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Bounce Buffers
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over shared memory
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Bounce Buffers

Data from Nvidia [1]
Nvidia H100 : ~4GBps

PCle 6 : upto 256 GBps

Encrypted channel
over shared memory

—
—
Data from TDX+H100 benchmarking [2] CPU |
Eoge Device-to-Host 5 Host-to-Device B
8 oo L <
£ 40 ‘\\\5«\
é 20 o
g o & § b O f b ool >‘, o
10* 10° 108 104 10° 10°
Transfer Size Transfer Size
(1 KB => 68 MB) (1 KB => 68 MB)

Device-to-Device

4000

cc
3000 x

Non-CC
2000 .

1000 w— CC PerfLoss (%)

CC PerfLoss (%)

10* 10° 108
Transfer S ze
(1 KB => 68 MB)

[1] https: //developer nvidia. com/blog/confldentlal computlng on- h100 -gpus- for secure-and- trustworthy ai/
[2] https:
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https://research.ibm.com/publications/securing-ai-inference-in-the-cloud-is-cpu-gpu-confidential-computing-ready

Allow protected memory access
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Acai

kel

FIRST SYSTEM FOR PCIE
DEVICES WITH CCA

EXTEND CCA’S INVARIANTS
FOR SECURITY

BUILD A CONCRETE
DESIGN
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Attaching devices to CVMs
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Exclusive device ownership

Core 1

Stage-2 Translation

Memory Filter

DRAM

SMMU

RMM

Check in the

RMM during VM

creation

Invariant:

Ensure exclusive device ownership
Establish unforgereable identity with attestation
Hardware based memory encryption on PCle bus

42



Exclusive device ownership

Core 1

Stage-2 Translation

Memory Filter

DRAM

SMMU

RMM

Check in the

RMM during VM

creation

Invariant:

Ensure exclusive device ownership
Establish unforgereable identity with attestation
Hardware based memory encryption on PCle bus

43



Exclusive device ownership

Core 1

Stage-2 Translation

Memory Filter

DRAM

SMMU

RMM

Check in the

RMM during VM

creation

Invariant:

Ensure exclusive device ownership
Establish unforgereable identity with attestation
Hardware based memory encryption on PCle bus

44



Putting it together
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Implementation
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Implementation

* No hardware with ARM CCA yet, but
 Arm’s simulator (FVP) supports CCA
e Little/No support for PCle devices

* Performance evaluation prototype: Arm Cortex-A53

Compatibility

* We only change the RMM, trusted firmware,
the guest Linux kernel

* No changes to the device drivers, runtime,
or applications

* Monitor: 1588 LoC
* RMM: 382 LoC
e Guestkernel: 1734 LoC

x86 Host

Realm VM
Accl. app
Linux
stub KVM
drivers
RMM
FVP Process
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Implementation
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Implementation Realm VM
Accl. app .
Accl. ) Stub Linux
. drivers escape . KVM
* No hardware with ARM CCA yet, but | ClUEERS
* Arm’s simulator (FVP) supports CCA 56 Hoat RMM
x86 Hos
» Little/No support for PCle devices PCle _
* Performance evaluation prototype: Arm Cortex-A53 IRBD FVP Process
Device

Compatibility
* We only change the RMM, trusted firmware,

the guest Linux kernel —

API Status Description
* No cha nges to the device drivers. runtime rmi_data_create changed  add datafrom normalworld to realm memory.
. ) ’ ’ ACAl adds attach_dev flag.
or appllcatlons rsi_delegate_prot_mem new delegate realm memory to protected memory.
B B B calls smc_delegate_prot_mem.
. smc_device_attach new attach and detach a device from realm.
* Monitor: 1588 LoC
smc_delegate_prot_mem new delegate realm memory to protected memory.

* RMM: 382 LoC

add stage-2 translation for the SMMU.

e Guestkernel: 1734 LoC
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Evaluation Setup

We benchmark on a GPU and FPGA
Measure number of instructions on the simulator as a performance measure
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Evaluation Setup

e We benchmarkon a GPU and FPGA

* Measure number of instructions on the simulator as a performance measure

GPU Benchmarks

App Domain Tasks T Size P Size

nn Dense linear algebra 1 1 42764
gaussian Dense linear algebra 3148 38 1575 %1575
needle Dynamic programming 229 39 1840
pathfinder Dynamic programming 5 20 50000 x 100
bfs Graph traversal 2 3 1840

srad_v1 Structured grid 102 2 502 x 458
srad_v2 Structured grid 4 64 2048 x 2048
hotspot Structured grid 5 3 512 x 512
backprop Unstructured grid 2 71 262144 x 16 x 1

FPGA Benchmarks
App Domain T Size P Size
matmulb Matrix Multiplication 300 B 42764
matmul10 Matrix Multiplication 1200B 1575 % 1575
svd32 Singular Value 320KB 1840
Decomposition
svd64 Singular Value 20 50000 x 100

Decomposition
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Evaluation Setup

We benchmark on a GPU and FPGA
Measure number of instructions on the simulator as a performance measure

Baseline: Encryption with Bounce Buffers

Realm VM encrypts and copies to Normal world
Acai

Setup realm memory that device directly accesses

GPU Benchmarks FPGA Benchmarks
App Domain Tasks T Size P Size App Domain T Size P Size
nn Dense linear algebra 1 1 42764 matmulb Matrix Multiplication 300 B 42764
gaussian Dense linear algebra 3148 38 1575 %1575 matmul10 Matrix Multiplication 1200B 1575 % 1575
needle Dynamic programming 229 39 1840 svd32 Singular Value 320KB 1840
) . . Decomposition

pathfinder Dynamic programming 5 20 50000 x 100

; h l svd64 Singular Value 20 50000 x 100
bfs Graph traversa 2 3 1840 Decomposition
srad_v1 Structured grid 102 2 502 x 458
srad_v2 Structured grid 4 64 2048 x 2048
hotspot Structured grid 5 3 512 x 512
backprop Unstructured grid 2 71 262144 x 16 x 1
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Impact of removing bounce buffers
Almost 26x faster than encrypted mode for GPU

GPU benchmarks
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Impact of removing bounce buffers
Almost 26x faster than encrypted mode for GPU

GPU benchmarks

47.84x 44.81x
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Other measurements

# of instructions

10°

10’
10°

10°

svd48

| L l 1

|n|t exec
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Other measurements

svd48

Normal world
with ACAI

# of instructions

Normal world
w/o ACAI

iNnit h2d d2h exec

Effect on the normal world:
3.8% for GPU and 1.9% for FPGA benchmarks
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Estimates on Arm Board

* Measure the performance of context switches, interface calls, and memory operations
 Measure the performance for transferring a 4KB page with AES-GCM 256-bit block size

* Use FVP measurements to estimate the performance of Bounce Buffers and Acai

e Even with fast hardware encryption, Acai is 2 orders of magnitude faster.
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Estimates on Arm Board
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Summary

* Confidential Computing is becoming ubiquitous, from mobiles to cloud

* Research question:
How to extend the notion of Confidential Computing to peripherals and accelerators?

* Acaiisoneconcrete instance to showcase the challenges

* We add device support to the simulator

.. | ARTIFACT ARTIFACT
* Acaiisopen source! EVALUATED EVALUATED

wusenix susenix
\ @ ASSOCIATION \ @ ASSOCIATION

https://github.com/sectrs-acai

AVAILABLE
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