
ARTIFACT
EVALUATED

PASSED

Distributed Password Hash Computation on
Commodity Heterogeneous Programmable Platforms

Branimir Pervan
branimir.pervan@fer.hr

University of Zagreb, Croatia

Josip Knezovic
josip.knezovic@fer.hr

University of Zagreb, Croatia

Katja Pericin
katja@reversinglabs.com

ReversingLabs Ltd.

Abstract
In this paper, we present the Cool Cracker Cluster CCC: a het-
erogeneous distributed system for parallel, energy–efficient,
and high–speed bcrypt password hash computation. The clus-
ter consists of up to 32 heterogeneous nodes with Zynq-7000–
based SoCs featuring a dual–core, general–purpose ARM
processor coupled with FPGA programmable logic. Each
node uses our custom bcrypt accelerator which executes the
most costly parts of the hash computation in programmable
logic.

We integrated our bcrypt implementation into John the
Ripper, an open source password cracking software. Mes-
sage Passing interface (MPI) support in John the Ripper is
used to form a distributed cluster. We tested the cluster, try-
ing different configurations of boards (Zedboards and Pynq
boards), salt randomness, and cost parameters finding out
that password cracking scales linearly with the number of
nodes. In terms of performance (number of computed hashes
per second) and energy efficiency (performance per Watt),
CCC outperforms current systems based on high–end GPU
cards, namely Nvidia Tesla V100, by a factor of 2.72 and 5
respectively.

1 Introduction

Password–based authentication and password hashing are cur-
rently the most common methods of securely storing user cre-
dentials in computer–based information systems and services.
However, the theft of personal data from websites causes
substantial damage in compromising such systems. In addi-
tion, these leakages helped the perpetrators to gain valuable
information about user passwords compromising other, previ-
ously not breached systems. In order to prevent the password
leakage once the hashes have been obtained, the only bar-
rier remaining for the attacker is the cost of cracking the
password by computing the hashes from the list of password
candidates. In general, hashing functions are fast to evaluate
and prone to offline dictionary attacks. In order to address

this issue, hashing functions used in password protection in-
clude costly looping and heavy usage of resources [9, 11, 12].
This technique parametrized inside the hashing functions as
the so–called cost parameter enables algorithm resistance
against the improvements in computation capabilities of fu-
ture hardware such as Field-Programmable Gate Arrays (FP-
GAs), Application-Specific Integrated Circuits (ASICs) and
Graphic-Processing Units (GPUs). Three most common pass-
word hashing functions supporting adjustable cost parameters
are PBKDF2 [9], bcrypt [12] and scrypt [11].

In password–hashing applications, hashing algorithms ad-
ditionally utilize randomly generated, user–specific salts to
prevent the pre–computed rainbow tables attacks which use
reverse lookup tables of precomputed hashes in order to avoid
costly computation for common passwords. Random salts
force the attacker to repeatedly guess (compute) password can-
didates for each password–salt pair, even in the case when two
different users have the same password. The cost to recover
the user password depends on the cost of a single password
hash computation and the number of guesses. This implies
that the cost of cracking the password can be increased by
either increasing the strength of the chosen password or in-
creasing the strength of the cryptographic hash function used.

To overcome high computational power demand, parts of
password–cracking software, as well as cryptography process-
ing in general, can be offloaded to GPUs or programmable
hardware. For example, [5] shows a speedup of nearly 4 times
of RSA decrypt primitives executed on GPU. Sprengers and
Batina [13] demonstrated the implementation of MD5 hash-
ing for GPU, speeding up the calculation for 25 to 30 times
over the CPU implementation. They also report other authors
achieving speedups when implementing hash functions for
GPU, from 4 to 20 times over traditional CPU implemen-
tations, namely Bernstein et al. [2, 3] (ECC), Manavski et
al. [8] (AES) and Harrison et al. [4] (RSA). To demonstrate
a more recent example, a Hashcat community managed to
achieve ∼54k cracks per second (c/s) using NVIDIA Tesla
V100 GPU [6].

When considering large–scale attacks on lists of hashed

passwords, one must take energy consumption into consider-
ation, due to the fact that a single attack can last on a scale
of days or even months and that both CPUs and GPUs con-
sume significant amounts of energy. Implementing password-
cracking software (or parts of) in programmable hardware can
both mitigate energy consumption and provide higher perfor-
mance; energy consumption since FPGA or ASIC chips have
traditionally small energy footprint and high performance
since hash calculations (or parts of) would be accelerated on
customized hardware. An example of FPGA–accelerated hash
calculation, namely bcrypt hash, can be found in [14].

In our research, we decided to focus on bcrypt algorithm,
mostly because of its popularity in password hashing for
web–based systems. By varying its cost parameter, one can
easily answer to the increase in conventional computation
capabilities. On top of that, it is the default password hash
algorithm for OpenBSD and some Linux distributions such as
OpenSUSE. In addition, it is reasonably harder to implement
efficient bcrypt in GPUs than in FPGAs because of the high
demand for cache–unfriendly RAM access.

The rest of the paper is organized as follows: In Section 2
we give the background intro in terms of general bcrypt hash-
ing and our single-node heterogeneous implementation with
custom accelerator implemented in programmable logic, com-
paring it with other high–end platforms. The high–level archi-
tecture of the cluster is given in Section 3. Section 4 describes
our experiments and methodology used to measure the clus-
ter’s performance and energy efficiency. We also report the
results for various test cases. Lastly, Section 5 sums up our
conclusions and contributions, while listing other perspectives
for future work.

2 Background

This section introduces the bcrypt hashing method and our
previous research on energy–efficient, single–node implemen-
tation of bcrypt on the Zedboard [1]: a Zynq-7000 SoC plat-
form featuring a two-core ARM–based processing system
(PS) coupled with FPGA programmable logic (PL) [7].

2.1 Bcrypt
Bcrypt is a password hashing method based on Blowfish block
cipher, which is structured as a 16–round Feistel network [12].
The key features are tunable cost parameter and pseudoran-
dom access to memory which together constitute compute–
intensive part of the algorithm aimed to resist the brute–force
attacks. Blowfish encryption uses a 64–bit input and a P-box
(in bcrypt, initially holding the password being hashed) to
calculate addresses used to randomly access four 1 KB large
S-boxes. Bcrypt hashing scheme has two phases, as listed
in Algorithm 1. The first phase uses the EksBlowfishSetup
procedure from Algorithm 2 to initialize the state (line 1).
Next, the state obtained is used with Blowfish encryption in

the electronic codebook (ECB) mode to encrypt the 192–bit
string “OrpheanBeholderScryDoubt” 64 times (lines 3 and 4).
The returned value is the resulting password hash [12].

Algorithm 1 bcrypt(cost, salt, key) [12]
1: state← EksBlow f ishSetup(cost,salt,key)
2: ctext← “OrpheanBeholderScryDoubt”
3: repeat(64)
4: ctext← EncryptECB(state,ctext)
5: return Concatenate(cost,salt,ctext)

Blowfish encryption is used by the EksBlowfishSetup al-
gorithm listed in Algorithm 2. The encryption is used by
ExpandKey function (lines 2, 4 and 5) to derive the state de-
termined by the values stored in S-boxes and P-box. This
algorithm has three inputs: cost, salt and key. The cost param-
eterizes how expensive the key setup process is (line 3), while
salt is a 128-bit random value used to prevent the same pass-
words having the same hash value or efficient guessing the
common passwords with precomputed hashes. The third pa-
rameter, the encryption key, is the user–chosen password [12].
Lines 4 and 5 of Algorithm 2 are swapped in actual imple-
mentations, including in OpenBSD’s original implementation
that predates the USENIX 1999 paper by two years [12].

Algorithm 2 EksBlowfishSetup(cost, salt, key) [12]
1: state← InitState()
2: state← ExpandKey(state,salt,key)
3: repeat(2cost)
4: state← ExpandKey(state,0,salt)
5: state← ExpandKey(state,0,key)
6: return state

2.2 Single–node hardware evaluation
This section provides our single–node implementation perfor-
mance updated with the results on the Pynq board and com-
pared with new platforms such as high–end GPUs and CPUs.
Details of the implementation, communication, and partition-
ing of the work between the PS and PL are provided in our
previous work [7]. In general, we designed and implemented
the bcrypt accelerator cores we used in the PL and integrated
the design into the popular open source password cracking
program – John the Ripper (JtR) [10]. JtR, which runs on PS,
performs control–oriented tasks and prepares the password
candidates, while PL containing our bcrypt accelerators exe-
cutes the most costly loop of the Algorithm 2 (lines 3 through
5). Password candidates are sent to our bcrypt accelerator
cores which compute hashes in parallel and send them back
to PS for comparison with the unknown hash under attack.
This work–partitioning enabled us to exploit advanced pass-
word generation schemes already available in JtR together

Table 1: Post-Implementation Resource utilization per node
Resource Utilization Available Utilization (%)
LUT 34,073 53,200 64.05
LUTRAM 416 17,400 2.39
FF 7,919 106,400 7.44
BRAM 140 140 100.00

with intelligent password selections and permutation, such as
using Markov chains to predict more frequent letters used in
natural language.

Table 1 shows the resource utilization for our Zedboard
implementation. The limiting resource is the Block RAM
(BRAM) which we fully utilize. We were able to instantiate
the maximum of 56 bcrypt instances in PL each computing
two bcrypt hashes resulting in 112 computations performed
in parallel.

Fig. 1 shows the performance of our single–node Zynq-
7000 SoC–based implementation and compares it with other
popular platforms used for password guessing. We present two
metrics: performance as the number of computed hashes or
cracks per seconds (c/s) and energy efficiency as the number
of computed hashes per Watt–second (c/Ws). Blue–shaded
bars show the results for cost 5, while green–shaded bars
show the results for cost 12. Selected cost settings are chosen
because cost 5 is traditionally used in benchmarking, and cost
12 is more suitable for practical uses of password storage. For
energy efficiency metric, we took the methodology in favor
of compared platforms (desktop–class CPUs and GPUs) for
which we take the specified Thermal design power (TDP) into
calculation (without the power consumed by other parts of
the system), while for our implementations we use the whole
system power consumed during the program execution. We
show the results using the logarithmic scale.

The first set of bars represent the result of our implemen-
tation for the Zedboard platform [1] (XC7Z020 chip), the
second set gives the results on the same platform reported by
Wiemer and Zimmermann [14]. Next, we report our imple-
mentation for the simpler Pynq board [15] (same XC7Z020
chip), and for more PL abundant ZC706 board [16](XC7Z045
chip). Finally, we report the results obtained for Intel’s Xeon
Phi 5110P (obtained from [7]), Nvidia’s Tesla V100 16GB
(obtained and extrapolated from cost 5 for cost 12 from [6]),
Nvidia’s GTX 1080 FE GPU (obtained from [6]), Intel Core
i7-4510U 2.0 GHz CPU, and AMD Ryzen 7 1800X CPU. For
all conducted tests on other platforms (CPUs and GPUs), we
used the same bleeding–jumbo 1.8 version of JtR available
at the Openwall’s Git repository [10]. For our heterogeneous
platforms, we replaced software–based bcrypt version with
our accelerated version in PL. For CPU–based tests: Intel
Core i7 and Amd Ryzen 7 we compiled JtR using OpenMP
support and run the tests on Linux–based operating system
using 8 and 16 GB memory respectively.

Compared to CPUs, our heterogeneous platforms achieve
comparable performances with substantially better energy effi-
ciency for both cost parameters. In fact, our Zynq-7045–based
implementation has performance comparable to highly perfor-
mant GPUs and Xeon Phi with an order of magnitude better
energy efficiency. For cost 5, results obtained by Weiemer and
Zimmerman for the same platform (Zedboard) are slightly bet-
ter than ours. However, our cost 12 performance and energy
efficiency slightly outperform their Zedboard results. Finally,
our Zynq-7045 implementation (approximately 4 times more
logic than Zynq-7020, and thus bcrypt cores) outperforms
all compared CPU and GPU platforms in terms of energy
efficiency (Xeon Phi and GTX 1080 FE for two orders of
magnitude), and all but Nvidia’s Tesla V100 in terms of per-
formance. It also outperforms Zynq-7020–based implemen-
tations in terms of performance while retaining comparable
energy efficiency. Note that energy efficiencies of Xeon Phi
and GTX 1080 FE are evidently poor (below 1 c/Ws for
cost 12), making them unusable for energy–aware real pass-
word attacks. On the other hand, our heterogeneous platforms
with initial purchase costs comparable to high–end GPUs and
Xeon Phi cards, and with orders of magnitude better energy
efficiency could be effectively used for long–term password
attacks, even for the cost settings of 10 and more that are used
in contemporary password–based systems.

3 Cool Cracker Cluster CCC

In this section we describe our cluster–based implementation
of bcrypt–accelerated Cool Cracker Cluster CCC. We ex-
ploit the fact that dictionary–based password cracking is an
embarrassingly parallel problem: if a dictionary of password
candidates is given, one simply has to divide the work of pro-
cessing different segments of the dictionary and orchestrate it
to available computational nodes.

Fig. 2 illustrates the whole hardware/software stack used in
CCC . The computational unit in our cluster is a single node,
in our case Zedboard [1] or the Pynq board [15]. Nevertheless,
any board containing Zynq–based SoC could be used, which
we exploit by extending our design to ZC706 board, although
without adding it to the cluster. Zedboard and Pynq board
offer equivalent computational capability in terms of cracks
per second thus making our cluster consist of homogeneous
nodes. Every node runs the JtR on the Linux–based OS with
our bcrypt accelerator implemented in PL [7]. We utilize
the Message Passing Interface (MPI) programming model
integrated into the JtR for distributed password cracking. To
form the cluster, we used standard Ethernet to interconnect
computational nodes, making networking relatively easy and
cheap in terms of infrastructure and energy consumption. In
the cluster, one node acts as a master while the rest of the
nodes are slaves. The master is responsible for:

• Starting, stopping, orchestrating and distributing work

Figure 1: Performance and energy efficiency of various platforms

Figure 2: Block diagram of Cool Cracker Cluster

packages of a cracking job within slaves and himself;

• Syncing in-job events – since the cluster cracks one
bcrypt hash at the time, synchronization has to be made
if one computational node successfully cracks a hash or
if a computational node finishes calculating hashes for
its own portion of password candidates;

• Hosting the NFS network file system used to exchange
data and events, dictionary with password candidates
and list of hashes to be cracked.

We used one Zedboard as the master managing the job, mak-
ing it a permanent resident of the cluster even in configura-
tions with Pynq boards (i.e. configuration with 16 Pynqs, in
fact, consists of 1 Zedboard and 15 Pynq boards). The most
powerful cluster contained 32 heterogeneous computational
nodes, 8 Zedboards (1 of which was the master) and 24 Pynq
boards interconnected with two network switches. We were
not able to reach experimentally the upper bound on the num-
ber of computational nodes, although we could argue that, at
some point, the cluster scaling reaches the point of diminish-

ing results due to initial setup time exceeding computing time
together with the overhead of managing the large cluster.

4 Cluster Results

This section presents the results obtained by testing the CCC
and describes the methodology we used to measure perfor-
mance and energy efficiency.

4.1 Methodology
Table 2 presents the configurations of the CCC which we
tested with the same parameters:

• A hashlist consisting of hashes of 5 preselected test pass-
words,

• A wordlist consisting of 2 million leaked passwords from
the RockYou breach.

We modified the wordlist (dictionary) by randomly insert-
ing our 5 test passwords in order to make the cluster nodes
find the matching hash(es). To test the cluster thoroughly,
passwords in the testing hashlist were hashed with two dif-
ferent cost settings (Algorithm 2, line 3) with both random
and fixed salts, yielding four different testing hashlists. Al-
though real applications of bcrypt algorithm commonly use
higher costs, we retained cost 5 since the community uses it
for benchmarking purposes. With cost 10 we tried to get an
idea of how the cluster would behave on higher costs since
using even higher costs would render the cluster unusable
for testing if we wanted to retain consistency. For example,

Table 2: Configurations table

Consisted of Number of concrete nodes
Zedboards Pynqs Switches

32 Mixed 8 24 2
24 Pynqs 1 23 2
24 Mixed 8 16 2
16 Pynqs 1 15 1
16 Mixed 8 8 1
8 Pynqs 1 7 1
8 Zedboards 8 0 1
8 Mixed 4 4 1
4 Pynqs 1 3 1
4 Zedboards 4 0 1
4 Mixed 2 2 1
2 Zedboards 2 0 1
2 Mixed 1 1 1
1 Pynq 0 1 0
1 Zedboard 1 0 0

under the aforementioned assumptions, for cost 12 and one
computational node, cracking would take more than 24 hours.
Real applications generate random salts for every password
which is to be hashed. We tested our cluster with fixed salts
hashes as well to implicitly demonstrate how salt randomness
radically improves the security of the hashed passwords and
consequently the whole information system.

Every test set was run four times, on a clean startup of
the cluster. The first measurement was discarded as it was
only used to prevent “cold start” of the cluster, helping elimi-
nate any known or unknown potential cache or similar effect.
Presented results are statistically composed of the last three
measurements in the form of average and standard deviation.
Energy consumption of the cluster (compute nodes and net-
work switches) was measured using high–quality wattmeter
which sampled power network with a frequency of 1 Hz. After
the test had started, we waited for approximately 30 seconds
(latency needed to let the power consumption stabilize) and
then took 10 measurement samples from the watt meter. Addi-
tionally, we measured the performance of the JtR’s integrated
testing (–test) option. The result shown in Table 3 is the aver-
age of 10 successive runs of JtR with –test flag. Idle power
consumption was measured using the same methodology as
when the cluster was under load. When idle, 10 samples were
taken after the cluster stabilized.

4.2 Results

Performance and scaling results are presented using processed
data tables and visualized through graphical representations.
Due to the limited space and thus inability to completely de-
scribe test results, we chose to display Mixed configurations
(Table 2) to balance between the difference in energy effi-

Table 3: Idle power consumption [W] and integrated test
performance [c/s]

Consisted of Power [W] Performance [c/s]
32 Mixed 125.7 ± 0.3 146,333.6 ± 96.8
24 Pynqs 85.2 ± 0.3 109,737.6 ± 75.6
24 Mixed 100.9 ± 0.3 109,785.4 ± 310.2
16 Pynqs 58.2 ± 0.1 73,113.8 ± 223.7
16 Mixed 75.6 ± 0.1 73,175.4 ± 217.2
8 Zedboards 51.3 ± 0.1 36,663.2 ± 153.5
8 Pynqs 33.5 ± 0.1 36,545.6 ± 39.2
8 Mixed 40.0 ± 0.1 36,570.9 ± 112.0
4 Zedboards 28.1 ± 0.1 18,277.0 ± 95.9
4 Pynqs 20.3 ± 0.1 18,289.6 ± 90.8
4 Mixed 23.1 ± 0.1 18,237.9 ± 57.2
2 Zedboards 17.0 ± 0.1 9,129.4 ± 47.0
2 Mixed 14.4 ± 0.0 9,091.6 ± 47.0
1 Zedboard 5.1 ± 0.1 4,564.7 ± 5.0
1 Pynq 2.7 ± 0.1 4,552.6 ± 4.7

Figure 3: Total cracking time for cost 5 and mixed nodes

ciency between Zedboards and Pynqs. This does not present
a shortcoming since the performance of different permuta-
tions within the same number of computational nodes stays
relatively constant and differs less than 0.5%. Furthermore,
efficiency consistency is more important than the raw and
absolute value of energy efficiency. On the other hand, to
maximize energy efficiency, one should favor Pynq–based
configurations, since we measured Pynq’s power consump-
tion to be near 46% lower than Zedboard’s. This was most
likely due to having fewer peripherals and simpler design,
since it features the same SoC and power supply as Zedboard.
Ground case data is shown in Table 3. Given figures present
near-linear scaling minding the logarithmic distribution of
values on the horizontal axis.

Fig. 3 shows the time required to finish the whole guessing
job specified by subsection 4.1 for cost 5 with both fixed and
random salts. Fixed salts times are significantly shorter for

Figure 4: Performance–Power ratio for cost 5

Figure 5: Total cracking time for cost 10 and mixed nodes

low node count due to JtR’s generation of on–the–fly Rain-
bow tables. We obtained the linear scaling of the performance,
i.e. linear decrease in job time for both cases. Fig. 4 gives the
efficiency in c/Ws for cost 5 setting and for various configura-
tions of cluster nodes. We observe a drop on 2 nodes when we
move from Single node to MPI–based cluster which includes
network switches. However, the gap is reduced as the number
of nodes increases. As expected, Pynq–based configuration
demonstrate the best energy efficiency. High drop in Pynq test
case is caused by the fact that 2 node cluster, besides Pynq,
featured one Zedboard (energy significantly more inefficient)
and an additional network switch. However, we can as well
observe the linear growth of efficiency after the initial drop.
Mixed configuration generates false superlinear scaling since,
on higher node count, more energy–efficient Pynq boards
outnumber Zedboards.

Fig. 5 and 6 illustrate the same measurements for cost 10:
total job time, and energy efficiency respectively. We again
obtain a scalable linear decrease in cracking time, implying
the increase in performance. Again, fixed salts times are sig-
nificantly shorter for low node count due to JtR’s generation

Figure 6: Performance–Power ratio for Cost 10

Figure 7: Cracking speedup scaled to 1 Zedboard

of on–the–fly Rainbow tables. Energy efficiency, which is sig-
nificantly lower than for cost 5 due to increased computational
complexity, experiences the same drop when we move from
a single node to multi–node cluster but on a much smaller
scale than drop when running cost 5 test set. We observe less
steep growth of efficiency due to smaller performance and
less variance in performance in comparison to cost 5. It is
worth mentioning that cost 10 can be considered to be used
in production systems and that, with our cluster, a relatively
trivial password can be efficiently revealed under 20 minutes.

Fig. 7 shows the speedup of our mixed CCC cluster config-
urations normalized to our initial single–node Zedboard for
cost 5 and 10 with random salts. We observe linear scaling of
the cluster cracking performance. We achieved slightly better
scaling for cost 10 (speedup 28.55 for 32 nodes, 22.07 for 24
nodes) than for the cost 5 (speedup 24.65 for 32 nodes, 18.44
for 24 nodes).

Table 4 compares the cracking performance and energy ef-
ficiency of our 32–node CCC and NVIDIA Tesla V100 GPU
as reported by Hashcat, another popular password guessing
software [6]. The results shown are for cost 5 with random

Table 4: Nvidia Tesla V100–SXM2–16GB vs. CCC
Platform Price Performance Efficiency
Tesla V100 ∼6100$ ∼54k c/s ∼180 c/Ws
cCc (32 nodes) ∼6400$ ∼147k c/s ∼900 c/Ws

salts. Our CCC cluster outperforms Tesla GPU in both perfor-
mance by a factor of 2.7 achieving ∼147k c/s compared to
∼54k c/s achieved with Tesla V100, and efficiency by a factor
of 5 (∼900 c/Ws compared to Tesla’s ∼180 c/Ws. As for the
initial acquisition costs, single Pynq board cost approximately
$200 which makes $6400 for the 32–node system which in
the roughly in the same price range of Tesla 16GB V100 card.

5 Conclusion and future work

In this paper, we present the heterogeneous distributed system
for parallel and energy–efficient bcrypt password hash compu-
tation. The cluster consists of up to 32 heterogeneous nodes
containing a dual–core ARM CPU PS and PL. We used the
PL to implement our custom bcrypt accelerator. We further ex-
tend our design into the MPI–based distributed cluster of het-
erogeneous nodes, each capable to efficiently compute bcrypt
hashes for provided password candidates. In terms of perfor-
mance and energy efficiency, our cluster scaled well in both
performance (c/s), and energy efficiency (c/Ws). Furthermore,
this type of clustering has shown itself as a relatively simple
yet powerful model, because heterogeneous boards used as
computational nodes are: energy efficient, cheap, equipped
with PL capable of performing accelerated tasks efficiently,
and capable of running full–blown operating system which
eases the programming of such platforms.

Our Future research will include investigating into hetero-
geneity on a higher level: how to incorporate multiple boards
with different SoC chips into a functional cluster. By introduc-
ing additional, even more energy–efficient nodes, we aim to
further increase the energy efficiency of the cluster. Currently,
computational nodes in the cluster are tightly coupled, mostly
due to using MPI in a communication and parallelization
layer. Also, support for resilience, dynamic addition of nodes
to the cluster, and dynamic work partitioning is in our future
plans. We would also like to further optimize our hardware
implementation of the bcrypt accelerator core and investigate
into task scheduling techniques which would consider the
optimal exploitation of the computational resources on nodes
of different processing capabilities, i.e. mixing SoCs with
different PL size.

References

[1] AVNET. Zedboard, March 2019.

[2] Daniel J. Bernstein, Hsieh-Chung Chen, Chen-Mou
Cheng, Tanja Lange, Ruben Niederhagen, Peter

Schwabe, and Bo-Yin Yang. Ecc2k-130 on nvidia
gpus. In Guang Gong and Kishan Chand Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010, pages
328–346, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[3] Daniel J Bernstein, Hsueh-Chung Chen, Ming-Shing
Chen, Chen-Mou Cheng, Chun-Hung Hsiao, Tanja
Lange, Zong-Cing Lin, and Bo-Yin Yang. The billion-
mulmod-per-second pc. In Workshop record of SHARCS,
volume 9, pages 131–144, 2009.

[4] Owen Harrison and John Waldron. Practical symmetric
key cryptography on modern graphics hardware. In
USENIX Security Symposium, volume 2008, 2008.

[5] Owen Harrison and John Waldron. Efficient acceler-
ation of asymmetric cryptography on graphics hard-
ware. In Bart Preneel, editor, Progress in Cryptology –
AFRICACRYPT 2009, pages 350–367, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[6] hashcat. hashcat - advamced password recovery, March
2019.

[7] Katja Malvoni, Solar Designer, and Josip Knezovic. Are
your passwords safe: Energy-efficient bcrypt cracking
with low-cost parallel hardware. In 8th {USENIX}Work-
shop on Offensive Technologies ({WOOT} 14), 2014.

[8] Svetlin A Manavski et al. Cuda compatible gpu as
an efficient hardware accelerator for aes cryptography.
Signal Processing and Communications, 2007, 2007.

[9] Ed K. Moriarty, B. Kaliski, and A.Rusch. Pkcs #5:
Password-based cryptography specification version 2.1.
RFC 8018, RFC Editor, January 2017.

[10] Openwall. John the Ripper password cracker, March
2019.

[11] Colin Percival and Simon Josefsson. The scrypt
Password-Based Key Derivation Function. RFC 7914,
RFC Editor, August 2016.

[12] Niels Provos and David Mazières. A Future-Adaptable
Password Scheme. Proceedings of the FREENIX
Track:1999 USENIX Annual Technical Conference,
1999.

[13] Martijn Sprengers and Lejla Batina. Speeding up gpu-
based password cracking. SHARCS, 2012.

[14] Friedrich Wiemer and Ralf Zimmermann. High-speed
implementation of bcrypt password search using special-
purpose hardware. In 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14),
pages 1–6, Dec 2014.

[15] Xilinx. Pynq: Python productivity for zynq, March
2019.

[16] Xilinx. Xilinx Zynq-7000 SoC ZC706 Evaluation Kit,
March 2019.

	Introduction
	Background
	Bcrypt
	Single–node hardware evaluation

	Cool Cracker Cluster cCc
	Cluster Results
	Methodology
	Results

	Conclusion and future work

