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Abstract
Touted as the buffer overflows of the age, Spectre and Melt-
down have created significant interest around microarchitec-
tural vulnerabilities and have been instrumental for the discov-
ery of new classes of attacks. Yet, to-date, real-world exploits
are rare since they often either require gadgets that are dif-
ficult to locate, or they require the ability of the attacker to
inject code. In this work, we uncover two new classes of
gadgets with very few restrictions on their structure, making
them suitable for real-world exploitation. We demonstrate –
through PoCs – their suitability to leak one bit and one byte re-
spectively per successful attack, achieving high success rates
and low noise on the constructed side-channel. We test our at-
tack PoC on various kernels with default mitigations enabled,
showing how they are insufficient to protect against them. We
also show that hardening the configuration of mitigations suc-
cessfully prevents exploitation, making a case for their wider
adoption.

1 Introduction

Spectre [8] and Meltdown [11] have demonstrated that design-
level CPU vulnerabilities exist, and have opened the flood-
gates to microarchitectural attack research. Yet, the space of
possible attacks and their variants has not yet been thoroughly
explored and understood.

A suitable historical parallel can be drawn with memory
corruption attacks: it took decades of research after the semi-
nal work around buffer overflows to thoroughly understand
the prevalence of control flow hijacking, and design mitiga-
tions around that pivotal component of this class of attacks.
The same holds for speculative executions attacks: their full
scope is still largely unknown, and so are appropriate mitiga-
tions.

A subset of speculative executions attacks are of particular
interest: speculative control flow hijacks (SpCFH), which
allow an attacker to redirect execution to an attacker-chosen
address that will be speculatively executed within the context

of the victim thread. At that address resides a speculative
gadget ending in a side-channel-send code, or spadget [6],
which leaks information through a microarchitectural side
channel. The attacker can then provide side-channel-receive
code to read out the leaked information. The resulting attack
may allow the attacker to read out arbitrary (and possibly
secret) data out of the victim process.

The three known attacks that fall in the category of SpCFH
attacks are Spectre v2 (branch target injection) [8], Spectre
returns [9] and Speculative buffer overflows [7]. All three
either target the branch target buffer (used to predict indirect
calls and jumps), or the return stack buffer (used to predict
returns).

The exploitability of SpCFH attacks is mainly dependent
on the availability of suitable spadgets. To our knowledge,
all SpCFH PoCs known to date require the ability to inject
code or return into attacker-provided code (as in the Google
Project Zero eBPF-based Spectre v2 exploit), showing that
suitable spadgets have been hard to find. This motivates the
research for new classes of spadgets.

In this paper, we show two new classes of spadgets that
can be used in SpCFH attacks, such as Spectre v2. The first
uses the instruction cache as a send and receive channel to
leak a bit, dependent on a forced control flow in a spadget.
The second uses BTI itself as a send and receive channel.
While both side channels are known [1, 2, 5, 10], we propose
novel variants for them, and analyse their use as part of a
transient execution attack. Our results show that both can be
used to successfully leak data from a proof of concept, SMT-
colocated, victim program with the default spectre mitigation
configuration options on the tested Linux distributions. We
also verify that hardening the configuration of applicable
mitigations (STIBP in this case) is an effective mitigation,
making a case for their wider adoption.

This paper makes the following contributions:

• An Icache attack proof-of-concept: uses the instruction
cache as a side channel, as part of a BTI attack to leak
one bit of information at a time from a victim program.
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         ...
0x400820 call *rdx
         ...
0x400830   

0x400800 mov rdx, 0x403000
          ...
0x400820 call *rdx
          ...
0x400830 loop 0x400800 

DATA CACHE GADGET @ 0x403000

TIMING CACHE ACCESS

Side Channel Receive

BTI Gadget Hijack

BTI Training

Side Channel Send
(Attacker Provided)

Figure 1: Overview of Spectre v2, a SpCFH attack: the attacker
performs BTI at first; the victim speculatively executes the injected
gadget whose cache side effects are later measured by the attacker.

• A Double BTI attack proof-of-concept: uses the branch
target buffer (BTB) as a side channel, as part of a BTI
attack to leak one byte of information at a time.

• An Analysis of current branch target injection mitiga-
tions on Linux, showing that both attacks work on user
space programs with default settings.

Threat model: For both attacks, we assume the same threat
model as Spectre v2, that is a local attacker, who knows the
code of the target program, is able to bypass ASLR (possibly
by using the BTB itself as side channel [5]), and is able to
invoke (or predict accurately) code leading to a target indirect
branch in the victim program.

2 Background and Related Work

Because there already is litterature available on summarizing
existing speculative execution attacks [4, 12, 13] – we here
describe background and related work specifically relevant to
the two methods presented in this paper.

2.1 Speculative Control Flow Hijacking At-
tacks

SpCFH attacks, at a high level, rely on a central component of
modern CPUs: branch prediction. The CPU needs to predict
control flow transfers for filling its deep pipeline of instruc-
tions in flight, and the state used for this prediction is crucially
shared, in time or in space, between attacker and victim exe-
cution threads.

These attacks can be decomposed in four essential steps:
1. SpCFH train, 2. SpCFH trigger, 3. Side channel send,
4. Side channel receive. We describe those steps by using the
initial Spectre v2 attack [8] as an example, as shown in Fig-
ure 1. The first step injects an entry into the BTB by training
an indirect call. The BTB functions essentially as a hashtable,
indexed by a function of the current program counter as well
as the history of taken/not taken decisions on past branches.
This means that an attacker replicates a similar history, and
then invokes an indirect call from a virtual address equal to
(or aliasing with, in general) the address of the target indirect
branch to hijack, to create an entry in the BTB. On the second
step, the attacker typically invokes the victim to trigger a code
path leading to the targeted indirect branch. When branch
prediction on the victim’s indirect branch looks up the BTB,
it uses the attacker-injected target. This leads to a speculative
control flow hijack. In the eBPF Spectre v2 exploit for (hyper-
visor) kernels, the code targeted by this hijack is loaded by a
host-resident, unprivileged userspace attacker into the kernel,
by using an optional eBPF feature of the Linux kernel. This
code, side-channel-send code, uses a Spectre v1-like, data
cache-based gadget to leak kernel data into a shared array
(Step 3). In Step 4, after speculative execution completes (and
discards the wrongly executed architectural state), the attacker
probes this shared array, with side-channel-receive code, to
read out the data from the cache side channel.

2.2 Related Side channels

Existing transient execution attacks mostly use data cache
side channels with a few exceptions (NetSpectre-AVX [14],
SMoTherSpectre [3]). In this paper, we consider two other
side channels that have not been demonstrated yet in transient
execution attacks: instruction cache and BTB.

For the instruction cache, Acıiçmez [1] first demonstrates
that secret-dependent control flow attacks against vulnerable
cryptographic libraries can also be mounted by using the
icache. In this attack, the attacking process forces eviction
of the cache lines corresponding to the target victim’s code
in a loop, and times each iteration of this loop. Loops which
run slower correspond to times where the victim process is
executing targeted code. In contrast, the icache side channel
demonstrated in this paper is akin to a Prime+Probe attack,
but on the instruction cache. Indeed, in a scenario where (read-
only) code is shared between two threads on the same core, the
second execution of the code will run faster due to caching. On
Intel CPUs, their are multiple levels of caching for code: the
well-known cache hierarchy (LLC, L2, L1) with L1 being split
between code and data. Closer to the execution units, because
decoding can be a bottleneck on x86, CPUs have microcode
caches that cache previously decoded instructions. Although
all these caches could be leveraged in an instruction-cache-
based side channel, our timing measurements in our proof-
of-concepts are mainly in the range of an L1i vs. DRAM



difference.
For the BTB as a side channel, Evtyushkin et al. [5] propose

a powerful attack to partially derandomize ASLR. By placing
indirect calls in the attacking process at different offsets and
measuring their execution times, the attacker can infer if the
chosen offset is aliased with the victim because location with
BTB entries will result in faster execution, thereby leaking
code location information by essentially bruteforcing possible
offsets. In contrast, the BTB side channel in this paper is
even more powerful, in that the attacker process speculatively
executes the indirect branch, and places marker in multiple
location at once (256 in our proof-of-concept) to infer which
location has been trained and therefore leak multiple bits at
once from the BTB.

3 Icache attack

The first contribution of the paper is the icache attack. In-
formally, this attack is based on the following observation:
while the CPU strives to undo the effects of speculatively
executed but not retired instructions, it does not hide effects
on the instruction cache. As such, the instruction cache may
be used to build a side channel between a gadget speculatively
executed by a victim process and a gadget executed by an
attacker process.

This attack makes use of speculative control flow hijack in
order to redirect the victim to a gadget, henceforth referred
to as the icache gadget. The icache gadget has the following
characteristics: i) a compare-like instruction followed by a
conditional jump; ii) target and fallthrough block of the jump
leaving measurable and distinct side effects in the instruction
cache; iii) the gadget is mapped by both the victim and the
attacker. By measurable we mean that another process should
be able to observe changes to the instruction cache left by
the speculative execution of the gadget, for instance by at-
tempting to execute either block (target or fallthrough) and
measuring the speedup (or lack thereof) induced by the fact
that the instructions of the block are present in the instruction
cache. By distinct we mean that the effect left by speculative
execution of one block should be different from those left
by the other block. These two conditions constitute a side-
channel-send operation over the information constituted by
the condition of the jump. Clearly this information must be
valuable from a security perspective: the condition may for
instance depend on a compare instruction where the content
of the register argument contains a secret for the victim. The
last condition is required for the side-channel-receive oper-
ation, since cache line tagging in the instruction cache will
not produce cache hits unless the cache lines have identical
(physical) tags. Virtual indexing and ASLR also plays a role
which will be discussed later in the section.

Figure 2 describes the attack. Attacker and victim are two
co-located processes (either interleaved on the same hardware
thread or running on different hardware threads in the same

Time

Attacker Victim

0x400800 mov rax, secret
          ...
0x400820 call *rdx
          ...
0x400830   

0x400800 mov rdx, 0x403000
          ...
0x400820 call *rdx
          ...
0x400830 loop 0x400800 

0x403000 cmp rax, 0
0x403010 je 0x403040
0x403020 call fun1
0x403030 jmp 0x403050
0x403040 call fun2
          ... 

0x404810 rdtsc
0x404820 call fun1
0x404830 rdtsc

Side Channel Receive
(icache Timing)

Side Channel Send
(icache Gadget)

BTI Gadget Hijack

BTI Training

Figure 2: Description of the icache attack: the attacker performs
BTI at first; the victim speculatively executes one of two functions
depending on the content of a register; the attacker later times the
execution of either function to learn one bit of the condition register.

core). At first the attacker performs standard branch target
injection by training an indirect jump to redirect the control
flow to a specific address. The attacker chooses this address as
that of the icache gadget. Whenever the attacker is successful,
the control flow of the victim will be (speculatively) redi-
rected to the icache gadget. In the figure, the gadget compares
the content of rax to an immediate, and based on the result
jumps to a block that performs a direct call – either to fun1 or
fun2. We assume that rax contains a secret, loaded before the
indirect jump of the victim is executed. If BTI was successful,
the attacker may later time the execution of either of the two
functions to receive the leaked bit through the side channel.
Note that the schedule of attacker and victim only needs to
be loosely synchronised: the attacker’s BTI training needs to
be scheduled before the victim’s targeted jump, and the at-
tacker’s icache timing must be scheduled after the speculative
control flow hijack takes place. The attacker is thus able to
leak one bit for each successful round. By varying the icache
gadget to point to gadgets that leak different bits of the secret,
the attacker may be able to partially or entirely reconstruct
the secret.

3.1 Discussion

Anatomy of an icache gadget As discussed, the icache
gadget presents relatively few restrictions and it is thus ex-
pected to be widely available to an attacker. In particular,
the requirement of a shared memory mapping is satisfied in
the (common) case of two processes (attacker and victim)



using a common shared library, or the attacker mapping the
executable of the victim. This ensures that instruction cache
lines will have identical (physical) tags. Restrictions on vir-
tual addressing will be discussed later in the section. The
gadget shown in Figure 2 requires target and fallthrough of
the conditional jump to contain a call to different functions.
However, at its core, the gadget only requires that the icache-
observable side effect be different depending on the outcome
of the conditional jump. With this criterion we may elimi-
nate gadgets whose size is a single cache line, or gadgets that
will be prefetched in their entirety irrespective of the actual
(speculated) control flow. No further restriction is imposed on
the gadget. Finally, we stress that the icache gadget does not
require the presence of the secret-dependent control flow an-
tipattern in the victim code, e.g., as in previous icache-based
attacks [1, 2]. While the icache gadget indeed performs a con-
ditional jump based on the value of a secret, the secret is set
by the victim in the completely unrelated BTI gadget.

ASLR The presence of ASLR on most modern systems
introduces an obstacle for the attacker; indeed, while the re-
quirement on a shared mapping of the icache gadget ensures
that cache lines will have identical (physical) tags, they must
also have identical (virtual) indices. The attacker may either
target a shared icache gadget that is not built as position-
independent code (e.g. (rare) a shared library built without
the fPIC or equivalent compiler option; or (more common) an
executable built without the fPIE or equivalent compiler op-
tion), or utilise well-known means of discovering the ASLR
offset [5, 15].

Alternative side-channel-receive In the icache attack, the
side channel is read by timing the execution of either the target
or the fallthrough block of the jump in the icache gadget. An
alternative to this approach is to perform a standard cache
timing attack, by simply reading the code to probe it, instead
of executing. Given that in our target platforms L1 data and
instruction caches are separate, we did not try this experiment
because the side channel would be noisier due to the smaller
time difference between L2 cache and main memory.

4 Double BTI attack

In this section we describe the second attack, called Double
BTI attack. The Double BTI attack also exploits speculative
control flow hijack, as first shown by the Spectre v2 PoC.
The original Spectre v2 POC, depicted in Figure 1, requires
the ability of the attacker to inject a gadget into the victim
address space, namely, the data cache gadget used to perform
the side-channel-send operation.

Attacker Victim

0x400800 mov rax, verify
0x400810 mov rdx, correct
          ...
0x400820 call *rdx
          ...
0x400830   

0x400800 mov rdx, 0x403000
            ...
0x400820 call *rdx
            ...
0x400830 loop 0x400800 

0x403000 nop
0x403010 call *rax
         ... 

verify:
0x404810 marker 
0x404820 ret
            ...
correct:
0x407840 ret 

Side Channel Receive

BTI Gadget Hijack

0x403000 ret
0x403010 call *rax
0x403020 ret 

Side Channel Send
(Reverse BTI Gadget)

BTI Training

0x4007f0 mov rax, correct
0x400800 mov rdx, 0x403000
            ...
0x400820 call *rdx
            ...

0x403000 nop
0x403010 call *rax
0x403020 ret
            ... 

            ...
0x404000 mov[0x403000],0x90
            ...

BTI Gadget Patch

Time

Phase 1

Phase 2

Figure 3: Description of the Double BTI attack: the attacker per-
forms BTI at first; the victim speculatively executes the “reverse”
BTI Gadget that further trains the branch predictor with the value
of a register or a memory location; the attacker later execute the
same “reverse” BTI Gadget and based on the side effects of wrong
prediction (e.g. executing an instruction marker to a given location)
can guess the value of the register or memory location

With the Double BTI attack we are able to lift this restric-
tion, making speculative control flow hijack attacks far more
pernicious. The intuition behind the attack is that the gadget
implementing the side-channel-send operation may be instan-
tiated as simply as by a second indirect call. Crucially, this
indirect call will cause a second, “reverse” BTI, where this
time the attacker is subjected to branch target injection. If the
attacker is able to measure the effects of this second BTI and
learn one or more bits of information about the injected target,
the side channel is successfully read.

At a high level, the attack has 2 main phases: in the first
phase, the attacker performs standard BTI and, whenever suc-
cessful, causes the victim’s control flow to be (speculatively)
hijacked to execute the reverse BTI gadget. This represents
the side-channel-send operation. In the second phase, the at-
tacker attempts to perform the side-channel-receive operation
by observing the effects of the victim’s speculative execution.
We can see the two phases in detail in Figure 3.



4.1 Phase 1
Phase 1 starts with the attacker training the BTB by repeatedly
executing an indirect call whose target address is identical to
the one of the reverse BTI gadget in the victim. The attacker
can execute this either on the same thread or on a twin thread
on the same physical core of the victim process. The gadget
(identified in the figure as the BTI training gadget) the attacker
calls into initially consists of a return instruction followed
by a register-indirect call instruction that is never executed in
this phase.

When the training is over and BTI is successful, we assume
that the victim speculatively executes the reverse BTI gadget.
The reverse BTI gadget is identical to the BTI training gadget
in the attacker, save for the fact that it starts with a nop. The
nop may be replaced in practice with any instruction that
doesn’t disrupt the control flow and whose size still ensures
that the indirect call in the victim’s reverse BTI gadget has
the same address as the (so-far unexecuted) indirect call in
the attacker’s BTI training gadget.

The reverse BTI gadget contains an indirect call which is
speculatively executed. Crucially, our findings prove that the
side effects caused on the BTB by its execution are not rolled
back by the CPU. Further, we show that a single execution
of the victim is sufficient to make this side effect persistent
and observable. For these reasons, we can see the reverse
BTI gadget as an implementation of the side-channel-send
operation: if the information being sent depends on a secret of
the victim, the attacker is later able to read it with a suitable
side-channel-receive gadget in the next phase.

4.2 Phase 2
At this point phase 2 begins. In phase 2 the attacker “patches”
its BTI training gadget by replacing the leading ret with a
nop. This enables the attacker to perform the second indirect
call without losing alignment with the victim and without re-
quiring more complex gadgets to distinguish between training
and measurement mode.

Subsequently, the attacker calls into the (now patched)
BTI training gadget once more, finally executing the register-
indirect call whose target was trained by the victim. If the
victim’s training was successful, the attacker will not execute
the code at the correct label but rather at the victim-trained
verify label. This is because the CPU tries to predict the
target of the call, and uses the history left from the victim
execution. The attacker structures its address space to contain
suitable speculative execution markers. Observing the side
effects left by the marker corresponds to the side-channel-
receive operation.

4.3 Practical considerations
In our first proof-of-concept implementation, we instantiate
the marker with a set of instructions that is measured by a spe-

cific Intel Performance Monitor Counter (PMC). The chosen
event must be one that is triggered even if the responsible in-
structions do not retire. In practice we have chosen the failed
store-to-load forward counter, which requires a sequence of
3 mov instructions. The performance counter related to the
marker is incremented whenever the attack succeeds and the
indirect call in phase 2 is speculatively redirected to the lo-
cation trained by the victim. Clearly this technique is not
applicable to a real-world setting since programming PMC
counters requires root privileges.

We identify 2 realistic marker instances that implement a
side-channel-receive operation. The first candidate uses in-
struction cache side effects. Assuming that the attacker knows
the first 6 most significant bytes of rax and wants to discover
the 7th, it would layout its address space by placing at each
of the 256 possible addressed an icache-differentiable gadget.
This gadget would in practice contain a suitable amount of
nop padding to account for the content of the least significant
byte and a call instruction to one of 256 different functions,
followed by an lfence instruction to stop speculative exe-
cution. The attacker would speculatively execute one such
gadget as the first part of the side-channel-receive operation,
and then time the execution of all functions as second part of
the side-channel-receive operation. If only one of the func-
tions executes in less time than a pre-computed threshold,
its ordinal number corresponds to the leaked byte. This ap-
proach suffers from a rapidly deteriorating signal quality, due
to the noise induced in the instruction cache by the measuring
process.

value0:

     mov rax, QWORD[array + 0 * 1024]

     ret

value1:

     mov rax, QWORD[array + 1 * 1024]

     ret

                ...

value255:

     mov rax, QWORD[array + 255 * 1024]

     ret

Figure 4: side-channel-receive approach using data cache access
pattern

The second candidate uses data cache access as a mea-
surable side effect. The setup is identical to the previous
approach save for the fact that the 256 target functions each
contain a different memory access (load operations on an
array). When speculatively executed, this induces an effect
in on the data cache, which can then be measured. This ap-
proach is described in Figure 4. With this approach, the side
channel signal maintains its quality throughout the measuring
process and allows the attacker to extract a full byte from the
side-channel-receive operation.



Secret Success Rate

0 80.84% ± 1.37

1 97.29% ± 0.11

Table 1: icache attack experiment with a gadget from
libhttp-parser.so: each row displays the success rate in
guessing the value of the victim’s secret. The success rate is
computed as the rate between samples displaying an icache hit (resp.
miss) when the value of the victim’s secret is 0 (resp. 1). An icache
hit is defined as an execution of the icache gadget timed below a
pre-determined threshold.

5 Evaluation

5.1 icache attack

Experimental setup We test the icache attack on an Intel
Core i7-6700K CPU running Ubuntu 16.04.6 LTS, kernel ver-
sion 4.15.0. The attacker and victim processes are co-located.
The following system setup is in place: ASLR is off to ensure
consistent virtual addresses for BTI training, scaling gover-
nor is set to performance for constant clock frequency. Clock
frequency is set below turbo. On the speculative execution
mitigation side, the default setup is in place – spectre_v2 set
to auto and spectre_v2_user set to auto.

The attacker process is timing the execution of target code
that is shared between victim and attacker. The same icache
(physical) tags allow the attacker to determine the exact path
taken in the victim icache gadget. To enforce this behaviour,
we test our attack on two different setups: in the first, the
shared code resides in a POSIX shared memory region; in the
second, the shared code is part of a shared library. For this
second part, we test with both libhttp-parser, part of nodejs
and libcrypto, part of OpenSSL.

Attacker and victim use lightweight synchronisation for
higher BTI success rate. In practice, this synchronisation is
not required as long as we can assume that the attacker is
able to trigger the victim and can thus time its execution
accordingly. To maximise the signal of the icache side channel
we flush the cache lines that correspond to the target code area
before each loop. Given that the shared gadget is dynamically
mapped, the icache timing gadget in the attacker does not
time a direct call but a register-indirect one.

Results and Discussion The overall success rate of the ex-
periment shown in Table 1 is above 80% for guessing either
of the two secret bit values, which is well above the 50% ran-
dom guess threshold. Therefore, the attack is successful. We
compute the success rate per 100 runs to be the number of
times the attacker correctly guesses the secret bit. We then
compute average and 95%-confidence interval for the success
rate by repeating this experiment 1000 times, and therefore
collect a total number of 100k samples.

Table 1 shows results with a gadget chosen from
libhttp-parser.so: in particular the chosen functions for
fun1 and fun2 are 7 pages apart and are 29 and 870 bytes
each. We obtain similar results for the other combinations
(POSIX shared memory or different shared objects). The over-
all success rate is mostly dependent on how successful BTI
is, with the BTI success rate itself varying from 70% to 90%
over all our experiments. Each run collects one timing of the
execution of the function fun1 (with reference to Figure 2)
corresponding to the function that the victim should specula-
tively execute in case of successful BTI and when the (secret)
value of the condition register is 0. If the timing is below some
threshold, the attacker guesses that the value of the secret is 0,
and 1 otherwise. We determine the value of the threshold by
timing the execution of fun1 during a learning phase, building
a distribution of timing samples for icache hits and setting a
hit threshold as ht = avg+3∗σ, where avg and σ are average
and standard deviation of the distribution.

5.2 Double BTI Attack

Experimental setup We tested our Double BTI attack on
multiple Intel CPUs. On each machine, the attacker and the
victim are co-located. In the PoC, the register (rax) that is the
target of the indirect jump in the reverse BTI gadget is set as
follows: the 3rd least significant byte is a secret value that
the attacker wants to discover, prefixed by a (known) offset
and suffixed by all zeroes. The prefix just ensures that the
attacker can map its set of 256 markers at a non otherwise
mapped location. In the PoC, the attacker uses Double BTI
attack to learn the value of the secret byte. We use data cache
timing markers as discussed in Section 4.3. During this ex-
periment, the mitigations enabled against BTI are the default
ones (see Section 6) enabled on a stock Ubuntu. In this attack,
we do not employ any specific synchronisation between vic-
tim and attacker: the correct sequencing of the two processes
is achieved simply by delaying the start of the victim by a
suitable amount of time. We clflush the memory locations
containing the indirect call targets to maximize the specula-
tion window. With this setup, we measure the attack success
rate over 1000 attempts to leak the unknown byte of rax by
timing accesses to each of the 256 locations in the array that is
filled by the corresponding markers (as described in Figure 4).
We repeat this procedure 1000 for each 1000 attempts to cre-
ate a statical distribution of the attack for each machine. The
timing of the array is performed in non-linear order to avoid
prefetching effects. The timing always reveals two different
cases: either exactly one array location is below a pre-defined
threshold (fixed at 80 clock cycles) or none is. The first case
corresponds to a successful side-channel-receive operation.

Figure 5 shows the results of our experiments on different
platforms. We can see that we have non-negligible successes
on all platforms, with success rates peaking above 90% and,
in average, never below 15%. Meanwhile, random guessing



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Broadwell Skylake Coffee.Lake Kaby.Lake.8650 Kaby.Lake.8550

Family Name

A
tt

a
c
k
 S

u
c
c
e
s
s
 R

a
te

Figure 5: Double BTI attack success rate on leaking a one byte of
secret

in this settings would result in a 1/256 probability of success.
The quality of the side channel signal is excellent owing to
the fact that the attacker performs both the initial (speculative)
access followed in close succession by the timing of the array
location accesses, yielding an extremely clean measurement
environment.

6 Mitigations

Both the icache and double BTI method presented here use
BTI for speculative control flow hijacking. Therefore, BTI
mitigations from Spectre v2 are applicable.

Mitigations are available at the hardware and software level
to prevent BTI attacks. At the software level, compiling with
retpoline [16] mitigates BTI by rewriting all indirect calls to
avoid CPU prediction, through the use of a carefully crafted
return sequence. At the hardware-level, Intel added Indirect
Branch Restricted Speculation (IBRS), Indirect Branch Pre-
dictor Barrier (IBPB) and Single Thread Indirect Branch Pre-
dictors (STIBP). IBRS essentially flushes all branch predictor
state when switching between user and kernel mode. IBPB
essentially flushes all branch predictor state upon execution,
even within a process. Finally, STIBP stops sibling SMT
threads branch predictor from influencing the branch predic-
tor decisions on other siblings threads on the same core.

We tested our attacks against the current implementation of
BTI mitigations on the stock kernel 4.15.0 of our Coffee Lake
machine. The kernel offers two switches to enable Spectre

v2 protections. The first, spectre_v2, controls mitigations for
protecting the kernel from userspace attacks, as well as func-
tions as a master switch for enabling userspace protections.
It can be set to on, off or auto. The option on and off forces
respectively all the protection to be enabled or disabled. In our
experiment, we left spectre_v2 to auto, the default setting in
recent Ubuntu distributions, to be able to enforce a finer grain
control over the BTI mitigations and test functionality.

The second spectre_v2_user controls mitigations for
userspace programs, and is gated by the previous setting. It
can be set to on, off, auto, prctl/ibpb and seccomp/ibpb. As
for the previous switch, on and off enable and disable all the
protections. Meanwhile, auto defers the decision to enable or
disable each protection and their mode based on additional
configuration. Instead, both prctl/ibpb and seccomp/ibpb set
IBPB always-on but leave conditional STIBP that has to be
enabled on request by the process. For seccomp processes the
restriction is enabled automatically.

Among those settings, our attacks are prevented if and only
if STIBP is enabled (forced globally or the victim thread en-
ables STIBP using prctl). Both attacks can also be prevented
in software if the victim is compiled using retpoline. While
non-SMT based BTI attacks can be mounted (i.e, attacker
thread runs before and after victim threads, with two context
switches), because of the enabled kernel mitigations flushing
branch predictor state, these attacks do not apply.

Given the current performance penalties of enabling STIBP,
this protection is set conditional by default or unsupported (as
shown in Table 2) and therefore unless requested by the appli-
cation, our attack is not mitigated. Furthermore, we verified
that sensitive programs such as passwd, sudo and nginx do
not make use of the prctl interface to enable currently such
protection. Given these default settings and the risks posed by
BTI-related attacks, and in particular those presented in this
paper, we recommend sensitive applications to enable STIBP
through prctl when assuming local attackers.

Finally, other types of speculative control flow hijacks, i.e.,
return prediction based [7, 9] remain unaffected by these miti-
gations, and the two methods presented in this paper could be
applied for those attacks as well.

7 Conclusion

In this paper, we present two new attacks, icache, and Double
BTI. With these two attacks, we are able to leak a bit and a
byte respectively from a victim context for each run. Both
attacks lower the requirements for Spectre v2 gadgets, since
they do not require the injection of code inside the victim. We
develop and test proofs of concept for both attacks on several
CPUs showing their success rate and general viability. Also,
we analyse the attacks against current available mitigations
(e.g. STIBP) and confirm their success when mitigations are
left with their default settings. We also verify that sensitive
programs such as sudo, passwd do not make use of the prctl



Distribution Kernel Generation Date STIBP Vulnerable?

Ubuntu 18.04.2 LTS 4.15.0-50-generic May 6 18:46:08 UTC 2019 conditional Yes

Ubuntu 18.04.2 LTS 4.18.0-18-generic Apr 5 10:22:13 UTC 2019 conditional Yes

Ubuntu 16.04.6 LTS 4.15.0-50-generic May 8 15:55:19 UTC 2019 conditional Yes

Ubuntu 18.04.2 LTS 4.19.0-041900-generic Oct 22 22:11:45 UTC 2018 unsupported Yes

Ubuntu 18.04.1 LTS 4.15.0-29-generic Jul 17 15:39:52 UTC 2018 unsupported Yes

Table 2: Default STIBP settings in the kernel used by the distributions tested in our evaluation

interface to enhance their protection against such attacks. We
leave real world implementation of our attacks against such
programs for future work. In the meantime, we recommend
maintainers of sensitive userspace programs to consider en-
abling BTI mitigations.
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