
FFXE
Dynamic Control Flow Graph Recovery for Embedded 
Firmware Binaries

Ryan Tsang, Asmita, Doreen Joseph, Soheil Salehi,

Prasant Mohapatra, Houman Homayoun

This work is funded in part by Robert N. Noyce Trust and by the National
Science Foundation under grant Computing Research Association for
CIFellows Project 2030859. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.



Motivation

• Auditing Embedded Systems Firmware
• Software/Firmware supply chain

• Source code unavailable → Binary analysis
• Human-in-the-loop process

• Reliance on automated program analysis 

techniques

• Quality depends on Control Flow Graph (CFG) 

Recovery



Motivation

• Registered Interrupt Handlers
• Common pattern in embedded 

systems firmware

• Branch targets computed and 
registered in different thread

→ Asynchronous memory 

accesses
• Difficult to resolve indirection

• Runtime information useful



Execution

Context

Context

Queue

Background: Forced Execution

• Xu et al. 2009

• Concretely execute all 

conditional branch paths in 

DFS manner

(0)

(1)

(2) (3)

(4)

(5)

State (4)State (5)State (4)State (3)State (2)State (1)State (0)

L. Xu, F. Sun, and Z. Su, “Constructing Precise Control Flow Graphs from Binaries,” CSE-2009-27, 2009. [Online]. Available: 

https://citeseerx.ist.psu.edu/pdf/8a80f0d173ec7420478e4b96a8264e21e0dafac0

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8a80f0d173ec7420478e4b96a8264e21e0dafac0


Problem

• Interrupt handler registration violates original assumptions
• Branch target address is determined and written asynchronously

• Forced execution will result in incorrect jumps

• Forced Firmware Execution Engine (FFXE)
• Account for asynchronous memory accesses to resolve indirect branches

• Resumes forced execution from volatile memory reads

“The target of an indirect branch is completely determined by a control flow path to this 

indirect branch and is independent of intermediate program states.”

Forced Execution Assumption 2



FFXE



Method

1. Load firmware and pre-execute reset 

handler (copy global variables, etc.) to 
initialize emulator context



Method

2. Begin forced execution on each known ISR 

entry point in the vector table;
Record any memory accesses as volatile 
addresses



Method

3. Backup emulator execution state at each 

volatile memory read in ISR contexts for 
later restore



Method

4. Begin forced 

execution at main 
entry point, logging 
memory accesses



Method

5. On writes to volatile memory, resume 

execution from reads to the same 
address, updating the memory state



Method

6. Update list of volatile memory locations 

as new blocks are resolved in the ISR 
context; queue additional jobs as 
necessary



Method

7. Optionally, conduct additional passes on 

ISR if detected interrupt enable 
(peripheral register write) or WFE/WFI-
like instruction



Evaluation: Callback Resolution

• FFXE fully recovers callback edges to all 

handlers in our test set
• Other tools typically fail to resolve these edges

• Nordic nRF5 SDK
• 8 samples x 4 optimization levels = 32 binaries

• 24 manually identified callback functions



Evaluation: Overall (Test Set)

FFXE-only (blue)

Other engine (red)

Overlap (purple)



Evaluation: Overall (Test Set)

Complementary 

coverage for 

reachable graphs



Evaluation: Overall (Real-World)



Conclusion

• FFXE designed to resolve edges to interrupt callback functions
• Common occurrence in bare-metal firmware SDKs

• Evaluated FFXE’s ability to resolve these edges against existing tools
• All other tools failed to locate such edges in our test set

• Demonstrated FFXE provides complementary coverage to existing 

tools
• Ghidra, angr’s static and dynamic methods, original FXE

GitHub: https://github.com/rchtsang/ffxe

https://github.com/rchtsang/ffxe

	Slide 1: FFXE
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Background: Forced Execution
	Slide 5: Problem
	Slide 6: FFXE
	Slide 7: Method
	Slide 8: Method
	Slide 9: Method
	Slide 10: Method
	Slide 11: Method
	Slide 12: Method
	Slide 13: Method
	Slide 14: Evaluation: Callback Resolution
	Slide 15: Evaluation: Overall (Test Set)
	Slide 16: Evaluation: Overall (Test Set)
	Slide 17: Evaluation: Overall (Real-World)
	Slide 19: Conclusion

