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Zoned Block Devices

• Commonly found today in the form of SMR hard-
disks (Shingled Magnetic Recording)
– Interface defined by the ZBC (SCSI) and ZAC (ATA) 

standards

• LBA range divided into zones of different types
– Optional conventional zones

• Accept random writes

– Sequential write required zones
• Writes must be issued sequentially starting from the “write pointer”

• Zones must be reset before rewriting

– “rewind” write pointer to beginning of the zone

• NVMe Zoned Namespace defines a similar 
interface for NVMe SSDs
– But no conventional zones

Random reads but sequential writes

Zone 1 Zone 2 Zone 3 Zone 4 Zone X

Write pointer
position

Device LBA range divided in zones

WRITE commands
advance the write pointer

ZONE RESET command
rewinds the write pointer

Zone 0

Written data
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Linux Kernel Zoned Block Device Support
Since kernel version 4.10

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbc

Minimal support:
o Device sequential write 

constraint exposed to 
users

o Zone management API 
(ioctl) and write ordering 
guarantees

Advanced support:
o POSIX defined behavior

zone ioctl()

Zonefs goal
Simplify raw block 
device zone access 
and management
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Zonefs: Overview
Expose each zone as a file

• Device zones are exposed as regular files
– File size determined from its zone type and its zone write pointer 

position

• Zone information obtained from the device is used as 
inode metadata
– On-disk metadata reduced to a static superblock (first zone)
• No journaling needed

• File I/O block mapping implemented using iomap
– No buffer-heads, static block mapping per file

• Immutable file names
– Zone number per sub-group type

• File attributes control
– Per zone UID, GID, access permissions

Zone

File

Start
sector

Last
sectorwrite pointer

file size
0 max

size

Zone

File

Start
sector

Last
sector

0 fixed
file size

Conventional Zones

Sequential Zones
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Zonefs: File Tree
First zone used for the static superblock

• Files are grouped per zone type in different sub-directories
– “cnv” for conventional zones

– “seq” for sequential write required or preferred zones

• Contiguous conventional zones can be aggregated into a single file

0

Conventional
Zones

0 N 1 M1

Sequential
Zones

cnv seq

0 1 N 0 1 M

No zone aggregation (default) Aggregated conventional zones

0

Conventional
Zones

1 M

Sequential
Zones

cnv seq

0 0 1 M
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Zonefs: Format and Mount Options
First zone used for the static superblock

• Format options
– File attributes: default UID, GID and access permissions

– Conventional zones aggregation: on/off

• Mount options
– Define behavior on IO error and zone condition changes

• Handle unexpected change to a sequential zone write pointer

– E.g. If a large write operation partially fails

• Handle device transition of “bad” zones to OFFLINE or 
READONLY state

– Defined behaviors:

• remount-ro: File system remounted read-only

• zone-ro: affected zone goes read-only

• zone-offline: affected zone assumed to be offline

– No accesses possible

• repair: use zone write pointer to fix the file size and continue

error=xxx 
mount 
option

Device 
zone 

condition

Post error recovery state

File 
size

Access permissions

File Device zone

Read Write Read Write

remount-ro
(default)

Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

No
No
No

Yes
Yes
No

Yes
No
No

zone-ro
Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

No
No
No

Yes
Yes
No

Yes
No
No

zone-offline
Good
Read-only
Offline

0
0
0

No
No
No

No
No
No

Yes
Yes
No

Yes
No
No

repair
Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

Yes
No
No

Yes
Yes
No

Yes
No
No

zonefs error handling options
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Zonefs is *NOT* a Regular POSIX Filesystem
Requires ZBD compliant applications

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbczone ioctl()

zonefs

File access

sequential 
direct IO write
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Example: 15TB SMR Disk

• First conventional zone used for the super block

524 conventional zones and 55356 sequential zones

# mkzonefs -f /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)

Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones

Format:
55879 usable zones
Aggregate conventional zones: disabled
File UID: 0
File GID: 0
File access permissions: 640
FS UUID: 67730d07-34c3-472c-9fde-22d3c705f231

Resetting sequential zones
Writing super block
# mount –t zonefs /dev/sdi /mnt
# ls -l /mnt
total 0
dr-xr-xr-x 2 root root 523 Feb 17 10:40 cnv
dr-xr-xr-x 2 root root 55356 Feb 17 10:40 seq

Number of files

# ls -lv /mnt/seq
total 14511243264
-rw-r----- 1 root root 0 Feb 17 10:43 0
-rw-r----- 1 root root 1048576 Feb 17 10:45 1
-rw-r----- 1 root root 0 Feb 17 10:43 2
-rw-r----- 1 root root 268435456 Feb 17 10:45 3
-rw-r----- 1 root root 0 Feb 17 10:43 4
...
-rw-r----- 1 root root 0 Feb 17 10:43 55354
-rw-r----- 1 root root 0 Feb 17 10:43 55355

# ls -lv /mnt/cnv
total 137101312
-rw-r----- 1 root root 268435456 Feb 17 10:43 0
-rw-r----- 1 root root 268435456 Feb 17 10:43 1
-rw-r----- 1 root root 268435456 Feb 17 10:43 2
...
-rw-r----- 1 root root 268435456 Feb 17 10:43 521
-rw-r----- 1 root root 268435456 Feb 17 10:43 522

Conventional zone file size is fixed to the zone size

Sequential zone file size indicate the amount of 
written data
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Example: 15TB SMR Disk

• With aggregated conventional zones

524 conventional zones and 55356 sequential zones

# mkzonefs -f -o aggr_cnv /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)

Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones

Format:
55879 usable zones
Aggregate conventional zones: enabled
File UID: 0
File GID: 0
File access permissions: 640
FS UUID: af10a4cd-8732-4400-bb2c-61889a12a35e

Resetting sequential zones
Writing super block
# mount –t zonefs /dev/sdi /mnt
# ls -l /mnt
total 0
dr-xr-xr-x 2 root root 1 Feb 17 10:51 cnv
dr-xr-xr-x 2 root root 55356 Feb 17 10:51 seq

All conventional zones aggregated into a single file

# mkfs.ext4 /mnt/cnv/0
.. .
# mount -o loop /mnt/cnv/0 /data
# ls -la /data
total 24
drwxr-xr-x 3 root root 4096 Feb 17 10:54 .
dr-xr-xr-x. 22 root root 4096 Feb 17 10:55 ..
drwx------ 2 root root 16384 Feb 17 10:54 lost+found

# ls -lv /mnt/cnv/
total 137101312
-rw-r----- 1 root root 140391743488 Feb 17 10:51 0

The file size is the total size of all aggreagted zones

Aggregated zone file can be used as a regular file, as a 
disk through loopback, etc
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File Operations: Discovery

• Raw block device case
– BLKNRZONES and BLKREPORTZONE ioctl()

– struct blk_zone contains all information for a 
zone
• Zone type, write pointer, start sector, size

• Zonefs case
– stat()/fstat()

• Zone group directory size indicates the number of 
zones

• Zone write pointer: file size (stat.st_size)

• Zone size: file blocks (stat.st_blocks << 9)

– Maximum file size

How many zones and zones information

/* How many zones ? */
fd = open(“/dev/sdX”, O_RDONLY);
ioctl(fd, BLKGETNRZONES, &nr_zones);

/* Zones information */
rep = malloc(sizeof(struct blk_zone_report)

+ sizeof(struct blk_zone) * nr_zones);
ioctl(fd, BLKREPORTZONE, &rep);

for (i = 0; i < nr_zones; i++) {
wp = rep.zones[i].wp;
...

}

/* How many zones ? */
stat(“/mnt/seq”, &stat);
nr_zones = stat.st_size;

/* Zones information */
for (i = 0; i < nr_zones; i++) {

sprint(filename, “/mnt/seq/%d”, i);
stat(filename, &stat);
...

}



7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 12

File Operations: Sequential Writes

• Raw block device case
– pwrite()

– Write offset allows reaching any zone
• A bug can corrupt another zone

• Zonefs case
– Regular write() with O_APPEND or pwrite()

– Write operation limited to the open zone file
• Cannot corrupt another zone

O_APPEND and zone isolation

/* Write zone i */
fd = open(“/dev/sdX”, O_RDWR | O_DIRECT);

while (ofst < rep.zones[i].length << 9) {
pwrite(fd, buf, size, ofst);
ofst += size;
...

}

/* Write zone i */
sprint(filename, “/mnt/seq/%d”, i);
fd = open(filename, O_RDWR | O_DIRECT | O_APPEND);

while (stat.st_blocks) {
write(fd, buf, size);
stat.st_blocks -= size >> 9;
...

}
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File Operations: Zone Management

• Raw block device case
– BLKRESETZONE and BLKFINISHZONE ioctl()

• Zonefs case
– truncate()/ftruncate() to 0 for zone reset

– truncate()/ftruncate() to maximum file size for 
zone finish

Zone reset and zone finish

fd = open(“/dev/sdX”, O_RDWR);

/* Reset zone i */
range.sector = rep.zones[i].start;
range.nr_sectors = rep.zones[i].length;
ioctl(fd, BLKRESETZONE, &range);

/* Finish zone i */
range.sector = rep.zones[i].start;
range.nr_sectors = rep.zones[i].length;
ioctl(fd, BLKFINISHZONE, &range);

sprint(filename, “/mnt/seq/%d”, i);

/* Reset zone i */
truncate(filename, 0);

/* Finish zone i */
truncate(filename, stat.st_blocks << 9);
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Use Case Example: LevelDB

• Modified LevelDB implementation to use zone files for storing SSTable files
– Use direct IO writes to zones

• Similar modification to also add raw zoned block device support

– Buffered and mmap reads of SSTables

• Experiment: Regular NVMe SSD vs prototype NVMe ZNS drive
– Regular SSD: ext4 (baseline) and btrfs

– Prototype ZNS drive: btrfs-zoned (on-going work), raw block device and zonefs

– 16B keys and 4KB values

– Execute db-bench with the sequences:

• fillrandom, readseq, readseq

• fillseq, readseq, readseq

• Results normalized to the Regular NVMe SSD + ext4 baseline case
– All results are averaged over of 5 runs

Use zone files to store SSTables



7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 15

Use Case Example: LevelDB
Random and sequential write operations followed by read operations

• 2.5 to 3 times better throughput for ingest (random and sequential)
– File system journaling overhead avoided

• Direct IO write operations result in lower first-time read performance
– No data in page cache after writes

– But up to 3x throughput for second read with warm cache
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Current Status

• Initial pull accepted for Linux 5.6-rc1
– Selection under “File systems” menu

– Requires CONFIG_BLK_DEV_ZONED selection
• Zoned block device support in “Enable the block layer” menu

• Userspace tool available on github
– https://github.com/damien-lemoal/zonefs-tools

– Provides the format utility mkzonefs (mkfs.zonefs)

• xfstests support not planned
– Too few common test cases with regular POSIX file systems

– A special test suite is provided with zonefs-tools

Initial release included with upstream kernel

https://github.com/damien-lemoal/zonefs-tools
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Future Work

• Better handling of IOCB_NOWAIT for asunchronous I/Os
– Currently silently ignored since it can cause IO reordering if enabled

• Continue integration of zone management commands
– Zone explicit open/close with file (inode) open()/close()
• Can improve performance for ZNS SSDs (control of active resources)

– Integrate NVMe ZNS “zone append” command use

• For asynchronous write operations specifying RWF_APPEND and/or files opened with O_APPEND

• Read-after-write performance improvements
– Explore new “RWF_CACHED” flag: O_SYNC like behavior while retaining direct-IO alignement constraint

• Warm up page cache on direct writes for page aligned writes

• Continue exploring different use cases to identify potential areas of improvement
– RocksDB on-going

– Clearly separate application problems vs zonefs performance limitations

• For now, read-after-write problem is the most obvious

Extend file operation mapping to zone operations



7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 187/1/2020 18

Questions ?
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