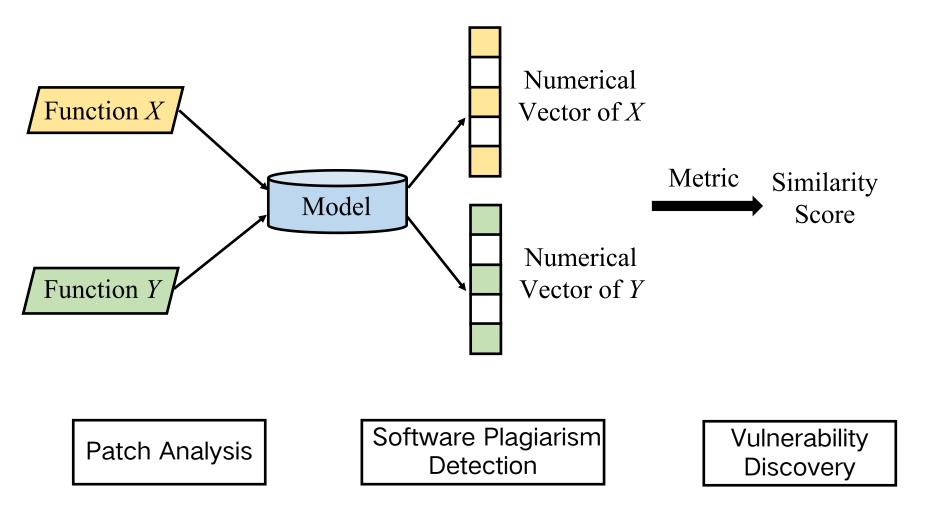


Improving ML-based Binary Function Similarity Detection by Assessing and Deprioritizing Control Flow Graph Features

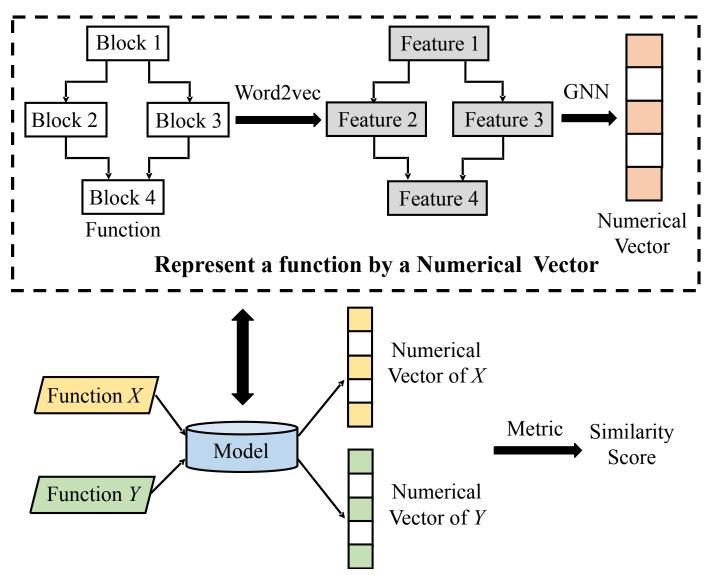
Jialai Wang^{*}, Chao Zhang^{*‡§}, Longfei Chen^{*}, Yi Rong^{*}, Yuxiao Wu[†], Hao Wang^{*}, Wende Tan^{*}, Qi Li^{*}, and Zongpeng Li^{*}[§] *Tsinghua University, [†]Huazhong University of Science and Technology, [‡]Zhongguancun Laboratory, ^{\$}Quancheng Labs

{wang-jl22, clf23, rongy19, hao-wang20}@mails.tsinghua.edu.cn, wyxhustcse@hust.edu.cn, twd2.me@gmail.com, {chaoz, qli01, zongpeng}@tsinghua.edu.cn

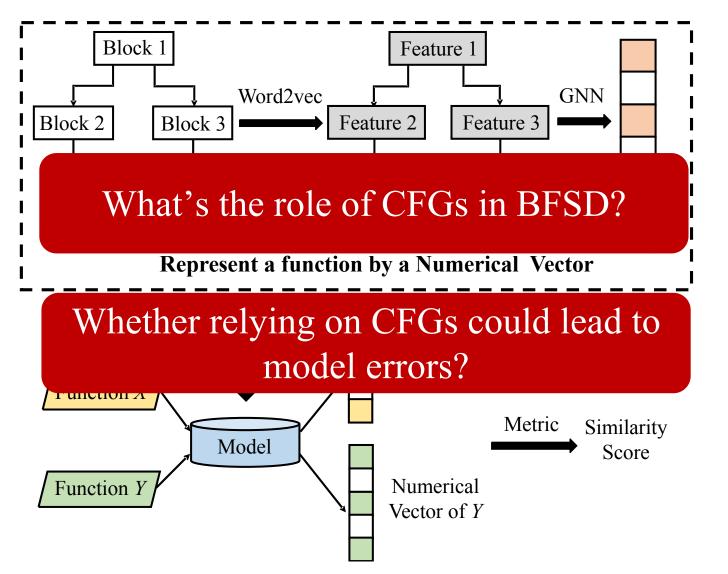

> Key Contributions:

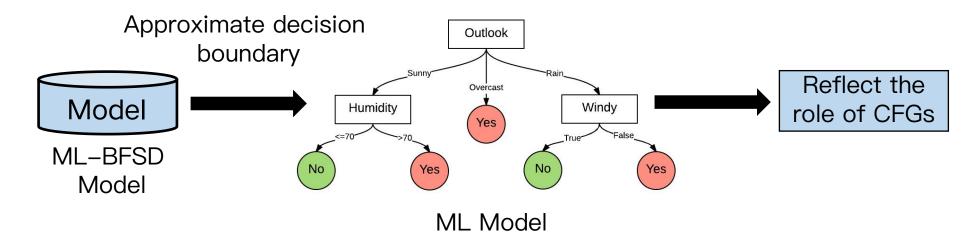
- Assess the role of CFG features in ML-BFSD models
- Apply explanation methods to ML-BFSD models and reveal heavy reliance on CFG features in existing models
- Propose CFG manipulation solution (δ CFG)
- Improve performance of existing models

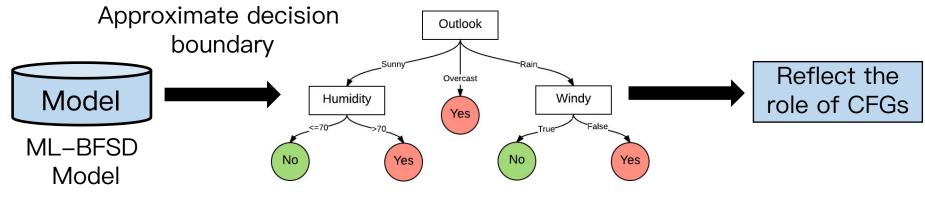
> ML-based binary function similarity detection (ML-BFSD):



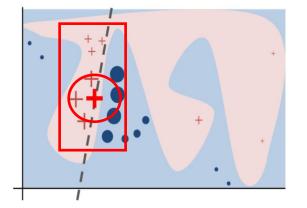
ML-BFSD solutions have been widely used


> CFGs are important in ML-BFSD:


> CFGs are important in ML-BFSD:


> We design Explainer to explain BFSD and reveal the role of CFGs:

> We design Explainer to explain BFSD and reveal the role of CFGs:



ML Model

How to spe	ecify hum	an-readal	ble features?
Semantic	Call	Jump	Arithmetic
Features	Data Transfer		
CFG Features	No. of Nodes	No. of Edges	Graph Similarity

Feature Specification

How to approximate decision boundary?

Local Approximation

Result

> Importance of different features:

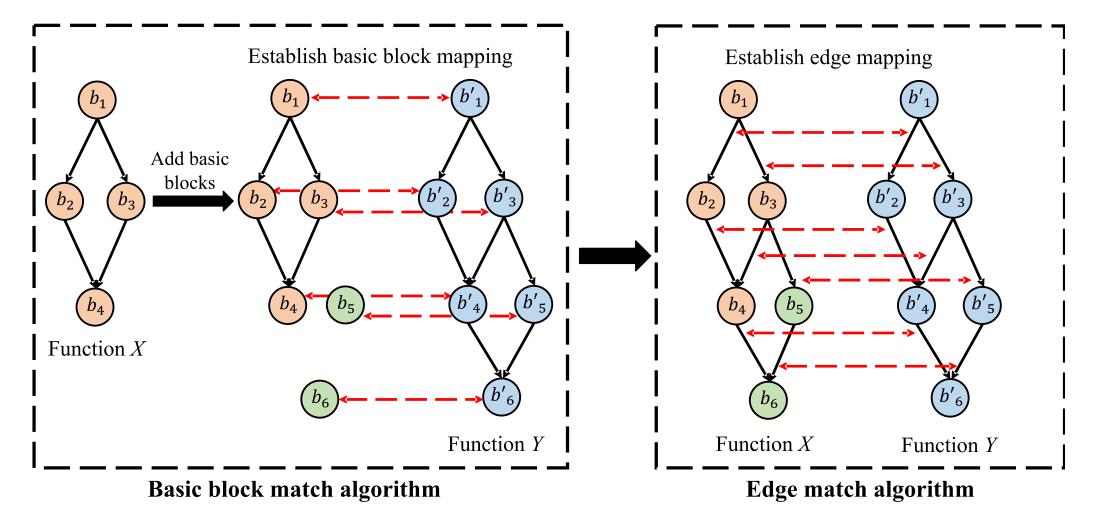

F 1 <i>d</i>		<i>v</i>			Avera	ge Score					
Explanation Method	BFSD Solutions		Se	mantic I	Features			CFG Fea	itures	CFG features score the highest?	
Wiethou		Call	Jump	Arith	Data-Tran	Other	Nodes	Edges	Graph-Sim	score the ingliest.	
	Genius	0.071	0.098	0.032	0.051	0.073	0.127	0.119	0.144	Yes	
	Asm2Vec	0.063	0.088	0.046	0.055	0.085	0.116	0.124	0.216	Yes	
	Gemini	0.056	0.109	0.054	0.050	0.065	0.142	0.143	0.381	Yes	
	GMN	0.058	0.062	0.074	0.067	0.062	0.156	0.138	0.384	Yes	
LIME	GraphEmb	0.079	0.107	0.073	0.072	0.113	0.155	0.121	0.278	Yes	
LINIE	OrderMatters	0.095	0.074	0.110	0.083	0.093	0.171	0.141	0.234	Yes	
	XBA	0.154	0.118	0.100	0.103	0.108	0.119	0.108	0.190	Yes	
	DEXTER	0.117	0.126	0.109	0.108	0.116	0.152	0.119	0.163	Yes	
	SAFE	0.102	0.119	0.149	0.115	0.152	0.129	0.095	0.140	No	
	Trex	0.115	0.118	0.128	0.122	0.136	0.130	0.122	0.130	No	
	jTrans	0.127	0.171	0.108	0.124	0.129	0.117	0.106	0.126	No	
	Genius	0.088	0.096	0.074	0.082	0.088	0.118	0.109	0.179	Yes	
	Asm2Vec	0.085	0.104	0.085	0.112	0.088	0.121	0.114	0.182	Yes	
	Gemini	0.080	0.146	0.079	0.070	0.097	0.111	0.125	0.291	Yes	
	GMN	0.090	0.097	0.113	0.109	0.102	0.152	0.104	0.233	Yes	
LEMNA	GraphEmb	0.108	0.147	0.102	0.103	0.155	0.111	0.100	0.174	Yes	
LEIVIINA	OrderMatters	0.061	0.105	0.072	0.080	0.093	0.168	0.143	0.223	Yes	
	XBA	0.147	0.131	0.110	0.113	0.121	0.108	0.124	0.186	Yes	
	DEXTER	0.120	0.124	0.113	0.114	0.122	0.146	0.123	0.152	Yes	
	SAFE	0.108	0.126	0.158	0.124	0.169	0.103	0.091	0.121	No	
	Trex	0.118	0.121	0.131	0.126	0.133	0.127	0.121	0.123	No	
	jTrans	0.132	0.162	0.112	0.127	0.136	0.110	0.103	0.118	No	

Table 2: Evaluation results of average importance scores on each similarity detection solution.

 \succ We propose δ CFG to assess the impact of CFGs by making them identical or different:

Result

- > Given a function pair with **identical semantics**, we manipulate their CFGs to be **different**.
- > Given a function pair with **different semantics**, we manipulate their CFGs to be **identical**.

BFSD		ER	(%)			
Solutions	pool size = 16	pool size = 32	pool size = 64	pool size = 128		
Genius	62.7	67.9	73.3	75.1		
Asm2Vec	31.7	37.4	43.8	48.0		
Gemini	40.1	49.2	57.4	65.3		
GMN	42.2	47.6	54.7	64.1		
GraphEmb	38.7	45.6	52.1	60.2		
OrderMatters	57.8	65.1	70.7	75.2		
XBA	52.0	62.5	70.6	76.0		
DEXTER	46.5	56.3	63.7	70.6		
SAFE	1.4	1.8	2.0	2.5		
Trex	1.3	1.5	2.2	4.1		
jTrans	1.1	1.5	2.4	3.0		

BFSD		ER	.(%)			
Solutions	pool size = 16	pool size = 32	pool size = 64	pool size = 128		
Genius	72.1	82.1	85.3	88.4		
Asm2Vec	51.0	53.5	56.1	59.1		
Gemini	52.5	58.6	63.1	71.2		
GMN	50.8	61.6	67.1	71.9		
GraphEmb	43.5	49.8	55.2	62.2		
OrderMatters	69.2	74.3	78.1	81.3		
XBA	59.8	69.1	76.5	79.6		
DEXTER	58.9	64.3	68.6	74.0		
SAFE	2.0	3.2	3.4	4.4		
Trex	1.6	2.1	2.4	3.1		
jTrans	1.5	1.7	2.6	3.1		

When CFGs become identical

Result

- > Given a function pair with **identical semantics**, we manipulate their CFGs to be **different**.
- > Given a function pair with **different semantics**, we manipulate their CFGs to be **identical**.

BFSD		ER	(%)	
Solutions	pool size = 16	pool size = 32	pool size = 64	pool size = 128
Genius	62.7	67.9	73.3	75.1
Asm2Vec	31.7	37.4	43.8	48.0
Gemini	40.1	49.2	57.4	65.3
GMN	42.2	47.6	54.7	64.1
GraphEmb	38.7	45.6	52.1	60.2
OrderMatters	57.8	65.1	70.7	75.2
XBA	52.0	62.5	70.6	76.0
DEXTER	46.5	56.3	63.7	70.6
SAFE	1.4	1.8	2.0	2.5
Trex	1.3	1.5	2.2	4.1
jTrans	1.1	1.5	2.4	3.0

When CFGs become different

BFSD		ER	. (%)	
Solutions	pool size = 16	pool size = 32	pool size = 64	pool size = 128
Genius	72.1	82.1	85.3	88.4
Asm2Vec	51.0	53.5	56.1	59.1
Gemini	52.5	58.6	63.1	71.2
GMN	50.8	61.6	67.1	71.9
GraphEmb	43.5	49.8	55.2	62.2
OrderMatters	69.2	74.3	78.1	81.3
XBA	59.8	69.1	76.5	79.6
DEXTER	58.9	64.3	68.6	74.0
SAFE	2.0	3.2	3.4	4.4
Trex	1.6	2.1	2.4	3.1
jTrans	1.5	1.7	2.6	3.1

When CFGs become identical

> Interpreting CFG over-reliance:

Design flaws

- (1) Some neglect the order of instructions.
- (2) Some learn intra-block semantics but not inter-block relation.
- (3) Some partially learns relationships.

....

> Interpreting CFG over-reliance:

Design flaws

- (1) Some neglect the order of instructions.
- (2) Some learn intra-block semantics but not inter-block relation.
- (3) Some partially learns relationships.

Bias of training set

The proportion of four types of function pairs.

Departition Count	Proportion (%)									
Repetition Count	Type 1	Type 1 Type 2		Type 4						
Repetition #1	49.71	40.49	9.51	0.29						
Repetition #2	49.73	42.46	7.54	0.27						
Repetition #3	49.75	39.39	10.61	0.25						
Repetition #4	49.72	40.31	9.69	0.28						
Repetition #5	49.68	39.33	10.67	0.32						

- (1) Type 1: different CFGs and different semantics.
- (2) Type 2: different CFGs but same semantics.
- (3) Type 3: same CFGs and same semantics.

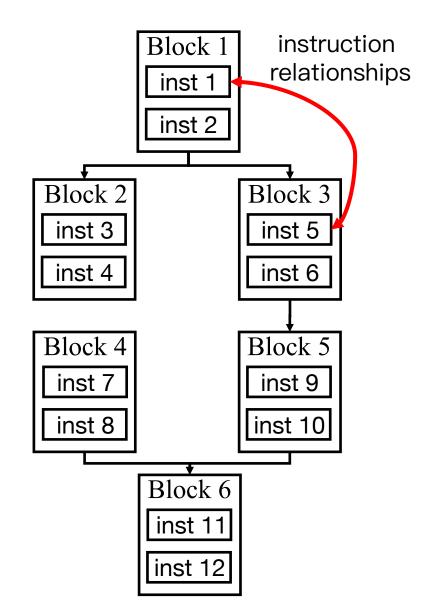
(4) Type 4: same CFGs but different semantics

> Interpreting CFG over-reliance:

Design flaws

- (1) Some neglect the order of instructions.
- (2) Some learn intra-block semantics but not inter-block relation.
- (3) Some partially learns relationships.

Bias of training set


The proportion of four types of function pairs.

Departition Count	Proportion (%)									
Repetition Count	Type 1	Type 2	Type 3	Type 4						
Repetition #1	49.71	40.49	9.51	0.29						
Repetition #2	49.73	42.46	7.54	0.27						
Repetition #3	49.75	39.39	10.61	0.25						
Repetition #4	49.72	40.31	9.69	0.28						
Repetition #5	49.68	39.33	10.67	0.32						

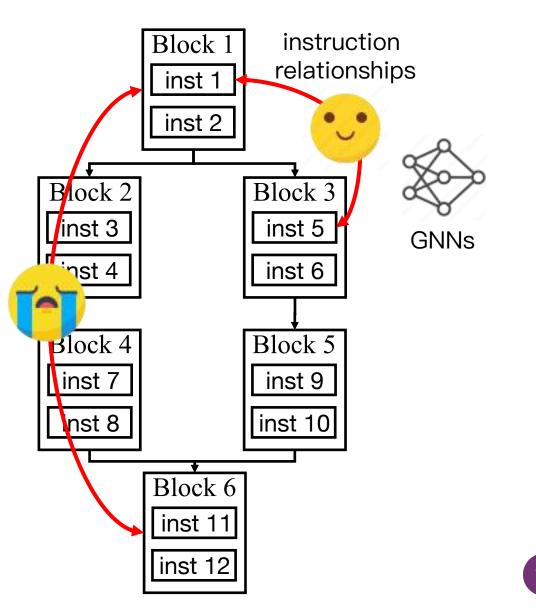
- (1) Type 1: different CFGs and different semantics.
- (2) Type 2: different CFGs but same semantics.
- (3) Type 3: same CFGs and same semantics.

(4) Type 4: same CFGs but different semantics

> Interpreting CFG over-reliance:

Design flaws

- (1) Some neglect the order of instructions.
- (2) Some learn intra-block semantics but not inter-block relation.
- (3) Some partially learns relationships.


Bias of training set

The proportion of four types of function pairs.

Departition Count	Proportion (%)									
Repetition Count	Type 1	Type 2	Type 3	Type 4						
Repetition #1	49.71	40.49	9.51	0.29						
Repetition #2	49.73	42.46	7.54	0.27						
Repetition #3	49.75	39.39	10.61	0.25						
Repetition #4	49.72	40.31	9.69	0.28						
Repetition #5	49.68	39.33	10.67	0.32						

- (1) Type 1: different CFGs and different semantics.
- (2) Type 2: different CFGs but same semantics.
- (3) Type 3: same CFGs and same semantics.

(4) Type 4: same CFGs but different semantics

> We improve models' preformance in BFSD by finetuning with δ CFG:

Table 7: Comparison of improvement in MRR after fine-tuning with and without augmented data (denoted as **clean**), expressed as Δ MRR. The results validate the effectiveness of using δ CFG for fine-tuning the models.

DECD							ΔMR	R (%)					2								
BFSD Solutions	00,03		01,	,03	02,03		O0,Os		01,Os		O2,Os		Average								
Solutions	$\delta \textbf{CFG}$	clean	δCFG	clean	$\delta c f g$	clean	δCFG	clean	δcfg	clean	$\delta c f g$	clean	δCFG	clean							
Gemini	9.0	0.0	3.5	0.2	1.6	0.2	7.0	0.2	5.5	-0.1	4.8	0.0	5.2	0.1							
GMN	10.1	0.3	5.0	0.2	1.4	0.2	9.8	0.1	4.0	-0.1	4.1	0.3	5.7	0.2							
GraphEmb	3.7	-0.1	2.8	0.2	1.0	0.3	3.6	-0.1	2.9	0.1	3.1	0.1	2.9	0.1							
OrderMatters	1.4	0.1	1.3	-0.1	0.9	0.1	3.1	0.1	1.3	-0.1	1.8	0.1	1.6	0.1							
XBA	0.4	0.1	0.3	-0.1	0.2	0.1	1.1	0.1	0.8	0.1	0.4	0.1	0.5	0.1							
DEXTER	1.4	-0.2	4.7	-0.1	1.9	0.2	2.0	0.3	4.5	0.1	1.4	0.3	2.7	0.1							

Table 8: Comparison of improvement in Recall@1 after fine-tuning with and without augmented data (denoted as **clean**), expressed as Δ Recall@1. The results validate the effectiveness of δ CFG.

DECD		Δ Recall @1 (%)												
Solutions	BFSD O0,03		01,03 02,03		,03	O0,Os		01,0s		O2,Os		Average		
Solutions	δCFG	clean	$\delta \textbf{CFG}$	clean	$\delta c f g$	clean	δCFG	clean	$\delta c f g$	clean	δCFG	clean	δCFG	clean
Gemini	10.8	-0.1	4.4	0.2	1.9	0.1	9.3	0.0	6.7	0.1	5.6	0.1	6.5	0.1
GMN	12.7	0.3	7.1	-0.1	1.8	0.2	12.7	0.1	6.2	0.3	5.9	0.1	7.7	0.2
GraphEmb	5.2	0.1	4.3	0.2	1.5	0.3	5.4	0.2	4.2	0.3	4.3	0.2	4.2	0.3
OrderMatters	1.8	0.0	1.6	-0.1	1.2	0.1	3.5	0.2	1.7	0.1	2.5	0.0	2.1	0.1
XBA	0.6	0.0	0.4	-0.1	0.3	0.1	1.6	0.1	1.3	0.2	0.7	0.0	0.8	0.1
DEXTER	1.1	-0.3	7.0	0.2	3.4	-0.2	3.3	0.3	7.1	0.3	1.8	0.3	3.9	0.1

> We lower the ER by finetuning with δ CFG:

BFSD Solutions	ER (%)											
	pools	size = 16	pool	size = 32	pool	size = 64	pool size = 12					
	δCFG	baseline	δcfg	baseline	δCFG	baseline	δCFG	baseline				
Gemini	30.6	36.0	36.8	42.8	40.9	47.4	46.1	51.6				
GMN	23.0	33.5	26.4	37.3	29.2	41.7	32.8	46.1				
GraphEmb	23.2	47.1	28.3	51.4	33.7	54.6	38.7	57.3				
OrderMatters	13.5	29.6	18.6	35.5	24.2	43.3	28.8	50.5				
XBA	47.6	51.5	53.9	57.4	58.8	61.5	62.0	65.2				
DEXTER	40.4	49.3	43.2	55.5	47.9	60.1	53.1	62.8				

Improving ML-based Binary Function Similarity Detection by Assessing and Deprioritizing Control Flow Graph Features

Jialai Wang^{*}, Chao Zhang^{*‡§}, Longfei Chen^{*}, Yi Rong^{*}, Yuxiao Wu[†], Hao Wang^{*}, Wende Tan^{*}, Qi Li^{*}, and Zongpeng Li^{*}[§] *Tsinghua University, [†]Huazhong University of Science and Technology, [‡]Zhongguancun Laboratory, ^{\$}Quancheng Labs

{wang-jl22, clf23, rongy19, hao-wang20}@mails.tsinghua.edu.cn, wyxhustcse@hust.edu.cn, twd2.me@gmail.com, {chaoz, qli01, zongpeng}@tsinghua.edu.cn

> Key Contributions:

- Assess the role of CFG features in ML-BFSD models
- Apply explanation methods to ML-BFSD models and reveal heavy reliance on CFG features in existing models
- Propose CFG manipulation solution (δ CFG)
- Improve performance of existing models