
© 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020

zonefs: Mapping the POSIX File
System Interface to Zoned Block
Device Accesses

Damien Le Moal, Western Digital Research

Ting Yao, Huazhong University

2020 Linux Storage and Filesystems Conference, VAULT’20

Damien presenting
at LSF/MM

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 2

Outline

• Background
– Zoned block devices principles

– Linux support

• zonefs
– Overview

– File tree, format options and mount options

– File operations mapping to zoned block device commands

– I/O error handling

• Example use
– LevelDB prototype implementation

• Future work and conclusion

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 3

Zoned Block Devices

• Commonly found today in the form of SMR hard-
disks (Shingled Magnetic Recording)
– Interface defined by the ZBC (SCSI) and ZAC (ATA)

standards

• LBA range divided into zones of different types
– Optional conventional zones

• Accept random writes

– Sequential write required zones
• Writes must be issued sequentially starting from the “write pointer”

• Zones must be reset before rewriting

– “rewind” write pointer to beginning of the zone

• NVMe Zoned Namespace defines a similar
interface for NVMe SSDs
– But no conventional zones

Random reads but sequential writes

Zone 1 Zone 2 Zone 3 Zone 4 Zone X

Write pointer
position

Device LBA range divided in zones

WRITE commands
advance the write pointer

ZONE RESET command
rewinds the write pointer

Zone 0

Written data

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 4

Linux Kernel Zoned Block Device Support
Since kernel version 4.10

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbc

Minimal support:
o Device sequential write

constraint exposed to
users

o Zone management API
(ioctl) and write ordering
guarantees

Advanced support:
o POSIX defined behavior

zone ioctl()

Zonefs goal
Simplify raw block
device zone access
and management

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 5

Zonefs: Overview
Expose each zone as a file

• Device zones are exposed as regular files
– File size determined from its zone type and its zone write pointer

position

• Zone information obtained from the device is used as
inode metadata
– On-disk metadata reduced to a static superblock (first zone)
• No journaling needed

• File I/O block mapping implemented using iomap
– No buffer-heads, static block mapping per file

• Immutable file names
– Zone number per sub-group type

• File attributes control
– Per zone UID, GID, access permissions

Zone

File

Start
sector

Last
sectorwrite pointer

file size
0 max

size

Zone

File

Start
sector

Last
sector

0 fixed
file size

Conventional Zones

Sequential Zones

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 6

Zonefs: File Tree
First zone used for the static superblock

• Files are grouped per zone type in different sub-directories
– “cnv” for conventional zones

– “seq” for sequential write required or preferred zones

• Contiguous conventional zones can be aggregated into a single file

0

Conventional
Zones

0 N 1 M1

Sequential
Zones

cnv seq

0 1 N 0 1 M

No zone aggregation (default) Aggregated conventional zones

0

Conventional
Zones

1 M

Sequential
Zones

cnv seq

0 0 1 M

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 7

Zonefs: Format and Mount Options
First zone used for the static superblock

• Format options
– File attributes: default UID, GID and access permissions

– Conventional zones aggregation: on/off

• Mount options
– Define behavior on IO error and zone condition changes

• Handle unexpected change to a sequential zone write pointer

– E.g. If a large write operation partially fails

• Handle device transition of “bad” zones to OFFLINE or
READONLY state

– Defined behaviors:

• remount-ro: File system remounted read-only

• zone-ro: affected zone goes read-only

• zone-offline: affected zone assumed to be offline

– No accesses possible

• repair: use zone write pointer to fix the file size and continue

error=xxx
mount
option

Device
zone

condition

Post error recovery state

File
size

Access permissions

File Device zone

Read Write Read Write

remount-ro
(default)

Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

No
No
No

Yes
Yes
No

Yes
No
No

zone-ro
Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

No
No
No

Yes
Yes
No

Yes
No
No

zone-offline
Good
Read-only
Offline

0
0
0

No
No
No

No
No
No

Yes
Yes
No

Yes
No
No

repair
Good
Read-only
Offline

Fixed
Fixed

0

Yes
Yes
No

Yes
No
No

Yes
Yes
No

Yes
No
No

zonefs error handling options

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 8

Zonefs is *NOT* a Regular POSIX Filesystem
Requires ZBD compliant applications

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbczone ioctl()

zonefs

File access

sequential
direct IO write

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 9

Example: 15TB SMR Disk

• First conventional zone used for the super block

524 conventional zones and 55356 sequential zones

mkzonefs -f /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)

Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones

Format:
55879 usable zones
Aggregate conventional zones: disabled
File UID: 0
File GID: 0
File access permissions: 640
FS UUID: 67730d07-34c3-472c-9fde-22d3c705f231

Resetting sequential zones
Writing super block
mount –t zonefs /dev/sdi /mnt
ls -l /mnt
total 0
dr-xr-xr-x 2 root root 523 Feb 17 10:40 cnv
dr-xr-xr-x 2 root root 55356 Feb 17 10:40 seq

Number of files

ls -lv /mnt/seq
total 14511243264
-rw-r----- 1 root root 0 Feb 17 10:43 0
-rw-r----- 1 root root 1048576 Feb 17 10:45 1
-rw-r----- 1 root root 0 Feb 17 10:43 2
-rw-r----- 1 root root 268435456 Feb 17 10:45 3
-rw-r----- 1 root root 0 Feb 17 10:43 4
...
-rw-r----- 1 root root 0 Feb 17 10:43 55354
-rw-r----- 1 root root 0 Feb 17 10:43 55355

ls -lv /mnt/cnv
total 137101312
-rw-r----- 1 root root 268435456 Feb 17 10:43 0
-rw-r----- 1 root root 268435456 Feb 17 10:43 1
-rw-r----- 1 root root 268435456 Feb 17 10:43 2
...
-rw-r----- 1 root root 268435456 Feb 17 10:43 521
-rw-r----- 1 root root 268435456 Feb 17 10:43 522

Conventional zone file size is fixed to the zone size

Sequential zone file size indicate the amount of
written data

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 10

Example: 15TB SMR Disk

• With aggregated conventional zones

524 conventional zones and 55356 sequential zones

mkzonefs -f -o aggr_cnv /dev/sdi
/dev/sdi: 29297213440 512-byte sectors (13970 GiB)

Host-managed device
55880 zones of 524288 512-byte sectors (256 MiB)
524 conventional zones, 55356 sequential zones
0 read-only zones, 0 offline zones

Format:
55879 usable zones
Aggregate conventional zones: enabled
File UID: 0
File GID: 0
File access permissions: 640
FS UUID: af10a4cd-8732-4400-bb2c-61889a12a35e

Resetting sequential zones
Writing super block
mount –t zonefs /dev/sdi /mnt
ls -l /mnt
total 0
dr-xr-xr-x 2 root root 1 Feb 17 10:51 cnv
dr-xr-xr-x 2 root root 55356 Feb 17 10:51 seq

All conventional zones aggregated into a single file

mkfs.ext4 /mnt/cnv/0
.. .
mount -o loop /mnt/cnv/0 /data
ls -la /data
total 24
drwxr-xr-x 3 root root 4096 Feb 17 10:54 .
dr-xr-xr-x. 22 root root 4096 Feb 17 10:55 ..
drwx------ 2 root root 16384 Feb 17 10:54 lost+found

ls -lv /mnt/cnv/
total 137101312
-rw-r----- 1 root root 140391743488 Feb 17 10:51 0

The file size is the total size of all aggreagted zones

Aggregated zone file can be used as a regular file, as a
disk through loopback, etc

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 11

File Operations: Discovery

• Raw block device case
– BLKNRZONES and BLKREPORTZONE ioctl()

– struct blk_zone contains all information for a
zone
• Zone type, write pointer, start sector, size

• Zonefs case
– stat()/fstat()

• Zone group directory size indicates the number of
zones

• Zone write pointer: file size (stat.st_size)

• Zone size: file blocks (stat.st_blocks << 9)

– Maximum file size

How many zones and zones information

/* How many zones ? */
fd = open(“/dev/sdX”, O_RDONLY);
ioctl(fd, BLKGETNRZONES, &nr_zones);

/* Zones information */
rep = malloc(sizeof(struct blk_zone_report)

+ sizeof(struct blk_zone) * nr_zones);
ioctl(fd, BLKREPORTZONE, &rep);

for (i = 0; i < nr_zones; i++) {
wp = rep.zones[i].wp;
...

}

/* How many zones ? */
stat(“/mnt/seq”, &stat);
nr_zones = stat.st_size;

/* Zones information */
for (i = 0; i < nr_zones; i++) {

sprint(filename, “/mnt/seq/%d”, i);
stat(filename, &stat);
...

}

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 12

File Operations: Sequential Writes

• Raw block device case
– pwrite()

– Write offset allows reaching any zone
• A bug can corrupt another zone

• Zonefs case
– Regular write() with O_APPEND or pwrite()

– Write operation limited to the open zone file
• Cannot corrupt another zone

O_APPEND and zone isolation

/* Write zone i */
fd = open(“/dev/sdX”, O_RDWR | O_DIRECT);

while (ofst < rep.zones[i].length << 9) {
pwrite(fd, buf, size, ofst);
ofst += size;
...

}

/* Write zone i */
sprint(filename, “/mnt/seq/%d”, i);
fd = open(filename, O_RDWR | O_DIRECT | O_APPEND);

while (stat.st_blocks) {
write(fd, buf, size);
stat.st_blocks -= size >> 9;
...

}

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 13

File Operations: Zone Management

• Raw block device case
– BLKRESETZONE and BLKFINISHZONE ioctl()

• Zonefs case
– truncate()/ftruncate() to 0 for zone reset

– truncate()/ftruncate() to maximum file size for
zone finish

Zone reset and zone finish

fd = open(“/dev/sdX”, O_RDWR);

/* Reset zone i */
range.sector = rep.zones[i].start;
range.nr_sectors = rep.zones[i].length;
ioctl(fd, BLKRESETZONE, &range);

/* Finish zone i */
range.sector = rep.zones[i].start;
range.nr_sectors = rep.zones[i].length;
ioctl(fd, BLKFINISHZONE, &range);

sprint(filename, “/mnt/seq/%d”, i);

/* Reset zone i */
truncate(filename, 0);

/* Finish zone i */
truncate(filename, stat.st_blocks << 9);

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 14

Use Case Example: LevelDB

• Modified LevelDB implementation to use zone files for storing SSTable files
– Use direct IO writes to zones

• Similar modification to also add raw zoned block device support

– Buffered and mmap reads of SSTables

• Experiment: Regular NVMe SSD vs prototype NVMe ZNS drive
– Regular SSD: ext4 (baseline) and btrfs

– Prototype ZNS drive: btrfs-zoned (on-going work), raw block device and zonefs

– 16B keys and 4KB values

– Execute db-bench with the sequences:

• fillrandom, readseq, readseq

• fillseq, readseq, readseq

• Results normalized to the Regular NVMe SSD + ext4 baseline case
– All results are averaged over of 5 runs

Use zone files to store SSTables

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 15

Use Case Example: LevelDB
Random and sequential write operations followed by read operations

• 2.5 to 3 times better throughput for ingest (random and sequential)
– File system journaling overhead avoided

• Direct IO write operations result in lower first-time read performance
– No data in page cache after writes

– But up to 3x throughput for second read with warm cache

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 16

Current Status

• Initial pull accepted for Linux 5.6-rc1
– Selection under “File systems” menu

– Requires CONFIG_BLK_DEV_ZONED selection
• Zoned block device support in “Enable the block layer” menu

• Userspace tool available on github
– https://github.com/damien-lemoal/zonefs-tools

– Provides the format utility mkzonefs (mkfs.zonefs)

• xfstests support not planned
– Too few common test cases with regular POSIX file systems

– A special test suite is provided with zonefs-tools

Initial release included with upstream kernel

https://github.com/damien-lemoal/zonefs-tools

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 17

Future Work

• Better handling of IOCB_NOWAIT for asunchronous I/Os
– Currently silently ignored since it can cause IO reordering if enabled

• Continue integration of zone management commands
– Zone explicit open/close with file (inode) open()/close()
• Can improve performance for ZNS SSDs (control of active resources)

– Integrate NVMe ZNS “zone append” command use

• For asynchronous write operations specifying RWF_APPEND and/or files opened with O_APPEND

• Read-after-write performance improvements
– Explore new “RWF_CACHED” flag: O_SYNC like behavior while retaining direct-IO alignement constraint

• Warm up page cache on direct writes for page aligned writes

• Continue exploring different use cases to identify potential areas of improvement
– RocksDB on-going

– Clearly separate application problems vs zonefs performance limitations

• For now, read-after-write problem is the most obvious

Extend file operation mapping to zone operations

7/1/2020© 2020 Western Digital Corporation or its affiliates. All rights reserved. 187/1/2020 18

Questions ?

© 2020 Western Digital Corporation or its affiliates. All rights reserved. 7/1/2020

