
MIN()imum Failure:
EMFI Attacks against USB Stacks

Colin O’Flynn
Dalhousie University

Abstract
Electromagnetic Fault Injection (EMFI) allows generation

of faults in a target device without needing to physically mod-
ify the target. This paper uses EMFI to recover secret data
from two devices without opening the enclosure of the de-
vices, making the attack possible without leaving any physical
evidence. This is demonstrated on two devices: a Trezor bit-
coin wallet and a Solo Key open-source FIDO2 authentication
key.

The specific vulnerable code attacked with EMFI is part
of the USB stack. The attack allows a host-provided value
of wLength to be used in reading back up to 64 Kbyte of
memory from the target device. Examples of this vulnerability
are given for three popular general-purpose RTOSes.

To assist with evaluation of this attack, the open-source
PhyWhisperer-USB hardware is also introduced. This tool
provides hardware USB decoding and pattern matching to
allow cycle-accurate fault injection timing.

1 Introduction

The USB stack is relatively complicated, and embedded de-
vices with USB have had a number of vulnerabilities found
due to incorrect parsing of USB messages. For this reason,
USB fuzzing tools have been created to attempt to find useful
bugs an attacker could target [7, 14]. This work was acceler-
ated by Travis Goodspeed with the introduction of Facedancer,
an open-source hardware tool designed for low-level USB
fuzzing [5, 6].

Moving beyond incorrect USB stack implementation bugs,
inserting glitches or faults into a device during USB parsing
was first demonstrated by Micah Scott [12]. Scott used a
voltage fault injection attack to dump firmware from a device,
and her seminal work is built on here to demonstrate how
other data can be recovered via fault attacks during USB
operations, and without requiring modifications to the target.

Reading data from a target without physically modifying it
is an important threat model for any USB portable security

token or secure data store. Typically the portable devices
need to resist an attack for the length of time it would take
before they are noticed missing, as once the device is reported
missing the owner can revoke any credentials stored in the
device. An attack which is successful before the device is
noticed missing, but destroys the device in the process, leaves
an obvious clue which could lead back to the attacker.

Examples of devices that we consider a portable security
token or secure data store can take many forms. This would in-
clude smart cards (encompassing access control, credit cards,
and satellite tv cards) [8], encrypted USB storage, automo-
tive keyfobs, FIDO authentication tokens, bitcoin wallets, and
license dongles for software. All of these devices store an
important secret inside the device, which an attacker has fi-
nancial incentive to recover. Some of these devices have been
tested or certified to a level of attack resistance – most smart
cards for example have a common criteria rating [4], and
FIDO has recently introduced ‘Authenticator Certification
Levels’ to indicate how resistant a given authentication to-
ken is against advanced attacks (including chip-level with
captured device assumptions).

The ‘holy grail’ of attacking any of those portable security
tokens or secure data stores would be to attack it without
being detected. This means to recover the sensitive data on the
device without leaving a sign of physical tampering, and with
the attack working in a ‘reasonable’ time-frame. What defines
a reasonable time-frame depends on the specific device and
threat model, but for most portable devices previously listed
we can imagine a 0.5 – 2 hour window being reasonable.

The specific devices being investigated in this paper are
USB-connected tokens or stores. The attack requires that
the sensitive data is stored in the same memory space as
the USB data buffers and information. An Electromagnetic
Fault Injection (EMFI) attack will be used to cause the USB
memory buffer reads to cross into the secure storage space,
and return sensitive data from FLASH or SRAM.

The remainder of this paper will be organized as follows.
First, an introduction to relevant sections of the USB protocol
will be given in Section 2.1. Then a summary of previous work

Figure 1: USB Setup Data Fields.

in Section 2.2 will demonstrate how existing fault attacks
have been used against USB stacks. The specific targets under
attack will be introduced in Section 3 (Trezor Bitcoin Wallet)
and Section 4 (FIDO2 key), followed by details of the specific
USB processing logic being faulted. The physical setup will
be discussed in Section 5, which will also introduce the open-
source PhyWhisperer-USB. Finally results of the attack will
be presented in Section 6, which will include examples of
wider applicability of this specific vulnerability, and will then
be followed by countermeasures and recommendations to
avoid the types of attacks discussed in this paper.

2 Background

This paper will discuss only fault injection on USB stacks,
and does not cover general fuzzing of USB stacks for which
the reader is referred to [5–7, 14].

2.1 USB Protocol
A short introduction to relevant sections of the USB 2.0 pro-
tocol will be included here. The reader is referred to the full
specification [1], or a text such as USB Complete [2] for a
more complete overview.

USB data transfer events are called transactions, and all
USB transactions are initiated by the host computer. The host
computer can read and write data from different ‘endpoints’,
where each endpoint may have a certain function or type
depending on the device functionality. Each endpoint also
has a fixed maximum transfer size depending on the specific
standard (typically 8 – 512 bytes). Transferring a block larger
than this maximum requires the host to repeatedly request
a number of blocks of the maximum size until all data is
transferred. To indicate the transaction is finished, the device

will return a packet smaller than the maximum endpoint size,
which indicates to the host that no more data is available.

The most basic form of these packets is called a setup
packet, which is sent to a default endpoint on the device. The
setup packet is used to perform initial configuration of the
device.

As part of this configuration, device descriptors describe
all aspects of the connected USB device. These descriptors
are one of the first items requested by the host computer,
as it helps the host understand how to talk to the new USB
device, and what the device is. As part of the setup request,
the fields shown in Figure 1 will be transferred from the
host to the device (this figure is Table 9-2 from The USB
Specification [1]).

Of particular importance, note the inclusion of the wLength
field. The wLength field is set by the host computer, and in-
dicates the maximum amount of data the device can return.
Since the host may not know the full descriptor size or type,
it can use a small value of wLength to request only the begin-
ning part of the descriptor which would include information
on the full size. The host can then decided to request the full
descriptor to retrieve all details about the attached device

2.2 Previous Work

The relatively simple method of transferring blocks of data at
a time to the host has been previously exploited to read entire
memory segments out over USB. This was first demonstrated
by Micah Scott, who used a voltage fault injection attack [12].
Scott demonstrated that corrupting the function sending data
on the device could cause it to send almost unlimited data
out the USB port – since the host computer sees valid USB
requests coming back, it will continue to read from the USB
endpoint.

As part of this work, Scott also built the FaceWhisperer.
This name is a combination of FaceDancer (used for USB
fuzzing) and ChipWhisperer (used for fault injection). The
triggering of the fault is generated by having control over a
USB Phy/MAC chip which generates the read requests. In
this case Scott can also control how data is read back, and
allows exceeding limits that a host OS USB stack would place
on sizes of buffers.

The idea of FaceWhisperer has been further extended in
the GreatFET project, with the addition of Kate Tempkin’s
GlitchKit [13]1. GreatFET is based on a microcontroller
which has a USB host stack built in, and GlitchKit allows
triggering of fault injection from the GreatFET firmware. This
close integration of low-level USB host (including fuzzing
capability) with fault injection timing insertion looks to be
valuable for future work.

1See https://github.com/usb-tools for extensive details of this
work including open-source training material.

https://github.com/usb-tools

Figure 2: Trezor wallet enclosure and PCB.

3 Hardware Wallet Target

The first target this attack will be demonstrated on is a hard-
ware Bitcoin wallet. These wallets are designed to store the
private key used for accessing and sending bitcoins. Since
the wallet itself could become physically damaged, the user
must have a method of backing up the private key outside
of the wallet. To simplify this a mnemonic representation
of the key is often used, which is specified in BIP392. This
mnemonic representation consists of a series of English words,
which reduces the chance of errors compared to copying a
hexadecimal representation of the private key. This mnemonic
representation is called the “recovery seed”.

This mnemonic representation of the private key can also
be protected with a password. If this feature is not used, the
raw private key is effectively sitting in memory unencrypted.
In addition the PIN code is also sitting in memory without
any protection present. This means that for this bitcoin wal-
let, recovering the memory is sufficient to break the system
security in the majority of cases.

Recovering the secret key provides an attacker with the
ability to clone the wallet. This means they could observe the
contents of the wallet, and withdraw bitcoin at a future date.
An attack which does not physically damage the wallet has
considerable value for the ability to leave a now-compromised
wallet in the possession of the original owner.

3.1 Trezor Wallet Design

The Trezor wallet is open-source, which simplifies under-
standing how the attack works in practice. The sources
for Trezor are available at https://github.com/trezor/
trezor-firmware. The exact version of the source code can
be found under the “legacy/v1.7.3” tag on GitHub, as the
flaws disclosed in this paper have been fixed in the latest
firmware release. The Trezor is based on a STM32F205, with
the device shown without enclosure in Figure 2. Note the
STM32F205 is just below the surface of the enclosure, which

2See https://github.com/bitcoin/bips/blob/master/
bip-0039.mediawiki

Table 1: Trezor memory layout.
Address Start Address End Contents Size
0x08000000 0x08007FFF Bootloader 32 KiB
0x08008000 0x0800FFFF Metadata 32 KiB
0x08010000 0x080FFFFF Application 1088 KiB

will allow our EMFI attack to work through the enclosure of
the device.

The actual sensitive recovery seed is stored in flash memory
in a ‘metadata’ section. It’s located just after the bootloader,
as shown in Table 1. The bootloader can be entered by holding
down the two buttons on the front of the Trezor, and allows
a firmware update to be loaded over USB. Since a malicious
firmware update could simply read out this flash location,
the bootloader will verify various signatures are present on a
firmware update to prevent such an attack.

Various attacks have been presented (and fixed) on this de-
vice. One of interest was presented by ‘Sunny’ (no real name
known), then written up in [11]. This attack demonstrated
that sensitive metadata would be present in SRAM during the
update process, and it was possible to reprogram the device
to read out the SRAM.

A more complete attack was presented in the Wallet.fail
disclosure, which glitched the STM32 device to move from
the RDP2 level (which completely disables JTAG) to the
RDP1 level (which enables JTAG to read from SRAM, but
not code) [10]. This attack allowed reading out of the sensitive
data stored in SRAM once again, and required a different fix
compared to the previous disclosure.

Both of these attacks targeted SRAM, as the read protection
on SRAM is less thorough than the read protection imple-
mented on the FLASH memory. The Trezor copies sensitive
data to SRAM only during the update process when it has
erased the internal FLASH memory. If our attack corrupted
the SRAM (or needed a power cycle to recover from error
states), performing that erase is very dangerous. Instead the au-
thors of this work will attempt to directly read out the FLASH
memory using the EMFI attack.

3.2 USB Descriptor Processing
The specific descriptor request being handled is the WinUSB
descriptor. The firmware will typically process various de-
scriptor requests, and triggering the WinUSB descriptor sim-
ply requires forcing the device into bootloader mode and
sending the appropriate USB request.

Our objective is to trigger the processing of the WinUSB
descriptor request. We can perform this using the pyusb pack-
age from Python, with the details of the request shown in
Listing 1. This request has a bmRequestType set for a Device
to Host request, of type Vendor, with the recipient being an
Interface. The bRequest of ASCII ’!’ is used to specify the
WinUSB descriptor request. The remaining settings are for

https://github.com/trezor/trezor-firmware
https://github.com/trezor/trezor-firmware
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

wValue = 0 and wIndex = 5, which is simply part of the
requirements of the WinUSB descriptor request in question.

The final value of interest is the wLength setting, which
we specify as FFFF. This will be sent to the USB device as
the maximum allowed response size.

Listing 1: Sending WinUSB descriptor request from Python.
r = dev . c t r l _ t r a n s f e r (

i n t (’ 11000001 ’ , 2) , ord (’ ! ’) , 0 , 5 ,
0xFFFF , t i m e o u t =1)

r = l i s t (r)

We can then look into the WinUSB.c file to see the process-
ing itself. The important section of the descriptor handling is
shown below, which is changing the return buffer pointer to
the descriptor itself, and changing the length of the returned
value to be a minimum of either the requested size (wLength),
or the size of the descriptor in question. Since the USB stack
on the host may initially request only the beginning the the
descriptor, the device cannot always return the full descriptor.

Listing 2: WinUSB.c descriptor handling.
static int w i n u s b _ c o n t r o l _ v e n d o r _ r e q u e s t (

u s b d _ d e v i c e ∗usbd_dev ,
struct u s b _ s e t u p _ d a t a ∗ req ,
u i n t 8 _ t ∗∗ buf , u i n t 1 6 _ t ∗ l en ,
u s b d _ c o n t r o l _ c o m p l e t e _ c a l l b a c k ∗ c o m p l e t e

) {
\ \ . . . a bunch of code u n t i l we g e t t o :
∗ buf = (u i n t 8 _ t ∗)(& gu id) ;
∗ l e n = MIN(∗ l en , gu id . h e a d e r . dwLength) ;
\ \ . . . a bunch more code f i n a l i z i n g . . .

}

The result of this C code is shown in Listing 3. Note that
the register r1 is loaded first with the wLength value passed
from the host. Only if the value of wLength is longer than the
size of the descriptor (0x92), is the value in r1 overwritten.
Thus by skipping this single check, we would be allowing the
host provided value of wLength to decide on the amount of
data returned.

Listing 3: Assembly output of two lines from Listing 2.
ldrh r1 , [l e n]
ldr r5 , = gu id
cmp r1 , #0 x92
it cs
movcs r1 , #0 x92
str r5 , [buf]
strh r1 , [l e n]

Note that some host USB stacks may limit the value of
wLength, in which case the code from Listing 1 must be
modified to request a smaller data chunk. The typical limit
is 4096 bytes on Windows hosts and with some Linux hosts,
so setting wLength = 0x1000 is the most data that can be
transferred on those hosts. Newer USB controllers can suc-
cessfully request full-sized packets, but may also require an

Figure 3: Solo Key, a FIDO2 authentication token.

updated libusb version which does not have the ‘old’ 4096
byte size limitations.

3.3 Verifying Code Vulnerability
For this attack to work, an attacker needs to skip the compari-
son check. Rather than jumping immediately to fault injection,
we can also perform a ‘simulated’ glitch. This is possible if
we recompile and reprogram our own Trezor device, since
the production units do not have JTAG debug enabled. But
such simulated glitches are useful for developers who do not
wish to fully instrument their system. This can be done by
commenting out the comparison, or use an attached debugger
to set a breakpoint before the new value is copied over and
manipulate the program counter to bypass the instruction.

This will use the code from Listing 1 to send the WinUSB
control request which should return with the guid structure.
It sends a length request of 0xFFFF for the request, which
should be paired down to 146 bytes by the code. Performing
the simulated fault injection verifies the returned data includes
the sensitive metadata that allows us to break the wallet.

We will next look at a second vulnerable device to under-
stand the general applicability of the previous attack.

4 FIDO2 Authentication Key

As a second example, a FIDO2 authentication token is at-
tacked using EMFI on the wLength comparison. The specific
device under attack is a Solo Key, which is an open-source
FIDO2 authentication token shown in Figure 3. These keys
can be used for two-factor authentication of web services
(such as by Google, Microsoft, etc). Microsoft has recently
begun promoting the use of ‘Password-less protection’, which
promotes the use of FIDO2 keys for authentication [9].

Note that the device we are attacking is not certified accord-
ing to a FIDO ‘Authenticator Level’ – these levels provide
information about varying degrees of protection against hard-
ware attacks, including claimed fault injection protection.

When in operation, the FIDO2 authentication token gener-
ates a unique ECC key pair for each service registered with
the token. The service which will use the token as an authen-
ticator for the user must store the public key, and the private
key is now stored on the token, and can be used to validate

Table 2: Location of several variables in Solo Key memory.
Address Variable Name Description
0x200000bc USBD_HID_Desc HID Descriptor.
0x20001b0c _signing_key Pointer to key.
0x20001b10 master_secret HMAC secret.
0x20001b50 privkey.8369 ECC Private Key.
0x20001b70 sha256_ctx SHA256 context.

requests in the future. If an attacker could recover the ECC
private key without damaging the token, they could authenti-
cate as the victim without causing the actual victim to realize
they have been compromised.

As previously mentioned, we require the sensitive data
(ECC private key) to be stored in the same memory space
as part of the USB descriptor. The open-source nature of the
Solo Key allows us to validate the specific memory layout that
will allow the attack to succeed. An example of the resulting
memory layout for several interesting variables is given in
Table 2. This table shows in particular the USB descriptor
USB_HID_Desc is contained before many of the interesting
cryptographic variables. In this case leaking privkey.8369
is most valuable, as this represents an array used to store the
loaded ECC private key.

Attacking the token requires it to load the ECC private key,
which is done by requesting the device perform an authen-
tication request with the service of interest. The device will
load the ECC private key into the memory array, at which
point we can perform the required attack. Unlike the Trezor
we cannot directly leak the key from FLASH memory, as the
layout of the memory in the Solo Key stores the keys in an
upper section of flash that is more than 64 Kbytes away from
any vulnerable descriptors.

Once the key is loaded into RAM, we send a descriptor re-
quest that triggers the code in Listing 4. As shown in Listing 2
the USBD_HID_Desc variable is located approximately 7000
bytes before interesting sensitive data is loaded into RAM.
Thus by setting our wLength value in the request to 7000 or
greater we can recover the sensitive data, assuming the MIN()
comparison is faulted.

Listing 4: Handling of descriptor in usbd_hid.c showing ac-
cess to USBD_HID_Desc variable.
else if ((req−>wValue >> 8) ==

HID_DESCRIPTOR_TYPE) {
pbuf = USBD_HID_Desc ;
l e n = MIN(USB_HID_DESC_SIZ , req−>wLength) ;

}

4.1 Finding Private Key Location

The previous section assumed knowledge of the memory
layout to find the private key. This assumption is not required

Figure 4: The Trezor EMFI setup (clockwise from top) in-
cludes a Beagle 480, YepKit USB Hub, Trezor target on XY
table, ChipSHOUTER, and ChipWhisperer-Lite.

for the attack to succeed in practice, provided we assume the
memory layout of the device remains constant during use.

Instead, an attacker must first run a request to generate a
new credential on a target FIDO2 authentication device. The
FIDO2 device will provide the attacker with the public key
that was generated, and is associated with a private key stored
on the FIDO2 device itself.

The attacker can then run the wLength attack to dump a
large section of memory. It is now simple to search for stan-
dard representations of the key in memory, by generating
candidate public keys from candidate private keys. If a candi-
date public key matches the known public key, the attacker
now knows the storage location of the private key in mem-
ory. This brute-force search of 64 Kbytes of memory can be
performed in less than 60 seconds.

5 Fault Setup

Having demonstrated that the wLength attack will be success-
ful by performing an instruction bypass with the debugger, we
now need to use EMFI to cause the real instruction bypass in a
practical setting. This section will concentrate on the specific
example of the Trezor wallet attack. The overall setup and
flow is similar between the two examples in this paper, the
only difference is the specific descriptor requested, and the
timing of the EMFI fault injection. Due to space limitations of
this paper only the Trezor wallet attack is presented in detail.

Figure 4 shows the overall tooling. The Trezor is held down
on an XY table with both of the front buttons held down. Hold-
ing the front buttons down forces the USB bootloader mode
to be entered, as from the memory map shown in Table 1 only
the bootloader-mode USB descriptors are located ahead of
the sensitive metadata and can be used to leak those contents.

A ChipSHOUTER EMFI tool is used to generate the EMFI
pulse. This is triggered from a TotalPhase Beagle 480 used to

Figure 5: The inserted pulse measured at the ChipSHOUTER
output, which reaches 268V in amplitude and is 15 nS width.

detect the exact timing of a specific USB request. This trigger
is routed through a ChipWhisperer-Lite to allow modification
of glitching offset & width. The Trezor is connected through
a USB hub which allows us to power-cycle the target device.
The power-cycling of the target is required since the EMFI
glitch when inserted at the wrong location frequently crashes
the target or triggers various error detection routines, includ-
ing memory corruption detection, stack smashing detection,
and bus faults.

5.1 EMFI Tooling

A ChipSHOUTER from NewAE Technology Inc. is used
to generate the EMFI glitches. This is used with a ferrite-
core coil, with a 1 mm ferrite core diameter. This injection
tip is part of the standard ChipSHOUTER injection tip. The
ChipSHOUTER is configured with a charge voltage of 400 V,
and an external active-low trigger is used to trigger the EMFI
injection.

The external active-low trigger comes from a ‘glitch out’
port of a ChipWhisperer-Lite. The ChipWhisperer-Lite has a
MOSFET which can be used for VCC glitching, but in this
case we use the MOSFET to drive the ChipSHOUTER trigger
input. This allows us to manipulate the width and location of
the glitch using Python-based tools that interface to both the
ChipWhisperer-Lite and ChipSHOUTER.

The resulting waveform is shown in Figure 5. Note the
400 V setting of the charge voltage is not seen at the actual
output due to the narrow pulse configuration.

5.2 Triggering and Scanning

Triggering the glitch is done by monitoring the USB traffic
for the descriptor request that the code in Listing 2 sends. In
this case the use of a TotalPhase Beagle 480 monitors for a
DATA packet with contents C0 21. To determine the time
difference between this USB request going ‘over the wire’

and the actual sensitive data, we instrument the open-source
Trezor code. The code can be modified to include an I/O line
trigger, which showed that the time delta varied from 4.2 to
5.7 µS. Knowing the timing based on this modified device,
an unmodified device (without the I/O line trigger) can be
rapidly attacked with an EMFI tool.

The timing has some variability due to the use of a queue-
based processing of the USB messages. When the USB mes-
sage comes into the Trezor, there is some time delay before
it is processed. Rather than try to reduce this jitter, we sim-
ply reset the device and repeatably tried a fixed glitch with
an offset at 4.4 µS. This value of 4.4 µS was selected as it
empirically gave reasonably good results, and fit between the
measured extremes of the jitter.

As we used a PC to send the descriptor request, we did not
have an ability to carefully control the USB timing. Using
an embedded USB host (such as GreatFET) would allow
synchronizing the Trezor state machine processing the USB
queue with the attack tooling state. It would be expected this
could reduce the jitter to allow sending the USB request when
the target device was in a known state (i.e., when it is about
to check the queue for received USB messages).

5.2.1 Using Corrupt Packets for Glitch Timing

In this example, the open-source nature of Trezor made it
possible to easily discover the correct glitch timing by instru-
menting the firmware. The desired glitch location is during
processing of the data (wLength) passed in the SETUP packet,
and we set an I/O line trigger to indicate when this process-
ing occurred. A pure black-box target would not allow this
instrumentation, and here we demonstrate a simple method
of finding this timing with a faster search than purely brute-
force.

For this attack, we know we are trying to corrupt the
wLength value processing. This value should be processed
sometime between the SETUP transaction (which includes
the wLength) and the IN transaction (which returns the de-
scriptors). We can look for corrupt USB packets occurring
immediately after the SETUP transaction to indicate when
our glitch is most likely near the code of interest.

Figure 6: The SETUP phase in this control transfer is ACK’d,
but the data phase does not follow as expected.

Figure 6 shows such an example. The upper part of that fig-
ure shows a correct 146-byte control transfers, which involves

USB3500
USB Phy

Spartan 7
FPGA

SAM3U
High-Speed

USB

Target

Host

Analysis
Computer

PhyWhisperer-USB

Power
Switching

Figure 7: PhyWhisperer-USB combines a USB PHY with a
FPGA.

one “SETUP txn" followed by three “IN txn".The lower part
shows a corrupted transaction - the Trezor has ACK’d the
“SETUP txn", but then never sends the follow-up data. The
Trezor entered an infinite loop as it jumped to one of the vari-
ous interrupt handlers for error detection. As the location of
the fault is shifted along in time, various effects on the USB
traffic are observed: moving the glitch earlier often prevents
the ACK of the setup packet, moving the glitch later allows
the first packet of follow-up data to be sent but not the second,
and moving the glitch much later allows the complete USB
transaction but then crashes the device. This knowledge helps
us understand which part of the USB code the fault is being
inserted into, even if that fault is still a sledgehammer causing
a device reset instead of an intended single instruction skip.

Once approximate timing is known, it is easier to fine-tune
this glitch location. Our actual exploitable target is only a
single instruction which will require a small time-step size
during the search. By instead looking for any corruption or
crash during specific USB processing steps, we can use a
much larger time-step size during the initial parameter search,
without risk of missing a location of interest.

5.3 PhyWhisperer-USB
While GreatFET and GlitchKit provide fault injection capabil-
ity, they have some limits on timing accuracy and capability
due to use of a microcontroller host. The authors of this work
initially used a TotalPhase Beagle 480 to provide more accu-
rate fault injection timing. The objective of achieving more
accurate timing and better tooling integration led to the cre-
ation of PhyWhisperer-USB.

PhyWhisperer-USB uses a FPGA to perform highly ac-
curate glitch timing, with additional features not present in
other tools such as rapid power cycling of the target device.
A general block diagram of the device is shown in Figure 7,
with the prototype shown in Figure 8. Full design details
of the open-source hardware project are available online at

https://github.com/newaetech/phywhispererusb.
Highly accurate fault insertion is possible as the USB3500

chip internally generates a 480 MHz clock to drive the USB
sample logic. The data outputs from the USB3500 are syn-
chronous to a clock that is derived from the 480 MHz sample
clock. For glitch generation the FPGA uses this clock to inter-
nally generate a 240 MHz clock, giving up to 4.2 nS resolution
on glitch offset timing. This allows faults to be inserted not
only at the moment a packet is seen on the USB phy, but at
arbitrary offsets with fine-grained resolution.

Compared to previous solutions, such as using the Total-
Phase Beagle 480 to trigger external fault generation, the
PhyWhisperer-USB has the advantage of remaining com-
pletely synchronous to the USB target device. That is triggers
are always occurring relative to the exact clock edge of the
USB bus, and offsets are measured in USB clock ‘ticks’. This
is only possible by using the clock that has been phase-locked
to the USB bus by the USB phy.

The current firmware supports triggering based on a packet
or sequence being seen on the USB traffic. Thus another
device is required to serve as the host - in this work it’s a Linux
host computer, but it could be the GreatFET for example. This
design allows PhyWhisperer-USB to be used with GreatFET
to achieve better accuracy, without duplicating the work of
GreatFET or GlitchKit.

In addition, PhyWhisperer-USB can be used to determine
when invalid or corrupted packets are occurring. The location
of these corrupted packets indicates where control flow of the
DUT is becoming invalid, which can help in understanding
the effect of inserted faults in the DUT. The close integration
of the glitch generation logic and sniffing logic simplifies au-
tomatic searches for useful glitches by monitoring for corrupt
responses, as the timing information is consistent between the
sniffing and glitch generation logic.

The PhyWhisperer-USB hardware makes possible arbitrary
packet insertion, which would allow the tool to be used as a
low-level USB PHY interface for fuzzing and more advanced
fault injection work. These fuzzing capabilities are not present
in the current firmware and left as future work.

Figure 8: PhyWhisperer-USB prototype implementation.

https://github.com/newaetech/phywhispererusb

Figure 9: A successful glitch returns larger than the 146-byte
descriptor.

6 Results and Countermeasures

The corruption of the wLength processing allows dumping
of up to 64 Kbytes of memory from the target. Previously we
described the general memory layout of two specific targets,
but now the use of the memory dump for recovery of secret
information will be described.

6.1 Results on Bitcoin Wallet

A correct timing of the glitch results in the expected over-
sized packet. This is shown in Figure 9 which has a number
of normal responses followed by one too-long response. The
normal response of 146 bytes is followed by a response of
24800 bytes.

In the case of the Trezor bitcoin wallet, applying this at-
tack is trivial due to the BIPS39 secret key encoding. The
secret key is encoded as a series of English words, meaning
an attacker simply looks for a series of strings in the returned
over-sized USB packet. In this example the strings returned
exercise muscle tone skate lizard trigger hospital weapon vol-
cano rigid veteran elite speak outer place logic old abandon
aspect ski spare victory blast language.

An attacker that has these sequence of words can now
clone the wallet3. This means not only can the attacker steal
bitcoin currently in the wallet, they can also monitor the wallet
contents to determine the total value of this wallet and steal
them at a future date. The legitimate user does not know
this cloning has occurred, and the EMFI attack would not
have physically damaged the wallet. In the case the secret
was stored in FLASH memory, and we successfully read this

3Users can optionally add a ‘passphrase’, which is not enabled by default.
If the passphrase was enabled an attacker would need to know or guess this
passphrase.

secret out. We will now consider attacking the Solo key where
a RAM stored secret is recovered.

6.2 Results on Solo Key

A successful EMFI attack on the Solo Key results in the leak
of a single ECC private key. This requires the attacker to have
physically taken possession of the Solo Key. They would then
select a service of interest (for example, https://microsoft.com)
and send a request to the legitimate Solo Key under attack.
This request causes the private ECC key to be loaded in mem-
ory.

Performing the wLength attack causes a large section of
memory (RAM) to be dumped, including the ECC private
key used for authentication with the requested service. The
attacker must determine the memory layout to understand
where the private key was stored; Section 4.1 describes how
this is accomplished in practice.

The attacker can now use this ECC private key to respond
to authentication requests when accessing user accounts. The
original token can be returned to the user, who will not be
able to detect tampering since no physical modifications were
made to the token. Again the use of EMFI triggered from USB
packets allows an attack which requires no modifications to
the target device, complicating attempts to detect tampering.

6.3 General Applicability

The attack requires that sensitive data be stored in memory
within 64 KBytes of the USB descriptors or buffers, some-
thing that can be verified by designers by inspecting the map-
ping files providing address information of variables. Fun-
damentally the attack is relevant only when sensitive data is
stored on the device within this 64 KByte boundary of USB
descriptors or buffers.

Assuming the sensitive data is stored within this boundary,
the USB stack can also be trivially inspected to find if the
wLength processing appears vulnerable. The MIN() call can
be found in many USB stacks. If not using the exact same
setup, the general passing of a maximum-size wLength is
present in many general RTOS stacks.

Specific examples on three popular RTOS will be presented
next – note an EMFI attack has not been performed on these
stacks, as the attack would be simply be on an arbitrary im-
plementation and not a real product. The objective of the
following subsection is to demonstrate where such vulnerable
code lies in other RTOS stacks.

6.3.1 RT-Thread

RT-Thread is an open-source IoT operating system with a
‘wide scalability’. It contains a complete USB device stack.

We can observe the USB processing in core.c4 as an ex-
ample of similar vulnerable code which compares wLength
to descriptor sizes. The specific vulnerable code example is
shown in Listing 5.

Listing 5: Example of USB processing in the RT-Thread stack.
s i z e = (s e t u p −>wLength >USB_DESC_LENGTH_DEVICE)

? USB_DESC_LENGTH_DEVICE : s e t u p −>wLength ;

6.3.2 Amazon FreeRTOS

FreeRTOS is a popular RTOS first release in 2003, which sup-
ports a wide variety of host devices. Amazon offers ‘IoT
Extensions’ to this under the Amazon FreeRTOS project
at https://aws.amazon.com/freertos/. The USB stacks
are provided by the host device vendors in this solution, so
there is no single USB stack to analyze. For example as part
of FreeRTOS we can analyze the NXP stack USB processing
in the file usb_device_ch9.c5. The vulnerable comparison
of wLength is shown in Listing 6.

Listing 6: FreeRTOS USB is provided per vendor, this exam-
ple comes from an included NXP stack.
if (∗ l e n g t h > s e t u p −>wLength)

{
∗ l e n g t h = s e t u p −>wLength ;

}

The lack of a standard USB stack means that each vendor
code would need to be inspected for this potential vulnerabil-
ity.

6.3.3 ARMmbed

The final RTOS analyzed is the ARMmbed stack, which is
supported by arm. The USB stack processing of interest is
contained in the file USBDevice.cpp6. In this stack a variable
called _transfer.remaining is always written with the size
of the object in memory to transfer. The opportunity to per-
form fault injection is later in the code, when a check of the
wLength size happens. This is shown in Listing 7, where fault
injection would allow the user-supplied value of wLength to
be used to define the transfer size.

Listing 7: Example of USB processing in the ARMmbed
RTOS.
/* Transfer must be less than or equal to */
/* the size requested by the host */
if (_ t r a n s f e r . r e m a i n i n g >

_ t r a n s f e r . s e t u p . wLength) {

4https://github.com/RT-Thread/rt-thread/blob/master/
components/drivers/usb/usbdevice/core/core.c

5https://github.com/aws/amazon-freertos/blob/master/
vendors/nxp/LPC54018/utilities/usb_device_ch9.c

6https://github.com/ARMmbed/mbed-os/blob/master/usb/
device/USBDevice/USBDevice.cpp

_ t r a n s f e r . r e m a i n i n g =
_ t r a n s f e r . s e t u p . wLength ;

}

6.4 Countermeasures

The ability of fault attacks to be used against embedded sys-
tems is well known [3], and various countermeasures can be
generally applied. We will not duplicate this prior work, and
instead we will be focusing on countermeasures more specific
to this use case. These countermeasures have been applied by
the device designers (Trezor Wallet and Solo Key) fixing the
flaw disclosed in this paper.

6.4.1 Use of MPU Traps

A simple method of preventing read past end of buffer attacks
is to use the Memory Protection Unit (MPU) that is present on
even many small microcontrollers, including the STM32F205
in the Trezor wallet. Surrounding the sensitive metadata code
area with guard bands would have completely prevented the
ability of an attacker to read out the sensitive data. Such guard
bands should always be used when possible, and especially if
the sensitive data is in a known variables or location. Besides
the specific attack shown here, such guard bands could prevent
other read past end of buffer attacks.

The sensitive memory location can also be turned “on and
off” by enabling or disabling memory access on the entire
sensitive area, and only enabling memory access inside the
valid functions. This is effectively emulating more advanced
memory management features that are not available on typical
small microcontrollers.

6.4.2 Limiting Response Sizes

By the USB specification, the 16-bit wLength could encode
up to a 65 535 byte request size. But for an embedded device
with a known functionality, it is unnecessary to support this
full response size as no descriptor request would approach
this size (typically being in range 16 – 240 bytes). Thus a
simple mask could be used at in the USB stack, to prevent
sending back of such large data blocks as part of a control
transfer.

6.4.3 Random Timing Jitter

The USB specification defines the maximum response times
for requests, normally between 50 – 500 mS depending on
the request. Relative to the device clock speed this represents
a considerable amount of random jitter that can be added to
complicate the attackers search phase.

https://aws.amazon.com/freertos/
https://github.com/RT-Thread/rt-thread/blob/master/components/drivers/usb/usbdevice/core/core.c
https://github.com/RT-Thread/rt-thread/blob/master/components/drivers/usb/usbdevice/core/core.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nxp/LPC54018/utilities/usb_device_ch9.c
https://github.com/aws/amazon-freertos/blob/master/vendors/nxp/LPC54018/utilities/usb_device_ch9.c
https://github.com/ARMmbed/mbed-os/blob/master/usb/device/USBDevice/USBDevice.cpp
https://github.com/ARMmbed/mbed-os/blob/master/usb/device/USBDevice/USBDevice.cpp

6.5 Other Fault Attack Targets
It should be clear that injecting a fault attack through the
enclosure of this device remains possible, even when very
accurate timing is required on the fault injection location.
This work has concentrated on the specific attack on the USB
stack, as this attack can be found in many other devices. Fault
attacks may have other methods of breaking the device, such
as bypassing the verification check used to prevent a malicious
firmware image from simply reading out the secret data.

7 Conclusions

Performing an EMFI attack through the enclosure of a device
demonstrates how a practical attack could be used with real
consumer devices. This attack exploits a common logical
flow present in almost all USB stacks to allow reading up to
64 Kbyte of data from the device.

Performing this attack requires very careful timing of
the fault injection location relative to the USB transactions.
To assist with this, an open-source hardware tool called
PhyWhisperer-USB has been introduced. This tool allows
triggering of a fault injection platform from a USB message
with very high temporal accuracy.

Various countermeasures are possible, beyond standard
fault-resistant design countermeasures. This includes using
memory guards around sensitive data, and masking the size
of returned USB data to reflect expected buffer sizes and not
blindly returning the physical maximum allowed buffer sizes.

This paper has demonstrated the attack against two specific
devices: a bitcoin hardware wallet, and a FIDO2 authentica-
tion token. The flaws were promptly fixed by the vendors
using the suggested countermeasures. Because the flaws are
generic across many other USB stacks, vendors of almost all
devices which have sensitive data present should review their
code for the possible vulnerability to the attack discussed
here.

Acknowledgments

Thanks to Dmitry Nedospasov for extensive discussions
on the Trezor metadata format and attacks on the Trezor
device. Thanks to Pavol Rusnak for discussions and sug-
gestions on countermeasures, and quickly deploying those
countermeasures to the Trezor users. Thanks to Conor
Patrick and Emanuele Cesena for discussions of FIDO2
protocol, and Solo Key applicability and fixes. Thanks to
Jean-Pierre Thibault for assistance with development of the
PhyWhisperer-USB. Finally this paper has been substantially
improved thanks to the feedback of the anonymous WOOT
reviewers, and with help from our WOOT shepherd.

References

[1] Universal Serial Bus Specification, April 2000.

[2] Jan Axelson. USB Complete. 5th edition, 2015.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The Sorcerer’s Apprentice Guide to Fault At-
tacks. Proceedings of the IEEE, 94(2):370–382, Febru-
ary 2006. doi:10.1109/JPROC.2005.862424.

[4] Common Criteria. Common Criteria for Information
Technology Security Evaluation, 2017. Available at
https://www.commoncriteriaportal.org/cc/.

[5] Travis Goodspeed. Facedancer21. URL:
http://goodfet.sourceforge.net/hardware/
facedancer21/.

[6] Travis Goodspeed. Emulating USB De-
vices with Python, July 2012. URL: http:
//travisgoodspeed.blogspot.com/2012/07/
emulating-usb-devices-with-python.html.

[7] Moritz Jodeit and Martin Johns. USB Device Drivers: A
Stepping Stone into Your Kernel. pages 46–52, Novem-
ber 2010. doi:10.1109/EC2ND.2010.16.

[8] Keith Mayes and Konstantinos Markantonakis. Smart
Cards, Tokens, Security and Applications. Springer Pub-
lishing Company, Incorporated, 1st edition, 2010.

[9] Microsoft. Password-less protection, 2018. Avail-
able at https://query.prod.cms.rt.microsoft.
com/cms/api/am/binary/RE2KEup.

[10] Dmitry Nedospasov, Josh Datko, and Thomas Roth. Wal-
let.Fail, December 2018. URL: http://wallet.fail.

[11] Saleem Rashid. Extracting TREZOR Se-
crets from SRAM, August 2017. URL:
https://saleemrashid.com/2017/08/17/
extracting-trezor-secrets-sram/.

[12] Micah Scott. A USB Glitching Attack. PoC||GTFO,
2(0x13):30 – 37, October 2016.

[13] Kate Tempkin and Spill Dominic. Opening Closed
Systems With GlitchKit, December 2017. URL:
https://media.ccc.de/v/34c3-9207-opening_
closed_systems_with_glitchkit.

[14] Rijnard van Tonder and Herman Engelbrecht.
Lowering the USB Fuzzing Barrier by Trans-
parent Two-Way Emulation. 2014. URL:
https://www.usenix.org/conference/woot14/

workshop-program/presentation/van-tonder.

http://dx.doi.org/10.1109/JPROC.2005.862424
https://www.commoncriteriaportal.org/cc/
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
http://travisgoodspeed.blogspot.com/2012/07/emulating-usb-devices-with-python.html
http://travisgoodspeed.blogspot.com/2012/07/emulating-usb-devices-with-python.html
http://travisgoodspeed.blogspot.com/2012/07/emulating-usb-devices-with-python.html
http://dx.doi.org/10.1109/EC2ND.2010.16
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2KEup
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2KEup
http://wallet.fail
https://saleemrashid.com/2017/08/17/extracting-trezor-secrets-sram/
https://saleemrashid.com/2017/08/17/extracting-trezor-secrets-sram/
https://media.ccc.de/v/34c3-9207-opening_closed_systems_with_glitchkit
https://media.ccc.de/v/34c3-9207-opening_closed_systems_with_glitchkit
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder

	Introduction
	Background
	USB Protocol
	Previous Work

	Hardware Wallet Target
	Trezor Wallet Design
	USB Descriptor Processing
	Verifying Code Vulnerability

	FIDO2 Authentication Key
	Finding Private Key Location

	Fault Setup
	EMFI Tooling
	Triggering and Scanning
	Using Corrupt Packets for Glitch Timing

	PhyWhisperer-USB

	Results and Countermeasures
	Results on Bitcoin Wallet
	Results on Solo Key
	General Applicability
	RT-Thread
	Amazon FreeRTOS
	ARMmbed

	Countermeasures
	Use of MPU Traps
	Limiting Response Sizes
	Random Timing Jitter

	Other Fault Attack Targets

	Conclusions

