Alice
(0x24) and Bob (0xff). The protocol has one message type
with the following fields:

e synchronization: 0x8e88
e length: 8 bit
e source address: 8 bit

e sequence number: 8 bit

A.7 Protocol 7

There were 4 participants involved in communication: Alice
(0x313370), Bob (0x031337), Charly (0x110000) and Daniel
(0x001100). The protocol has 3 message types with the fol-
lowing fields:

e data

— preamble: Oxaaaa

— synchronization: 0x0420

e kex

A8

length: 8 bit

destination address: 24 bit
source address: 24 bit
payload: 8 byte

checksum: CRC16 CC1101

preamble: Oxaa
synchronization: 0x2222
destination address: 24 bit
checksum: CRC16 CC1101

preamble: Oxaaaaaa
synchronization: 0x6767
destination address: 24 bit
source address: 24 bit
payload: 64 byte
checksum: CRC16 CC1101

Protocol 8

The protocol has 2 message types with the following fields:

e datal

preamble: Oxa

synchronization: 0x9

length: 16 bit (little endian)

sequence number: 16 bit (little endian)

payload: 542 byte

o data2

preamble: Oxa

synchronization: 0x9

length: 16 bit (little endian)

sequence number: 16 bit (little endian)

payload: 260 byte

	Introduction
	Terminology and Design Assumptions
	Automatic Wireless Reverse Engineering
	Preprocessing
	Finding the preamble
	Sync Word Identification

	Field Inference Overview
	Length Field Engine
	Address Field Engine
	Assign Participants
	Find Address Candidates
	Find Address Fields

	Sequence Number Field Engine
	Checksum Field Engine
	Message Type Assignment
	Considering a priori knowledge

	Experimental Validation
	Test against number of messages
	Test against errors
	Performance measurement

	Related Work
	Conclusion
	Protocols
	Protocol 1
	Protocol 2
	Protocol 3
	Protocol 4
	Protocol 5
	Protocol 6
	Protocol 7
	Protocol 8

