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Abstract
We explain how to design RISC-V shellcodes capable of
running arbitrary code, whose ASCII binary represen-
tation use only letters a–zA–Z, digits 0–9, and either of
the three characters: #, /, ’.

1 Introduction

RISC-V [22] is a new Instruction Set Architecture (ISA)
which development began in 2010. It is based on the con-
cept of Reduced Instruction Set Computer (RISC) [17],
targeting simplicity by providing few and limited com-
puter instructions. RISC ISAs have become increasingly
popular with the wide adoption of embedded devices
such as smartphones, tablets, or other Internet of Things
devices. The most popular RISC ISAs are currently
ARM [1], Atmel AVR [2], MIPS [16], Power [11], and
SPARC [21].

RISC-V is the fifth RISC ISA published by UC Berke-
ley. It is completely free and open-source, with its User-
Level ISA published in May 2017 in version 2.2. It
features 32-bit and 64-bit little-endian variants (des-
ignated as RV32 and RV64), with a future extension to
128-bit. While only test boards feature RISC-V proces-
sors for now, many companies including Western Digital
or Nvidia have announced the use of RISC-V chips in
their future products [19].
This increasing popularity makes RISC-V an attrac-

tive target for low-level attackers, whose tools are tra-
ditionally honed chiefly against x86 platforms. This is
exacerbated by the widespread adoption of smartphones
and their use for almost any task from payment to dat-
ing to unlocking one’s car, making successful attacks
especially profitable. At the same time, mobile environ-
ments are improving their security, in part to address
such threats.

Nevertheless, mobile applications are still occasionally
vulnerable to memory safety vulnerabilities, and the need
for performance or obfuscation often drives developers

to implement low-level (e.g., JNI) segments which are
particularly susceptible to the usual techniques of buffer
overflow exploitation. Unlike traditional local or network
scenarios however, the attacker has only limited ways to
transmit a payload.
We claim that a reasonable vector is text-based ap-

plications, which includes SMS, social networks, chat
applications (in a remote context), password entry, note
taking, or QR code scanning (in a local context). This be-
ing said, the attacker’s payload has to be treated by this
application as text such as a hashtag, a URL, a sentence,
in the most restrictive sense, hence the most widely ap-
plicable. We therefore consider alphanumeric programs
whose binary representation use only the alphanumeric
ASCII characters: the 52 lowercase and uppercase letters
of the English alphabet and the 10 digits. As we will
discuss, it is only possible to achieve arbitrary code exe-
cution at the cost of allowing one additional character:
either #, /, or ’, each being compatible with the use-cases
discussed above.

1.1 Prior and related work
This work follows a trend initiated in the early 2000s to
evade buffer overflow protections (Eller [10] and RIX [20]
on x86) and intrusion detection systems [12]. Tools to
generate alphanumeric shellcodes on the x86 platform
appeared [4] and are now a standard component of attack
frameworks including Metasploit (msfvenom) and UPX1.
The x86 is particularly well suited to this exercise as
many letters materialize into mov instructions, which
form a Turing-complete subset of operations [8]. To this
day however neither of these tools are able to generate
alphanumeric shellcodes on ARM platforms, such as
ARMv8 and RISC-V.

The first automated tool was provided by Younan et
al. in 2011 for the ARMv5 platform, relying on an BF
interpreter and bytecode [23]. The technique however
does not carry over to more recent implementations.



In 2016, Barral et al. introduced the first tool capable
of compiling arbitrary ARMv8 code into alphanumeric
executable code [3]. This is a tour de force but also and
most importantly it introduces a generic approach to
design such tools.
To the best of the authors’ knowledge, none of the

currently available approaches works on RISC-V.

1.2 Our contribution
We provide, as far as the authors know, the first analysis
of alphanumeric code on RISC-V, as well as a complete
framework for automatically generating alphanumeric
(+1 character) shellcodes. Through a three-staged mod-
ular design, these shellcodes achieve arbitrary code exe-
cution on this platform.

This is the second architecture which can be addressed
using the methodology from [3], which is an argument
in favor of such generic approaches (rather than ad hoc
ones). Our approach differs on the fact that we do not
manually assemble available instructions into higher level
constructs for building the unpacker in a bottom-up fash-
ion and instead opt for a partially automated strategy to
generate the required alphanumeric instruction sequences
to achieve the desired results.

We provide three different constructions, correspond-
ing to each choice of an additional character. All our
programs are given in appendix, being to the best of
the authors’ knowledge the first automated tool of this
kind for RISC-V, as well as the first examples of such
shellcodes for each construction.

2 Background

2.1 Shellcodes and exploitation
In a typical arbitrary code execution (ACE) scenario,
attackers can run a relatively short program of their
choosing. It is called a shellcode, as it can start a shell
session, which in turn allows attackers to download and
run additional programs.

For instance, a stack overflow ACE can happen when
an application allows writing in an array beyond the
allocated space for this array, resulting in overwriting
stack frame data. In platforms such as x86 the stack
frame stores information about the instruction pointer
before a call; by overwriting this information an attacker
can control the instruction pointer and send it back
to the array’s address. The array’s contents are then
executed as if they were the vulnerable program’s own
instructions: this is where the shellcode is written.

Since a typical array is relatively short, shellcodes must
accordingly be concise. Similarly, an application may

restrict what data it manipulates (e.g., strings) and shell-
codes must be written to comply with such constraints.
Additional protections make shellcode design trickier:
Address Space Layout Randomization (ASLR), stack-
smashing protections, or non-executable stack space for
instance. Detection mechanisms may furthermore iden-
tify characteristic aspects of a shellcode and prevent the
attack from reaching the target application. For all these
reasons the modern shellcode designer has to navigate
around layers of obstacles.
This difficulty is somewhat offset on embedded and

mobile devices, where many protections are only par-
tially implemented, if at all. Such platforms also host to
many third-party applications, that can be developed
without strictly adhering to secure coding practices, us-
ing memory-unsafe languages (sometimes due to perfor-
mance or obfuscation constraints) and not necessarily
updated in a timely fashion.

2.2 The RISC-V instruction set
RISC-V splits its instruction set between a mandatory
core set (RV64I) and different optional extensions, each
of which is designated by a string (a single letter for the
most common ones). The defined extensions include inte-
ger multiplication and division (M), atomic operations (A),
single-, double- or quad-precision (F, D, Q) floating-point
operations, decimal floating-point operations (L), com-
pressed instructions (C), vector operations (V), ...
The general purpose ISA, which includes IMAFD, is

designated by the letter G. In what follows, we focus on
the RV64GC ISA, which is the one agreed on by Debian
and Fedora porters, as well as members of the RISC-V
Foundation. On top of that, the Foundation intends to
provide “a profile for standard RISC-V Unix platforms
that will include C extension as mandatory” [7].

The RV64GC ISA features 32-bit and 16-bit instructions,
aligned on 16 bits. There are 31 general purpose 64-bit
registers (x1-x31), 32 floating-point registers (f0-f31),
a program counter (pc), as well as various control-and-
status registers. The pseudo-register x0 designates the
zero constant.

We adopt for the rest of this paper some terminology
defined by the RISC-V Instruction Set Manual, Version
1.10 [22]. Assembly instructions are written in the format
add x1,x2,x3, where add is called the opcode, and x1,
x2, x3 are the operands. Precisely, x1 is the destination
register, x2 is the first source register and x3 is the
second source register. When one of the source registers
is replaced by a constant, it is called an immediate. To
those conventions, let K be a register, we add our slicing
notation as K[y : x] (with x < y), meaning we take a
slice of bits x to y of K, with the lowest bit denoted as
the bit 0.



RISC-V ELF psABI specification [6] provides a register
naming convention, reproduced in Table 1.

Register ABI Mnemonic Meaning
x0 zero Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporary registers
x8-x9 s0-s1 Callee-saved registers
x10-x17 a0-a7 Argument registers
x18-x27 s2-s11 Callee-saved registers
x28-x31 t3-t6 Temporary registers

Table 1: Naming convention for registers, per psABI [6].

3 Alphanumeric RISC-V

The first step towards building an alphanumeric shellcode
for RV64GC consists in generating the subset of alphanu-
meric valid instructions, which we denote by αRV64GC.
For this purpose, we generated every 16-bit and 32-bit
alphanumeric sequence, and tentatively disassembled it
using objdump. Per RISC-V Instruction Set Manual, 16-
bit instructions must have their two least significant bits
set to 00, 01 or 10. Similarly, 32-bit instructions must
have their five least significant bits set to bbb11, with
bbb different from 111.
Furthermore, some opcodes may encode invalid or

unimplemented instructions. For instance, the little-
endian word 7OOT corresponds to a load upper immediate
(lui), whereas WOOT does not correspond to any valid
RV64GC instruction, although its least significant bits are
those of a valid 32-bit instruction:

7OOT 0x374f4f54 lui t5 ,0 x544f4
WOOT 0x574f4f54 undefined

After filtering out all invalid sequences, we regroup the
remaining instructions according to their opcode, provid-
ing an overview of the available instructions for which
there are some operands making them alphanumeric.
The internal structure of the instruction defines the

main constraints on the alphanumeric language subset.
Each 32-bit instruction has its opcode encoded in the
first 7 bits of the first byte. Requiring the first byte to be
alphanumeric will therefore greatly reduce the available
opcodes, while providing a wide range of operands for
each opcode. On the contrary, 16-bit instructions are
more entropic in their spread. Henceforth, more opcodes
are available, with less operands for each opcode. Con-
sequently, the expressiveness of αRV64GC relies on the
intelligent combination of instructions of various lengths.

Hereafter, we provide a review of those instructions, by
explaining their semantics and some insight on the avail-

able operands. For simplicity and following the method-
ology introduced by Barral et al. in [3], we cluster in-
structions as control-flow, data processing, and memory
manipulation instructions.

3.1 Data processing
Data processing includes every instruction that does
not modify the memory or the program counter. Two
variants may be available for each instruction, either
operating on the usual 64-bit registers or performing
the operation on 32 bits and sign-extending the result
to the 64-bit register. Using 32-bit variants for pointer
manipulation prevents from reaching addresses ranging
from 0x8000 0000 to 0xFFFF FFFE FFFF FFFF. This is
a serious caveat for bare-metal shellcodes — as existing
boards often have the DRAM start at 0x8000 0000 —
forcing us to use the 64-bit variant. Hereafter, we only
present the most useful ones, omitting instructions which
may have odd effects (like micro-architectural hints for
branch predictors):

• The addition addi instruction enables adding or re-
moving only some specific values multiple of 16 to sp.
Its 32-bit signed variant addiw is also available, and
allows increasing or decreasing registers a0, a2, a4,
a6, s0, s2, sp, t1, and tp by a value ranging from
−20 to 30.

• The instruction li, allows loading signed integers
(ranging from −20 to 30) into registers sp, tp, s0, s2,
s4, s6, s8, s10, t1, t3, t5, a0, a2, a4, and a6. We use
the letter S to designate this set of registers.
Loading immediates to registers may also be done
with the lui instruction (load upper immediate),
which loads a 20-bit signed immediate into the bits
31-12 of a register in S. The lowest bits are all set to
zero, while the 32 highest bits are computed as the
sign-extension of the immediate. We counted 238,791
alphanumeric lui instructions, with a large choice of
immediates.

• Bitwise manipulation: only the sra (shift right arith-
metical) instruction is available, with all registers of
S as source and destination, and registers s3–s7 as
shift amount.

• Floating-point operations: many useful floating-point
operations are available in αRV64GC, in simple, dou-
ble and quad precision. Among them we find sign
manipulation like fabs (absolute value) or multiply-
accumulate fmadd and its variants (r←±a× b± c).

• Control-status register manipulation: many instruc-
tions available, such as csrc, csrci, csrrc, csrrci,
csrrsi, csrrwi, csrwi, not detailed here. As privi-
leged access may be required, we preferred not using



them and instead use the other available data pro-
cessing instructions.

3.2 Control-flow instruction
Both conditional and unconditional jump instructions
are available. For unconditional branching, we have both
j (jump) and jal (jump and link) available, with the
possibility to link any register of S. Conditional branches
are also available, with a wide variety of branching con-
ditions: bgtz, ble, bleu, blez, blt, bltu. No backward
jump is available, as the immediate offset has its sign
set on the highest bit of a byte (hence always equal to
zero when alphanumeric). This may prevent the Turing
completeness of αRV64GC, as no unbounded computation
mechanism is available without additional assumptions,
such as code-reuse or self-modifying code.

3.3 Memory processing
We have both 32-bit lw and 64-bit ld loads as well as
double-precision floating-point fld loads. However, no
stores are available, which makes it impossible to write
arbitrary shellcodes: we are only able to modify the
registers and not the machine’s memory state.
This turns out to be a strong limitation as for in-

stance the shellcode designer cannot build paths (such
as "/bin/sh") in memory (this is not an alphanumeric
string). Thus, additional assumptions must be made,
either by finding gadgets able to write to memory or by
reusing memory previously set to the desired value at a
known position (e.g., an environment variable). Either
option seems unsuitable in the context of a self-contained
shellcode.
We therefore consider the possibility of allowing one

non-alphanumeric character — a choice which may be
governed by operational constraints as well. Among all
ASCII-printable instructions modifying memory, only
three non alphanumeric characters stand out: slash /,
hash #, and tick ’.

• Adding the hash character # gives standard 32-bit sw
and 64-bit sd store instructions. The 32-bit store sw
provides the ability to store almost any variable to
various addresses with offsets multiple of 32. Given
that there is no possibility to increment a 64-bit regis-
ter by less than 16 (using addi), many memory areas
are out of reach. The 64-bit variant sd seems more
promising: indeed, the available offsets are only 2
bytes apart. Using this, we can efficiently store data
by using addi increments for coarse-grained pointer
manipulation and reaching the exact store address
(up to a precision of 2 bytes) by tweaking the offset
of sd.

• Adding the slash character / provides some atomic
instructions, such as 32-bit and 64-bit atomic read-
modify-write variants of binary conjunction amoand
and disjunction amoor. As an example, amoor.d
t1,s5,(sp) loads 64 bits from the address in sp
into t1, and stores in the same address the disjunc-
tion of t1 and s5. Note that the addresses passed to
atomic operations must be naturally aligned, which
adds further complexity when designing our shellcode.

• Adding the tick character ’ provides floating-point
store instructions fsd, fsq, fsw. Controlling the
stored values requires deep technical knowledge of
floating-point binary representation, as the associ-
ated data manipulation operations are of the form
±a× b± c (e.g., fmadd, fmsub).

For each of these three characters, we define a new sub-
set of RV64GC, denoted respectively #RV64IC, /RV64IAC
and ’RV64IDC. The following section details how we
can achieve ACE in #RV64IC, setting up the stage and
much of the machinery for shellcodes in /RV64IAC and
’RV64IDC as well. Since these require additional work,
they are discussed later on.

4 High-level design

Several approaches can be used to run arbitrary code
from an instruction-limited shellcode. The main tech-
niques available are: virtualization, compilation, and
packing.
Virtualization, as used by Younan et al. for 32-bit

ARMv7 alphanumeric shellcoding [23], requires the de-
sign of a bytecode and an interpreter, both compatible
with the limited instruction set, and powerful enough to
mount a realistic attack — beyond Turing-completeness,
we need to perform system calls or other mechanisms to
evade the virtual environment. Virtualization presents a
huge runtime overhead as well as a committed engineer-
ing effort.

Compilation, when applicable, is very efficient: compil-
ers such as movfuscator [8,9] and higher subleq [14] have
been provided for one instruction set computers, reduced
ISA subsets made of only one instruction. However, such
methods are not applicable to αRV64GC as they often rely
on syntax-directed translation schemes. Here, the heavy
constraints in αRV64GC on the instruction operands hin-
ders such methods that systematically translate each
grammar symbol into the target language. Furthermore,
writing compilers is in itself a daunting task. Perhaps
for these reasons, to the best of our knowledge, no work
on compilation for alphanumeric shellcoding has been
published.

Packing is the third method, and by far the most com-
mon approach in shellcoding. This typically results in



multi-staged shellcodes, where one stage decodes a sec-
ond stage which is then executed. Packers can provide
additional functionalities such as encryption, which we
do not explore here. However, this technique requires
the ability to execute self-modifying code, which may
be hindered by the presence of executable space protec-
tion mechanisms like DEP [15], PaX [18] or NX-bit [13].
Moreover, self-modifying code raises cache issues which
need to be handled on a target-specific basis.

We decided to follow this third approach: it is concep-
tually simpler, much easier to check for correctness, and
well suited to our target platform.

Stage 1

init

forward jump

encoded payload
Penc

Unpacker U1

Stage 2 U2
(unpacked by U1)

Figure 1: General structure of stage 1: an initialization
section, with a forward jump over the data-pool that con-
tains the encoded final payload Penc, and the unpacker
U1. The location at which the stage 2 is unpacked is
highlighted in grey.

5 Detailed construction

In this section we show how to achieve arbitrary code
execution, by detailing each step of the #RV64IC version
of the shellcode. Building on the foundations laid with
#RV64IC, we achieve similar results in /RV64IAC and
’RV64IDC.

As explained in Section 4, we use a packing multi-
staged design. We present a three-stage approach:

• The first stage is a specific unpacker written in
#RV64IC;
• The second is a general unpacker written in a slightly
larger subset of RV64IC;
• The third is our arbitrary payload.

Stage 2

init

main
decoding

loop

backward jump

jump

Stage 3
Payload

...

U2

Figure 2: General structure of stage 2: an initialization
section, with a loop decoding at each iteration one byte
of the final payload P using two bytes of the encoded
payload Penc. It finally jumps to the decoded payload,
highlighted in grey.

The rationale for using three stages is governed by
#RV64IC not containing backjumps, therefore forcing
us to unroll the decoding logic. This would result in
unwieldy large shellcodes if there were only two stages.
Instead, we use the first unpacker U1, whose structure
is shown in Figure 1, to unpack a minimal program U2
shown in Figure 2. The program U2 has backward jumps
and can therefore efficiently implement a decoder using
a loop. U2 unpacks and execute the third stage, which is
the payload P.

5.1 Stage 1

U1 is an unpacker for the next stage. It is fully written
in #RV64IC. As no backward jumps are available, the
unpacker is written as a straight-line program.

Specifically, U1 must: (1) locate the shellcode and jump
over the encoded payload; (2) fix-up the store pointer;
(3) unpack stage 2; (4) jump to the decoded stage 2.

We achieve (4) simply by placing the decoded stage 2
immediately after U1’s last instruction. The other steps
are detailed below:



5.1.1 Locating the shellcode and jump over the
encoded payload

To make the shellcode position independent, we find its
absolute position in memory using the jump and link
(jal) instruction which stores the program counter to
a user-specified register. This instruction consequently
increases the shellcode’s size by jumping over a large
memory region. Yet, this area is not entirely wasted, as
we repurpose it to store our packed payload P.

5.1.2 Fixing-up the store pointer

The next step consists in setting up the register XI con-
taining the address at which we will write stage 2. For
this purpose we use the absolute address obtained in
Section 5.1.1, to which we add a constant using several
addi instructions. We must not forget the additional
offset required when using the sd store instruction in
the decoder. Consequently, stage 2 will be unpacked
immediately after the shellcode.

The biggest immediate available for the addi instruc-
tion in αRV64GC is 464. Since the shellcode is much
longer, we use the following trick: we first append sev-
eral addi XI, XI, 464 instructions until we exceed the
desired value. Then we replace some immediates in the
sequence by the second greatest available immediate, i.e.
448, which reduces the total sum, until the desired value
is reached.1 In this way, we are guaranteed to use the
least amount of addi instructions possible.

5.1.3 Unpacking stage 2

We then unpack stage 2 starting at XI+ store_offset,
where XI is the register we set previously. This is done
sequentially, using the sd instruction with carefully cho-
sen offsets. Indeed, we have many offsets only 2 bytes
apart. In our case, we chose a long chain of offsets (avail-
able from our constrained instruction set), each exactly
2 bytes apart, 1920, 1922, ..., 1938. This allows storing
at most 20 consecutive bytes by first loading 2 bytes into
a register and then storing them into memory. We use
a precomputed table providing for each immediate the
minimal sequence of instructions needed for loading it
to a given register. We explain below how to compute
this table. To store more than 20 bytes, we increment XI
(using the addi XI, XI, 16 instruction) between each
batch of 16 bytes, and continue with offsets 1924, ...,
1938. The whole stage 2 is 40 bytes long, unpacked in 3
batches of 20, 16, and 4 bytes.
The above strategy relies on a precomputed table

of sequences for achieving arbitrary 2-byte loads. We
generate this table using a depth-first search strategy, by

1A small NOP sled of at most 16 bytes may be required for
getting an exact match.

iterating over #RV64IC instruction sequences and storing
the reached values. This approach yields for each 2-byte
immediate the shortest sequence required to load it into
a register.
More precisely, the first instruction of the sequence

is a lui (loads an immediate in bits 12 to 31 of the
destination register). It is followed by an arithmetical
right-shift sra instruction (unless the shift amount is
null). By intersecting the set of possible registers which
may be used both as destination register for sd and lui,
we end up with registers s4, s6, t1, tp. As sra requires a
register as a shift amount, we also iterate over all possible
load immediate li and addiw subsequences to get the
desired shift amount.
The next instructions of the sequence are made of

addiw instructions, with immediates ranging from -20
to 30. We limit the exploration of the instruction se-
quence space to at most 4 addiw instructions, to keep
U1 compact. This limitation still grants the possibility
to load 63448 out of the 65536 possible values (or 96%)
into s4, s6, t1, or tp.

In this way, we can design our stage 2 with a substan-
tially expanded set of available instructions. Indeed, we
merely require to make sure every pair of bytes in stage
2 could be loaded from an instruction sequence in the
table.

5.2 Stage 2
Stage 2 (U2) is more straightforward. It consists of some
initialization code followed by a loop whose body decodes
two consecutive bytes of Penc, the encoded payload. The
full implementation can be found in Appendix B. The
initialization code sets three registers — the reading
pointer XP pointing to the encoded payload, the writing
pointer XQ pointing to the start of the decoded payload,
and the end pointer XS pointing to the end of the decoded
payload. For simplicity, U2 performs in-place decoding,
meaning that XP is initially equal to XQ.
We also flush the instruction cache with a fence.i

instruction, which is required as we modify executable
memory. We discuss later in Section 6 the assumption
that the first fence.i is not shadowed in the instruction
cache.
Since 63 characters are available, it is theoretically

possible to encode almost 6 bits of the payload in a
single alphanumeric byte of the shellcode. However, to
keep U2 short, we decided to encode only 4 bits per
alphanumeric byte. This spreads each byte of the payload
over 2 consecutive alphanumeric characters. As stage 2
is unpacked sequentially by the first stage, we need to
make stage 2 the shortest possible, even if this makes
the encoder more complex. Indeed, any additional length
here would lead to a significant increase in stage 1 size.



Let K be the byte stored at XP+ 1, L the byte stored
at XP and A the byte written at address XQ by the store
instruction. The decoding algorithm we devised only
requires 5 instructions in the body of its loop.

lw XS , 4(XP) # Load K and L bytes
# XS == 0x????K[4:7]K[0:3]L[4:7]L[0:3]
mv XT , XS # Duplicate value
srli XT , XT , 4 # Shift right by 4
# XT == 0x?????K[4:7]K[0:3]L[4:7]
xor XS , XS , XT # XS := XS ⊕⊕⊕ XT
# XS == 0x??????A[4:7]A[0:3]
sw XS , 0(XQ) # Store decoded byte A

Hereafter, we find the encoding formulae by solving the
decoding equations. Henceforth, when encoding byte A,
the encoder must find values for K and L so that:

K and L are alphanumeric
L [0 : 3]⊕⊕⊕L[4 : 7] =A[0 : 3]
K[0 : 3]⊕⊕⊕L[4 : 7] =A[4 : 7]

One should remark that every byte of the form 0x4*
or 0x6* for * non null is alphanumeric. This simplifies
the resolution of the previously given constraints. The
following solution can be checked to give an alphanumeric
encoding for any input byte.

L[4 : 7] = 0x4 if A[0 : 3] 6= 0x4 else 0x6
L[0 : 3] =A[0 : 3]⊕⊕⊕L[4 : 7]
K[0 : 3] =A[4 : 7]⊕⊕⊕L[4 : 7]
K[4 : 7] = 0x4 if A[0 : 3] 6= 0x0 else 0x5

Finally, as executable memory modifications occurred,
we flush the instruction cache again using a fence.i
instruction, and jump to the decoded payload P.

5.3 Payload
Stage 3 is the payload P, containing arbitrary binary
code. We generate this code directly from a C source
payload compiled with a standard gcc. The resulting
binary code is then encoded as described in Section 5.2
with a lightweight PHP script.

The size of the payload is upper bounded by the offset
chosen for the forward jump is Figure 1. For our needs,
we deemed 1024 bytes to be sufficient, allowing us a de-
coded payload of 512 bytes. Note that with some minor
engineering work, this maximum size can be increased.
In the context of usual shellcoding attacks, the payload
almost always fits into this limit. As a proof-of-concept,
we test in Section 6 three different payloads for a stan-
dard Linux: a printf("Hello world") shellcode, an
execve("/bin/sh") shellcode, and one that leaks the
contents of /etc/shadow.

5.4 Integration/Linking
All in all, the complete shellcode is built in the following
order:

1. We compute the table of minimal instruction se-
quences (Section 5.1.3).

2. We build the final payload P , and compute its length
(Section 5.3).

3. We generate stage 2, with the appropriate values for
the reading pointer, the writing pointer, and the end
pointer (Section 5.2 and fig. 2).

4. We generate the unpacker for stage 2, and compute
its length (Section 5.1.3 and fig. 1).

5. We generate the code for fixing-up the store pointer
(Section 5.1.2).

6. We then build the whole shellcode, without its en-
coded stage 3 payload, for which we allocated the
necessary space.

7. We finally insert the encoded payload P at the ap-
propriate location in the shellcode.

5.5 Shellcoding in /RV64IAC

We have also created a version of the shellcode in
/RV64IAC, using atomic store instructions instead of reg-
ular stores for unpacking in stage 1. Data is stored with
the amoor.d instruction which operates on 8 naturally
aligned bytes. By opposition to the previous implementa-
tion in #RV64IC, we do not have offsets for stores, hence
we need to modify the store pointer using available addi
instances, which can only increase a register by a multi-
ple of 16. We thus store our decoded stage 2 in blocks
of 16 bytes. As we have control over only the 8 first
bytes, we decided to split them into two parts, the first
four bytes containing the decoded instruction, whereas
the next two bytes contain a jump instruction to the
next block (j .+0xc , or 0x31A0 in hexadecimal). The
structure of the block is shown in Figure 3.

instruction nop-like jump to
next block

(unused)

0 2 4 6 · · · 16

Figure 3: Diagram of a 16-byte block. Our stage 2 in-
structions are located in the first two bytes, while the
next two contain a NOP like instruction followed by a
jump to the next block. The last 10 bytes are unused.

As required by the sequences for 2-byte arbitrary load
computed in Section 5.1.3, we wrote stage 2 using only
compressed instructions. The only exception is fence.i,
which is unavoidable and does not have a compressed



version. In this case, we use a custom sequence to store
its value (0x0000100F in hexadecimal). We would like
to particularly thank the authors of RISC-V for the fact
that the 16 highest bits of fence.i are all zeros, which
keeps our sequence of instructions really short. Otherwise
we would have required chaining many addi instructions,
making the shellcode too long to be used in practice.

The sequences used for loading the 2-byte instructions
are computed using a table similar to that of Section 5.1.3.
By opposition to #RV64IC, here the word’s two highest
bytes will be executed as an instruction. We make sure
that these two bytes do not modify the high-level seman-
tics of the program. Altogether, the table allows loading
58174 possible 16-bit values, out of 65536 (or 88%) which
still allows encoding our stage 2 with only minor modifi-
cations, at the expense of a slight size increase of only 2
bytes. The payload and the way it is encoded remains
identical.

5.6 Shellcoding in ’RV64IDC

Shellcoding in ’RV64IDC is more tricky. First of all, it
requires the floating-point unit (FPU) to be activated,
which is always done by the operating system when
working in a hosted environment. In the context of the
bare-metal examples presented in this paper, we use a
small additional piece of non-alphanumeric code, whose
sole purpose consists in activating the FPU (in big-
endian hexadecimal: 0x896373900330).

Similarly to /RV64IAC, the main difference lies in the
way stage 2 is unpacked by U1. This time, we store in
the data-pool some floating-point values which are used
by U1 during unpacking. The most general floating-point
data manipulation instruction available is fmadd r, a,
b, c (fused-multiply add): it computes r= a×b+c. The
store operation fsd then stores r at the desired memory
location. We thus have to solve equations of the form
ri = ai× bi + ci, where ri is a small part of the decoded
stage 2, under the constraint that each ai, bi and ci need
to be loaded from the data pool. To keep our data pool
as small as possible, we need to share values between
different equations. As this increases the mathematical
complexity of solving floating-point equations, we decided
to work on a simplified version of the problem, in which
we only encode 6 bytes of stage 2 into ri. Indeed, in
this way, the constraint lies only in the mantissa of the
floating-point. Furthermore, we fixed the two remaining
bytes of ai, bi and ci to alphanumeric constants which do
not propagate carries to the exponent when performing
the operation. These simplifications turned out to be
sufficient for solving the equations while reducing the
total number of different floating-point constants.

Hereafter, we present some of the methods we used for
reducing the number of different floating-point constants

used. The first, consists in using the same bi for all equa-
tions, as, without loss of generality, this does not impedes
finding a solution by just modifying ai and ci. This sim-
plification allows solving the equation by testing random
alphanumeric values for ai, computing the adequate ci

then checking both ai and ci are alphanumeric. A simple
combinatorial analysis gives us the approximate proba-
bility that a randomly chosen alphanumeric ai gives an
alphanumeric solution for ci as: ( 62

256 )6 ' 1
50000 .

The second method consists in using the same ak for
two consecutive equations. Formally, we require to find
solutions ak, c2k, c2k+1 for the following set of equations:

r2k = ak× b+ c2k

r2k+1 = ak× b+ c2k+1

Unfortunately, these equations are not guaranteed to
always have solutions. Indeed, let r2k and r2k+1 dif-
fer in their highest bit. This means the highest bits of
c2k and c2k+1 are different.2 Hence one of them is non-
alphanumeric. The solution we came up with consists in
making stage 2 polymorphic, and trying to solve those
equations for all instances of stage 2, hoping to find one
for which all the equations have a solution. The differ-
ent stage 2 instances are generated by either modifying
the registers (150k variants), reordering some initializa-
tion instructions for the loop (6 variants), or reordering
the pointer increment instruction in the loop’s body (7
variants); yielding a total of about 6 millions stage 2
instances.

Algorithm 1 uses memoization to speed up the resolu-
tion of equations. In the worst case, the first loop has
12 million iterations (which can be executed in parallel),
the second has 4 iterations while the last has 2 million
iterations. In practice, when taking into account memo-
ization, we counted 2.3×1011 iterations, requiring 1.5
execution hours on a 4-core Atom 2GHz CPU. Eventu-
ally, we found several instances for which all equations
had a solution. The rest of the shellcode is built in the
same fashion as the previous versions presented in the
previous sections.

6 Evaluation

6.1 QEMU
We initially tested our 3 shellcodes on QEMU [5], a
widespread open-source emulator. It emulates a HiFive
Unleashed RV64GC development board, without some
of its micro-architectural features like caches or tim-
ings. The payload is expected to print “Hello world!”

2We omit the rare and lucky case where carry propagation still
provides a solution to the equation.



Input: b, a 64-bit floating-point value
Input: s0, ...,s2`+1, the stage 2
Result: a list of 64-bit floating-point values
mem := Array(None) ;
P := Polymorphism(s0, ...,s2`+1) ;
foreach r0, ..., r2`+1 in P do

for k = 0 to ` do
if mem[r2k][r2k+1] is not None then

continue
end
for i= 0 to 2000000 do

a := RandAlphanumFloatingPoint()
Solve c2k in

r2k = a× b+ c2k

Solve c2k+1 in
r2k+1 = a× b+ c2k+1

if c2k and c2k+1 are alphanumeric
then

mem[r2k][r2k+1] := a
break

end
end
if mem[r2k][r2k+1] is None then

mem[r2k][r2k+1] := NotFound
end

end
if 6 ∃k,mem[r2k][r2k+1] is NotFound then

return (mem[r2k][r2k+1])(k=0..`)
end

end
Algorithm 1: Automated testing of the existence of
a solution to the sets of equations induced by a spe-
cific stage 2 encoding. The outer loop is parallelized,
testing several stage 2 instances concurrently.

on the serial device mapped at address 0x10013000. Af-
ter generating the corresponding shellcodes for #RV64IC,
/RV64IAC and ’RV64IDC, we successfully managed to
execute them on QEMU. We provide in Appendix A
the generated shellcodes, as well as some instructions to
easily reproduce this experiment.

6.2 HiFive Unleashed
Subsequently, we moved to a more realistic environment,
including a Linux operating system on a HiFive Un-
leashed board powered by a quad-core Freedom U540
RV64GC processor. It features an off-the-shelf Fedora 28
stage 4 disk image in a buildroot chrooted environment,
for which we created a purposely vulnerable application
executing its input data.

The first payload uses the write system call to print
“Hello world!” on the standard output. As previously, we

generate the three different versions of our shellcode, and
successfully manage to execute them on the vulnerable
application. We successfully test the three shellcodes
with two other payloads, one that spawns a shell using
the execve system call, and one that prints on the stan-
dard output the contents of /etc/shadow file, using the
openat, read and write system calls.
As a side note, as the floating-point unit is activated

by the operating system, our ’RV64IDC shellcode does
not require the non-alphanumeric previously described
gadget anymore. Furthermore, we did not observe any
instruction cache issue, as one could dread when using
self-modifying code. This can be explained by the use of
fence.i instructions that synchronize the instruction
cache.

7 Conclusion and future work

We described a methodology for writing arbitrary al-
phanumeric (+1) RISC-V shellcodes. This method relies
on unpacking, in which a program written in a very
constrained instruction set stores into the memory an-
other program written in a less constrained instruction
set. Here, we required two unpackers in a three-staged
shellcode to achieve arbitrary code execution. As a proof-
of-concept, we showed examples of such shellcodes for
the HiFive Unleashed board, featuring a standard Linux
operating system. These positive results validate our
choice for unpacking methods as the most suitable solu-
tion to the problem of writing executable code in a very
constrained ISA subset.
Besides, the shellcodes provided in this paper only

show proof-of-concept attacks. With the wide adoption
of RISC-V based devices, we expect the attack surface to
widen as new applications are published. Thereupon, we
hope to see adequate defense mechanisms being deployed
on those platforms, preventing such an attack. On the at-
tacking side, automation seems the most promising way
of improvement. Indeed, shellcodes tend to be handwrit-
ten or automated using ad hoc algorithms. We believe
that a more general approach based on a higher-level
semantic representation of the available instructions may
be able to comprehensively solve the problem of writing
code in a constrained ISA subset.
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A Hello World Shellcodes

We provide ready-to-use demo shellcodes, written respec-
tively in #RV64IC, /RV64IAC and ’RV64IDC. They print
“Hello world!” on the serial output, when executed on
QEMU with the following command:
qemu-system-riscv64 -nographic -machine sifive_u
-device loader,file=shellcode.bin,addr=0x80000000
The notation (X)ˆ{Y} means that X is repeated Y

times.
Colors have been added to each shellcode, with each

color describing a specific high-level operation described
in section 5. The instructions that jump over the en-
coded payload and put the location of the shellcode in
sp as described in section 5.1.1 are colored in red. The
encoded payload is in blue. Fixing-up the store pointer
(section 5.1.2) is in cyan. Unpacking the stage 2 (sec-
tion 5.1.3) is in purple. The final nopsled is in brown.
For /RV64IAC and ’RV64IDC, additional data stored in
the data pool is shown in green. In /RV64IAC, some addi-
tional code is required to first store the jump instruction
(as shown in section 5.5) which is here in orange. Unused
parts of the shellcode are in black. Given that colors
cannot be reproduced in print, we refer the reader to the
Arxiv version of this paper to that end.

A.1 #RV64IC QEMU Hello World

o#0# (BBBB)ˆ{1304} CGEDEDDDOEEDEEDDGEEE
ECEDGEEDEDLAKJDDDBDDEDDNCMCDDDDDGMCLCFFD
COBGEDDEGDCHCDDDALCDLMFHGDCHCDDDACOKEDAP
FLDLDDDDDDDDLPABHBHBKBHFDFCCKBFCHBbPEFND
DDDDBB (BBBB)ˆ{1377} 3Z0A3QCAyayayayaya
yayayayayayayayayayayayayayayaEcY3e##0ax
Aj#1Ay75v71J3SEAi##2ax7Eo91J3SEAY##3ax75
#zMJ3SEAM#y#y##4axQcY3E##5ax7ER81J3SEAY#
#6ax7Ej81J3SEAY##7ax75PP9J3ZEA#8Ay7#z81I
3Z#A#9AyAa75r05J3ZEA#2Ay7EBA9J3ZEA#3Ay7#
F#1Im93S#Au3#4ax7Ea85J3SEAY3#5ax7Up01J3Z
EA#6Ay759M5J3SEAi##7axAcy3e3#8axEcY3e##9
axAaAj#2Ay7#h91I3Z#A#3AyySySySySs0A4

A.2 /RV64IAC QEMU Hello World

ySySo/0/BBBBB03JBBBBBBBBBBBBBPCJ
(BBBB)ˆ{1955}
CGEDEDDDOEEDEEDDGEEEECEDGEEDEDLAKJDDDBDD
EDDNCMCDDDDDGMCLCFFDCOBGEDDEGDCHCDDDALCD

LMFHGDCHCDDDACOKEDAPFLDLDDDDDDDDLPABHBHB
KBHFDFCCKBFCHBbPEFNDDDDD (BBBB)ˆ{751}
3Y0A3Q/ABj/8Aa/8Aa1J3RHA3Z0A/0Ac/8AD//Aa
/2AA9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a
9a9a9a9a9a9a9a9a3Z0A/0Ac/8AD75/AIJ3SEA13
1313//aDAa3Z0A/0Ac/8AD75xG1J3SEAi3//aDAa
3Z0A/0Ac/8AD7EqI1J3SEAY3//aDAa3Z0A/0Ac/8
AD7EpQ9J3ZEA//AAAa3Z0A/0Ac/8AD75gA9J3SEA
y3//aDAa3Z0A/0Ac/8AD7ETH1J3SEAY3//aDAa3Z
0A/0Ac/8AD7ElH1J3SEAY3//aDAa3Z0A/0Ac/8AD
75PP9J3ZEA//AAAa3Z0A/0Ac/8AD7/zH1I3Z/A//
AAAa3Z0A/0Ac/8AD75r05J3ZEA//AAAa3Z0A/0Ac
/8AD7EBA9J3ZEA//AAAa3Z0A/0Ac/8AD7/F/1Im9
3S/Au3//aDAa3Z0A/0Ac/8AD7Ea85J3SEAY3//aD
Aa3Z0A/0Ac/8AD7UpP1J3ZEA//AAAa3Z0A/0Ac/8
AD75aA1J3SEAY3A3//aDAa3Z0A/0Ac/8AD7///1I
a93S/AY3M31313//aDAa3Z0A/0Ac/8AD75/AIJ3S
EA131313//aDAa3Z0A/0Ac/8AD7/h91I3Z/A//AA
AaySySySySySySySs0A4

A.3 ’RV64IDC QEMU Hello World

\89\63\73\90\03\30
o’0’BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBB3B1ozDaBBZzqspbBBBBBBBBBBBBB
BBBB64cinpaBBBBBBBBBBBBBBBBBug51zDaBVIQn
4f1A1nKj52aBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBphYdop1A9RlYo3aBPtIx’51AMKqGzV1ABBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBUUUUUU1ALR5eFXcB (BBBB)ˆ{1177}
CGEDEDDDOEEDEEDDGEEEECEDGEEDEDLAKJDDDBDD
EDDNCMCDDDDDGMCLCFFDCOBGEDDEGDCHCDDDALCD
LMFHGDCHCDDDACOKEDAPFLDLDDDDDDDDLPABHBHB
KBHFDFCCKBFCHBbPEFNDDDDDBB (BBBB)ˆ{1438}
3Z0A3QGAB5b6F’F8f4J9j1N2n3yayayayaya9a9a
9a9a9a9a9a9a9a9a9a9a9a9a9aC3A2’0azC3Ab’3
azG3Hr’6azG3HB’9azAa07X3L7G3IR’4azG3Ib’7
azG3GZ’9azs0A4

B Source code

The full source code used for this paper is available at:
https://xn- -fda.fr/riscv-alphanumeric-shellcoding
and
https: // github.com / RischardV / riscv - alphanumeric -
shellcoding.
It contains all demos and tools used for this paper.

https://xn--fda.fr/riscv-alphanumeric-shellcoding
https://github.com/RischardV/riscv-alphanumeric-shellcoding
https://github.com/RischardV/riscv-alphanumeric-shellcoding
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