Western Digital.

zonefs: Mapping the POSIX File
System Interface to Zoned Block
Device Accesses

Damien Le Moal, Western Digital Research
Ting Yao, Huazhong University

2020 Linux Storage and Filesystems Conference, VAULT'20

Outline

* Background
—Zoned block devices principles
— Linux support

* zonefs
—QOverview
— File tree, format options and mount options
— File operations mapping to zoned block device commands
—1/0 error handling

* Example use
— LevelDB prototype implementation

* Future work and conclusion

Western Digital.

Zoned Block Devices

* Commonly found today in the form of SMR hard-
disks (Shingled Magnetic Recording)

Device LBA range divided in zones

A

— Interface defined by the ZBC (SCSI) and ZAC (ATA)

vy

standards

Zone 0

Zonel Zone 2 Zone 3 Zone 4

Zone X

* LBA range divided into zones of different types

— Optional conventional zones
* Accept random writes

— Sequential write required zones
* Writes must be issued sequentially starting from the “write pointer”
* Zones must be reset before rewriting
— “rewind” write pointer to beginning of the zone

* NVMe Zoned Namespace defines a similar
interface for NVMe SSDs

— But no conventional zones

Western Digital.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-’

<& »'
[L]

Written data T

Write pointer

position
ZONE RESET command WRITE commands
rewinds the write pointer advance the write pointer

Linux Kernel Zoned Block Device Support
Since kernel version 4.10

Advanced support:
o POSIX defined behavior

Minimal support:

o Device sequential write
constraint exposed to
users

o Zone management API
(ioctl) and write ordering
guarantees

Usi
Space

Legacy Applications

ZBD Compliant Applications

¥ - Block access 'li
I

Raw block access : Direct device access

h o

Zonefs goal
Simplify raw block
device zone access
and management

: File access - File access -
1 I | I | 1 I
—>: f2fs, btrfs Legacy File System Il I
: - - >
: Device Mapper (dm-zoned) ! |
e T L L L L LK K Feefreeee= I I
Kernel Block I/O Layer |
SF"ace 1 1 1 1 1 1 I 1 1
Block 1/O Scheduler i I SCSI Generic Driver
1 1 1 1 1 1 1 1 1 1
scsl Mid Layer T
1 1 1 1 1 1 1 1 1 1
SCSI Low Level Drivers
i i i i i i i i i i
Hardware

ZBC/ZAC SMR Disks

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved.

7/1/2020 4

Zonefs: Overview
Expose each zone as a file Sequential Zones

* Device zones are exposed as regular files

— File size determined from its zone type and its zone write pointer |
pOSition i file size size

* Zone information obtained from the device is used as
inode metadata
Start Last

— On-disk metadata reduced to a static superblock (first zone) cector write pointer sector
* No journaling needed

Zone

Conventional Zones

* File 1/O block mapping implemented using iomap
— No buffer-heads, static block mapping per file File
* Immutable file names J foed
—Zone number per sub-group type | ‘
* File attributes control Zone
—Per zone UID, GID, access permissions Start Last
sector sector

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020 5

Zonefs: File Tree
First zone used for the static superblock

* Files are grouped per zone type in different sub-directories

—“cnv” for conventional zones
—“seq” for sequential write required or preferred zones

* Contiguous conventional zones can be aggregated into a single file

No zone aggregation (default) Aggregated conventional zones
| 0 || 1 |...| N | nen LB N}
—x 7
L f. | ST
TI— TI— TI— TI—
cnv seq cnv seq
A A A A
4 Y \ (Y
0 1 = N“ - “
i Conventional i Sequential % i Conventional i Sequential %
1 Zones } Zones 1 1 Zones 1 Zones 1

7/1/2020

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Zonefs: Format and Mount Options
First zone used for the static superblock

* Format options
— File attributes: default UID, GID and access permissions
— Conventional zones aggregation: on/off zonefs error handling options

Post error recovery state

¢ |V|0unt OpthﬂS error=xxx Device Access permissions
. . L. mount zone ;
— Define behavior on 10 error and zone condition changes option | condition | flle | Devicezone
* Handle unexpected change to a sequential zone write pointer | Read | Write | Read
. . . . Good Fixed Y N Y Y
— E.g. If a large write operation partially fails remount o ety | s | e | e | s | e
* Handle device transition of “bad” zones to OFFLINE or Offline 0 L I L N
Good Fixed Yes No Yes Yes
READONLY state zone-ro Read-only Fixed Yes No Yes No
- Deﬁned behaViorS' Offline 0 No No No No
. Good 0 No No Yes Yes
* remount-ro: File system remounted read-only zone-offline Read-only 0 No No Yes No
Offline 0 No No No No
* zone-ro: affected zone goes read-only
. . Good Fixed Yes Yes Yes Yes
* zone-offline: affected zone assumed to be offline repair Read-only Fixed VYes No Yes No
Offline 0 No No No No

— No accesses possible
° repair: use zone write pointer to fix the file size and continue

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020 7

Zonefs is *NOT* a Regular POSIX Filesystem

Requires ZBD compliant applications

ZBD Compliant Applications
User . . I I B S S
s Legacy Applications sequential |
File access - File access - Block access m File access Raw block access [| Direct device access [
1 1 | | | |
f2fs, btrfs Legacy File System Il zonefs [
| | — = = -I
Device Mapper (dm-zoned) -l II-
1 1 1 1
Kernel Block I/O Layer
Space 1 1 1 1 1 1 1 1 1 1
Block 1/O Scheduler SCSI Generic Driver
— 1 1 1 1 1 1 1 1 1 1 1 1
SCSI Mid Layer
1 1 1 1 1 1 1 1 1 1 1 1
SCSI Low Level Drivers
1 H 1 H 1 H 1 H 1 H 1 H
Hardware

ZBC/ZAC SMR Disks

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020

mkzonefs -f /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)
Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones
Format:
55879 usable zones
Aggregate conventional zones: disabled
File UID: O
File GID: 0
File access permissions: 640
FS UUID: 67730d07-34c3-472c-9fde-22d3c705f231
Resetting sequential zones
Writing super block
mount —t zonefs /dev/sdi /mnt
#ls -l /mnt
total O
dr-xr-xr-x 2 root root 523 Feb 17 10:40 cnv
dr-xr-xr-x 2 root root 55356 Feb'17 10:40 sey

Number of files

Western Digital.

Example: 15TB SMR Disk

* First conventional zone used for the super block

Conventional zone file size is fixed to the zone size

#1s -lv /mnt/cnv
total 137101312
-rW-r----- 1 root root 268435456 Feb 17 10:43 0
-rW-r----- 1 root root 268435456 Feb 17 10:43 1

-rW-r----- 1 root root 268435456 Feb 17 10:43 2

-rw-r----- 1 root root 268435456 Feb 17 10:43 521
-rw-r----- 1 root root 268435456 Feb 17 10:43 522

Sequential zone file size indicate the amount of
written data

#ls -lv /mnt/seq

total 14511243264

-rw-r----- 1 root root OFeb 17 10:430
-rW-r----- 1root root 1048576 Feb 17 10:45 1
-rw-r----- 1 root root OFeb 17 10:432
-rW-r----- 1 root root 268435456 Feb 17 10:45 3
-rw-r----- 1 root root OFeb 17 10:434

-rw-r----- 1 root root O Feb 17 10:43 55354
-rw-r----- 1 root root 0 Feb 17 10:43 55355

Example: 15TB SMR Disk

* With aggregated conventional zones

The file size is the total size of all aggreagted zones

mkzonefs -f -0 aggr_cnv /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)
Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones
Format:
55879 usable zones
Aggregate conventional zones: enabled
File UID: O
File GID: 0
File access permissions: 640
FS UUID: af10a4cd-8732-4400-bb2c-61889a12a35e
Resetting sequential zones
Writing super block
mount —t zonefs /dev/sdi /mnt
#ls -l /mnt
total O
dr-xr-xr-x 2 root root 1 Feb 17 10:57 cnv
dr-xr-xr-x 2 root root 55356 Feb 17 10:51 seq

#ls -lv /mnt/cnv/

total 137101312
-rw-r----- 1 root root 140391743488 Feb 17 10:51 0

Aggregated zone file can be used as a regular file, as a

disk through loopback, etc

mkfs.ext4 /mnt/cnv/0

mount -o loop /mnt/cnv/0 /data
s -la /data

total 24
drwxr-xr-x 3 root root 4096 Feb 17 10:54 .
dr-xr-xr-x. 22 root root 4096 Feb 17 10:55 ..

2 root root 16384 Feb 17 10:54 lost+found

All conventional zones aggregated into a single file

Western Digital.

File Operations: Discovery

* Raw block device case » Zonefs case
— BLKNRZONES and BLKREPORTZONE ioctl() — stat()/fstat()
—struct blk_zone contains all information for a * Zone group directory size indicates the number of
zone zones
- Zone type, write pointer, start sector, size * Zone write pointer: file size (stat.st_size)

» Zone size: file blocks (stat.st_blocks << 9)
— Maximum file size

/* How many zones ? */
fd = open(“/dev/sdX”, O_RDONLY);
ioctl(fd, BLKGETNRZONES, &nr_zones);

/* How many zones ? */
stat(“/mnt/seq”, &stat);
nr_zones = stat.st_size;

/* Zones information */

rep = malloc(sizeof(struct blk_zone_report)
+ sizeof(struct blk_zone) * nr_zones);

ioctl(fd, BLKREPORTZONE, &rep);

/* Zones information */

for (i = 0; i < nr_zones; i++) {
sprint(filename, “/mnt/seq/%d”, i);
stat(filename, &stat);

for (i=0; i< nr_zones; i++) {
wp = rep.zones[i].wp;

Western Digital.

File Operations: Sequential Writes

* Raw block device case » Zonefs case
— pwrite() — Regular write() with O_APPEND or pwrite()
— Write offset allows reaching any zone — Write operation limited to the open zone file
* A bug can corrupt another zone * Cannot corrupt another zone

/* Write zone i */
fd = open(“/dev/sdX”, O_RDWR | O_DIRECT);

/* Write zone i */
sprint(filename, “/mnt/seq/%d”, i);
fd = open(filename, O_RDWR | O_DIRECT | O_APPEND);

while (ofst < rep.zones|i].length << 9) {
pwrite(fd, buf, size, ofst);
ofst += size;

while (stat.st_blocks) {
write(fd, buf, size);
stat.st_blocks -= size >>9;

Western Digital.

File Operations: Zone Management

* Raw block device case » Zonefs case
— BLKRESETZONE and BLKFINISHZONE ioctl() —truncate()/ftruncate() to O for zone reset
—truncate()/ftruncate() to maximum file size for
zone finish

fd = open(“/dev/sdX”, O_RDWR); sprint(filename, “/mnt/seq/%d”, i);

/* Reset zone i */ /* Reset zone i */
range.sector = rep.zones[i].start; truncate(filename, 0);
range.nr_sectors = rep.zonesli].length;
ioctl(fd, BLKRESETZONE, &range); /* Finish zone i */
truncate(filename, stat.st_blocks << 9);
/* Finish zone i */
range.sector = rep.zones[i].start;
range.nr_sectors = rep.zonesli].length;
ioctl(fd, BLKFINISHZONE, &range);

Western Digital.

Use Case Example: LevelDB

* Modified LevelDB implementation to use zone files for storing SSTable files

— Use direct 10 writes to zones
* Similar modification to also add raw zoned block device support

— Buffered and mmap reads of SSTables

* Experiment: Regular NVMe SSD vs prototype NVMe ZNS drive
— Regular SSD: ext4 (baseline) and btrfs
— Prototype ZNS drive: btrfs-zoned (on-going work), raw block device and zonefs
— 16B keys and 4KB values

— Execute db-bench with the sequences:
* fillrandom, readseq, readseq
* fillseq, readseq, readseq

* Results normalized to the Regular NVMe SSD + ext4 baseline case
— All results are averaged over of 5 runs

Western Digital.

Use Case Example: LevelDB

Random and sequential write operations followed by read operations

* 2.5 to 3 times better throughput for ingest (random and sequential)
— File system journaling overhead avoided

* Direct 10 write operations result in lower first-time read performance
— No data in page cache after writes
— But up to 3x throughput for second read with warm cache

Fill-random + read-sequential Fill-sequential + read-sequential
4.00 3.50
3.50 3.00
3.00 2.50
5 5
a 2.50 o
& § 200
3 2.00 3
£ £ 150
= 150 =
1.00 1.00
0.00]] 0.00 HN
fill-random read-sequential(1) read-sequential(2) fill-sequential read-sequential(1) read-sequential(2)
mextd mbtrfs mbtrfs-zoned raw zoned block device mzonefs mext4d mbtrfs mbtrfs-zoned raw zoned block device M zonefs

Western Digital © 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020 15

Current Status

* Initial pull accepted for Linux 5.6-rcl

— Selection under “File systems” menu

— Requires CONFIG_BLK_DEV _ZONED selection
* Zoned block device support in “Enable the block layer” menu

* Userspace tool available on github
— https://github.com/damien-lemoal/zonefs-tools
— Provides the format utility mkzonefs (mkfs.zonefs)

* xfstests support not planned
— Too few common test cases with regular POSIX file systems
— A special test suite is provided with zonefs-tools

Western Digital.

https://github.com/damien-lemoal/zonefs-tools

Future Work

* Better handling of IOCB_NOWAIT for asunchronous I/Os
— Currently silently ignored since it can cause |10 reordering if enabled

* Continue integration of zone management commands
— Zone explicit open/close with file (inode) open()/close()
* Can improve performance for ZNS SSDs (control of active resources)

— Integrate NVMe ZNS “zone append” command use
* For asynchronous write operations specifying RWF_APPEND and/or files opened with O_APPEND

* Read-after-write performance improvements
— Explore new “RWF_CACHED” flag: O_SYNC like behavior while retaining direct-10 alignement constraint
* Warm up page cache on direct writes for page aligned writes

* Continue exploring different use cases to identify potential areas of improvement

— RocksDB on-going
— Clearly separate application problems vs zonefs performance limitations
* For now, read-after-write problem is the most obvious
Western Digital.

Questions ?

Western D|gita|® © 2020 Western Digital Corporation or its affiliates. Al rights reserved.

Western Digital.

