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DRAM Read Disturbance

« Read disturbance in DRAM breaks memory isolation
 Prominent example: RowHammer

4 DRAM Subarray )

closed Row 2 Aggressor Row

Repeatedly opening (activating) and closing a DRAM row
many times causes RowHammer bitflips in adjacent rows

SAFARI [Kim+, ISCA’14] 5



Read Disturbance Worsens

« Read disturbance bitflips occur
at much smaller row activation counts

- More than 100x decrease in less than a decade

At

139K 9.6K <1K
[Kim+, [Kim+, [Luo+,
ISCA'14] ISCA20] ISCA23]

Mitigation techniques against read disturbance attacks
need to be effective and efficient for highly vulnerable systems

SAFARI [Bostanci+, HPCA’24] 6



Read Disturbance Mitigation Approaches

There are many ways to mitigate RowHammer bitflips
 More robust DRAM chips and/or error-correcting codes
» Increased refresh rate

* Physical isolation

Generally more resource-efficient
and lower overhead

than other approaches
*|Preventive refresh

* Proactive throttling

« Row remapping

SAFARI 7/



Preventive Refresh

4 )

DRAM Chip

Row O Victim Row

(A rov1 sggressorron]

Row 2 Victim Row

Refreshing potential victim rows
mitigates read disturbance bitflips

ﬂ Requires aggressor row activation count
estimation or tracking

SAFARI [Kim+, ISCA’20] 8



Problem & Goal

Problem

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs

Prevent RowHammer bitflips
at low performance, energy, and area cost
especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

SAFARI 9



2. ABACuUS: Key Idea and Mechanism
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4. Conclusion
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Key Observation

Many workloads access the same row address
in different banks at around the same time

.. Bank 0 Bank 1

| |
| RowX | | RowX |
| A | | A |
Bank 2 Bahk 3
| |
| Row ow X |
| |
Load request targeting
bank 0 row X Sibling rows
Time

--[LD<3Y>]--
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Explanation for the Key Observation

o Spatial locality in memory accesses
(e.g., [Smith+, ACM CSUR 1982])

« A program tends to access neighboring
cache blocks at around the same time

* e.g., a streaming access to an array

9 Modern physical > DRAM address mappings
(e.g., [Pessl+, USENIX Security 2016 and Kaseridis+, MICRO 2011])
« Place neighboring cache blocks

into different banks, but into the same row

 Leverage DRAM bank-level parallelism
for higher-throughput DRAM access

SAFARI 12



Sibling Row Activation Count

for RowHammer Threshold = 500

RowHammer Threshold = 500

;4‘; 500

oG 384

2§ 256

5T 128
<C

Memory Intensive SPEC06/17, TPC, MediaBench, YCSB Workloads

If a row is activated 500 times
its siblings are likely activated more than 250 times

The sibling row with the highest activation count
yields a good estimate for the activation count of all siblings

SAFARI 13



Sibling Row Activation Count

for RowHammer Threshold = 125

RowHammer Threshold = 125

gt

Memory Intensive SPEC06/17, TPC, MediaBench, YCSB Workloads

=
UuCDLOI\J

o N

Sibling Row
Activation Count

The sibling row with the highest activation count
yields an even better estimate for the activation count
of all sibling rows
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Existing Per-Bank Activation Counters

Induce High Storage Overhead

« There are many (e.g., 16) banks in a DRAM chip

- Newer DRAM standards (DDR5) have more (32) banks
- # of activation counters linearly increases with # of banks

Bank O Bank 1 Bank 15

i 11 ] i 1 .
| Counter X || Counter x| " |Counter x| | Néed twice as many
I 11 1 | 1 counters for DDR5

Existing Row Activation Tracker

SAFARI 15



ABACuUS: Key Idea

« There are many (e.g., 16) banks in a DRAM chip

- Newer DRAM standards (DDR5) have more (32) banks
- # of activation counters linearly increases with # of banks

 Sibling rows have similar activation counts

 Have one counter for all siblings
- Reduce the number of counters by a factor of the number of banks

SAFARI

16X reduction in number of counters

Bank O Bank 1 Bank 15 Bank 0-15
| 11 1 | 1 | 1
| Counter X || Counter X| * | Counter X| | Counter X |
| 11 | | | | |
Existing Row Activation Tracker ABACuS-Based Tracker
u
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Maximum Activation Count

e Track the maximum

(worst) activation count

across all sibling rows using one counter

Bank O Bank 1 Bank 15 Bank 0-15
| 1 | | | |
| 32 | 14 97 (max.) | |  >97 |
I ] I I I I
Existing Row Activation Tracker ABACuS-Based Tracker

ABACUS counter value vs. maximum activation count

If ABACuUS counter is smaller

« Cannot preventively refresh on time
« Cannot mitigate bitflips

* Not secure

If ABACUS counter is larger

« Unnecessary preventive refreshes
 Higher perf. and energy overheads

« Lower performance

Our design goal

ABACuUS counter value =

SAFARI

= maXimum activation count
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ABACuUS Counting Algorithm

 Intuition behind the counting algorithm

The ABACuUS
Activation count of sibling FOWS counter’s state
Bank 0 Bank 1 Bank 15 Bank 0-15 ‘
I 1 I 1 I ]
| 32 | 197 (max.) | | 97 | |
l ] LRI | | l 1]

« ABACUS “remembers” the sibling row whose activatio
increased the counter value to 97

- The row in bank 15 in this example

Increment ABACuUS counter if
1) bank 15 is activated again OR 2) any other bank is actiyated twice

 Need one bit per bank to store additional statel

SAFARI https://arxiv.org/pdf/2310.09977.pdf 18
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ABACuUS: Implementation
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We introduce ABACuS, a new low-cost hardware-counter-
based RowHammer mitigation technique that performance-,
energy-, and area-efficiently scales with worsening RowHam-
mer vulnerability. We observe that both benign workloads and
RowHammer attacks tend to access DRAM rows with the same
row address in multiple DRAM banks at around the same time.
Based on this observation, ABACuS’s key idea is to use a single
shared row activation counter to track activations to the rows
with the same row address in all DRAM banks. Unlike state-
of-the-art RowHammer mitigation mechanisms that implement
a separate row activation counter for each DRAM bank, ABA-
CuS implements fewer counters (e.g., only one) to track an equal

number of aggressor rows. ‘counter-based mechanismsi. Using counters to determine

SAFARI

RowHammer threshold (Ngg), has reduced by more than an
order of magnitude in less than a decade [14]E| As many prior
works demonstrate on real systems [1,2,4/15,20-83], RowHam-
mer bitflips can lead to security exploits that 1) take over a sys-
tem, 2) leak security-critical or private data, and 3) manipulate
safety-critical applications’ behavior in undesirable ways. As a
result, a large body of work [1}15,19,38} 44,55, 84-88,/88-135]
proposes mitigation mechanisms to prevent RowHammer bit-
flips.

Key Problem. Many prior works (e.g., [1, 98,102,106, 107,
110}112,116,117,125, 134, 135]) propose using a set of coun-
ters to track the activation counts of potential aggressor rows

https://arxiv.org/pdf/2310.09977.pdf

|
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3. Evaluation

4. Conclusion
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Evaluation Methodology

- Performance and energy consumption evaluation:
Cycle-level simulations using Ramulator [Kim+, CAL 2015]
and DRAMPower [Chandrasekar+, DATE 2013]

- System Configuration:

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank, 3200 MT/s
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 16
Last-Level Cache 2 MiB (single-core), 16 MiB (8-core)

« Comparison Points: 4 state-of-the-art RowHammer mitigations

- Graphene (best performing), Hydra (area-optimized best performing),
Low Processor Chip Area Cost: REGA, PARA

 Workloads: 62 1- & 8-core (multiprogrammed) workloads
- SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

SAFARI 21



Single-Core Performance and Energy
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ABACuS prevents bitflips with very small
average performance and DRAM energy overheads
compared to a baseline system with no RowHammer mitigation

SAFARI 22




8-Core Performance Comparison

S =3 ABACuUS| [=J Graphene | =1 Hydra [0 REGA [ PARA|

©
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©
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=

RowHammer Threshold (Ngy)

ABACuUS outperforms Hydra and PARA at all RowHammer thresholds
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8-Core Performance Comparison

S == ABACUS | [ Graphene )[E==l Hydra [ REGA [ PARA
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ABACuUS outperforms Hydra and PARA at all RowHammer thresholds

ABACuUS incurs a small performance overhead over Graphene
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8-Core DRAM Energy Comparison
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ABACuUS consumes less energy than Hydra, REGA, and PARA
for RowHammer thresholds smaller than 1000

ABACuUS incurs a small DRAM energy over Graphene

SAFARI 25



Area Overhead

Area overhead analysis using
CACTI [Balasubramonian+, ACM TACO 2017]

Area overhead for a dual-rank system

B ABACUS

B Graphene B Hydra

o
IN

22.7X

*REGA modifies
DRAM chips

o
w

*PARA needs
a secure random
number generator

Area Overhead (mm?2)
o O
= N

o

1K 125
RowHammer Threshold
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More In the Paper

« Security analysis of ABACuUS:
- Inductive proof for maximum activation count tracking

» Single-core performance and energy comparison

« VVerilog-level circuit area, latency, energy, and power
- E.g., ABACuUS takes 1.2 ns to update one counter

« Performance under adversarial workloads
- Alternative ABACuUS design

« Performance & energy sensitivity analysis

- Number of ABACuUS counters
- Number of banks
- DRAM address mapping functions...

« Discussion on accounting for RowPress
SAFARI 27
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We introduce ABACuS, a new low-cost hardware-counter-
based RowHammer mitigation technique that performance-,
energy-, and area-efficiently scales with worsening RowHam-
mer vulnerability. We observe that both benign workloads and
RowHammer attacks tend to access DRAM rows with the same
row address in multiple DRAM banks at around the same time.
Based on this observation, ABACuS’s key idea is to use a single
shared row activation counter to track activations to the rows
with the same row address in all DRAM banks. Unlike state-
of-the-art RowHammer mitigation mechanisms that implement
a separate row activation counter for each DRAM bank, ABA-
CuS implements fewer counters (e.g., only one) to track an equal
number of aggressor rows.

RowHammer threshold (Nrr), has reduced by more than an
order of magnitude in less than a decade [14]E| As many prior
works demonstrate on real systems [1,2,4,15,20-83], RowHam-
mer bitflips can lead to security exploits that 1) take over a sys-
tem, 2) leak security-critical or private data, and 3) manipulate
safety-critical applications’ behavior in undesirable ways. As a
result, a large body of work [1,15,19,38,44,55,84-88,88-135]
proposes mitigation mechanisms to prevent RowHammer bit-
flips.

Key Problem. Many prior works (e.g., [1,98,102,106, 107,
110,112,116,117,125, 134, 135]) propose using a set of coun-
ters to track the activation counts of potential aggressor rows
(counter-based mechanisms). Using counters to determine

https://arxiv.org/pdf/2310.09977.pdf

SAFARI
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ABACUS Summary

Key Observation: Many workloads access the same row address
in different DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds (e.g., 125),
ABACuUS:

* Induces small system performance and DRAM energy overhead

« Outperforms the state-of-the-art mitigations Hydra, REGA, and PARA
except the highly area costly Graphene

« Induces 22.7X smaller chip area than Graphene

SAFARI https://github.com/CMU-SAFARI/ABACuUS 30
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mitigation mechanisms that implement a separate row activation counter for each DRAM bank, ABACuS implements fewer counters (e.g., only
one) to track an equal number of aggressor rows.

Our evaluations show that ABACuS securely prevents RowHammer bitflips at low performance/energy overhead and low area cost. We compare
ABACuUS to four state-of-the-art mitigation mechanisms. At a near-future RowHammer threshold of 1000, ABACuS incurs only 0.58% (0.77%)
performance and 1.66% (2.12%) DRAM energy overheads, averaged across 62 single-core (8-core) workloads, requiring only 9.47 KiB of storage
per DRAM rank. At the RowHammer threshold of 1000, the best prior low-area-cost mitigation mechanism incurs 1.80% higher average
performance overhead than ABACuUS, while ABACUS requires 2.50X smaller chip area to implement. At a future RowHammer threshold of 125,
ABACuUS performs very similarly to (within 0.38% of the performance of) the best prior performance- and energy-efficient RowHammer mitigation
mechanism while requiring 22.72X smaller chip area. ABACuS is freely and openly available at this https URL.
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ABACuUS is Open Source and Artifact Evaluated
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ABACUS Summary

Problem: As DRAM becomes more vulnerable to read disturbance,
existing RowHammer mitigation techniques either prevent bitflips

- at high area overheads or
« with prohibitively large performance and energy overheads

Goal: Prevent RowHammer bitflips at low performance, energy,
and area cost especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

Key Observation: Many workloads access the same row address
in different DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds, ABACuS:

* Induces small system performance and DRAM energy overhead
 Outperforms the state-of-the-art mitigation (Hydra)

« Takes up 22.7X smaller chip area than state-of-the-art (Graphene)

SAFARI https://github.com/CMU-SAFARI/ABACUS 35
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Preventive-Refresh-Based Mitigations

Row A Counter A Tag A | Counter A
Row B Counter B Tag B | Counter B
Row C 1 Counter C Tag C | Counter C
Row D Counter D

Processor Processor
DRAM Chip Chip

Shared Counters
Tag A

Counter A

Tag B | Counter B

Processor Chip

One ACT counter
per DRAM row

One ACT counter
per aggressor row

Area Performance
Cost | & Energy (Posts

VERY LOW
r ________ N
Many DRAM rows
| (&gl =10 j
VERY HIGH

LOW

HIGH

<1 counter
per DRAM row

High DRAM |
bandwidth |
consumption
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ABACuUS: Key Components

« Adopt a frequent item counting algorithm
- Area-efficient, fewer counters to track more DRAM rows
- ABACuUS is compatible with other counter-based mitigations

ABACuUS Counter Table \

‘ ABACuUS Counter R

Row Activation Counter (RAC)

x Sibling Activation Vector (SAV) ) > Nentries

ABACuUS Counter ]

ABACuS .Coun.ter | ] j

Spillover Counter

SAFARI 39




ABACuUS: Operation

Row ID | Activation Count

M
un®
wn®
.
an®
-----
an
as
an®
ut
"

X 72 X 128 7 X 31 e X 42
Bank 0 Bank 1 Bank 2 Bank N

 The RAC always stores the maximum activation count
- Store small additional information in SAV

“Which siblings were activated
since RAC was last incremented?”

ABACuS Counter One bit per bank

Row Activation Counter (RAC) Sibling Activation Vector (SAV) J

Increment only when a sibling is activated “again”
(i.e., activate targets a set SAV bit)

SAFARI https://arxiv.org/pdf/2310.09977.pdf 40



ABACuUS: Operation (I)

Row ID *RAC *SAV ACT RowID RAC SAV
13 27 0001 Row ID: 13 13 27 0011
Bank ID: 1
9 12 0101 9 12 0101
—>
1 14 1000  @uUpdate 14 1000
12 (Spillover Counter) 12 (Spillover Counter)

*RAC: Row Activation Counter, SAV: Sibling Activation Vector

Row D RAC SAV RowID RAC SAV

ACT ACT
Row ID: 13 13 28 0010 Row ID: 20 13 28 0010

Bank ID: 1 )
9 12 0101 Bank ID: 2 20 13 0100
_>

—>
Aupdate | 14 1000 @) Replace | 1 14 1000
12 (Spillover Counter) 12 (Spillover Counter)

SAFARI 41



ABACuUS: Operation (II)

RowID RAC SAV RowID RAC SAV

ACT
13 28 0010 Row ID: 7 13 28 0010

20 13 0100 | BanklID:1 20 13 0100

—>
12 (Spillover Counter) Update 13 (Spillover Counter)

SAFARI 42



Area, Energy, and Power

Ngryg =1000
Mitigation Mechanism SRAM CAM Area Access Energy  Static Power
KB KB mm? % CPU  %DRAM (pJ) (mW)
ABACuS 10.63 8.30 0.04 0.02 - 25.98 12.22
Row ID Table - 5.64 0.01 <0.01 - 12.85 6.61
Row Activation Counter Table - 2.66 0.02 <0.01 - 11.13 4.66
Sibling Activation Vector 10.63 - 0.01 <0.01 - 2.00 0.95
PARA [1] - - - <0.01 - - -
Graphene [102 - 286.51 0.81 0.35 - 873.38 187.98
Hydra [106 61.56 - 0.10 0.04 - 43.07 24.17
REGA | - - - - 2.06 - -
Nprg =125
Mitigation Mechanism SRAM CAM Area Access Energy  Static Power
KB KB mm? % CPU % DRAM (pJ) (mW)
ABACuS 85.00 66.41 0.25 0.11 - 36.87 50.54
Row ID Table - 45.16 0.12 0.05 - 20.64 27.56
Row Activation Counter Table - 21.25 0.06 0.03 - 11.66 15.53
Sibling Activation Vector 85.00 - 0.07 0.03 - 4,57 7.44
PARA [1] - - - <0.01 - - -
Graphene [102] - 2037.09 5.68 2.43 - 1042.49 1385.52
Hydra 106 56.5 - 0.07 0.03 - 40.26 23.21
REGA | - - - - 2.06 - -
SAFARI 43



DRAM Address Mapping Function

Rank « @4
Bank Group 0 < @4
Bank Group 1 « (P<
Bank 0 <+ @1
Bank 1 |Co| [2:0]|
Physical f '
Address ...123122121,20119/18)17y...411410;9,8 716 15413121 ,0
Row [Col 9:3]] Cache Block

Figure 7: Simulated address mapping
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Key Configuration Parameters of

RowHammer Mitigations
Mechanism Configuration Parameter Value
All mechanisms | RowHammer Threshold 1000 500 250 125
Number of table entries 2720 5440 10880 21760
Graphene Threshold for aggressor tracking 500 250 125 63
Reset window 64 ms
Row group size 128 rows
Row count table entry size 2B 1B
Hvdra Row count cache size 4K entires per DRAM rank
Y Group count table threshold 400 200 100 50
Tracking threshold 500 250 125 63
Periodic reset 64 ms
REGA Row cycle time (t rc) 45.0ns | 62.5ns | 97.5ns | 167.5ns
PARA Probability threshold 0.034 0.067 0.129 0.241
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Sensitivity to

Number of ABACuUS Counters

10 - Baseline v!eighted spgedup - ) ) ) }
B =

¢
¢

o o
ELY (@)

Normalized
Weighted Speedup
o
N

¢

o
o

2720 5440 10880 21760 43520 87040 174080
(Default)

Number of ABACuS Counters at ngy = 125
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Sensitivity to Number of Banks
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Performance Under Adversarial Workloads
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Limitations of Target Row Refresh

= 70K
<
o) 60K Reverse engineered (in [55]) TRR configuration
o
ﬁ 50K Future configurations with more counters
Q
c 40K
—
5 30K
- Minimum observed
c 20K | RowHammer Threshold
(O
:g .8k IIIIII
S ===

16 32 04 96 128 164
Number of counters
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Applicability to Other Mitigations

 Many workloads access the same row address
in different banks at around the same time

* This observation can be leveraged by many
other RowHammer mitigations

- Hydra, Graphene (what we showcase),
Per Row Activation Counting (PRAC),
ProTRR, ...
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Industry Solutions to Read Disturbance:
Per Row Activation Counting (PRAC)

Back-Off Threshold
normal traffic recovery PRAC-N
(180 ns) (N RFMs)

ACT ACT ACT >

DRAM Commands
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PRAC is NOT the Silver Bullet

Goal: Rigorously analyze and characterize the security and
performance implications of the DDR5 standard PRAC mechanism

Mathematical analysis & extensive simulations show that PRAC:
« provides security as long as no bitflip occurs below 10 activations
 has non-negligible performance (10%) and energy (18%) overheads

« poorly scales for future DRAM chips, leading to significant
overheads on performance (49%) and energy (136%)

« allows memory performance attacks to hog
significant amount of DRAM throughput (up to 79% throughput loss)

Future work: More research is needed to improve PRAC by

* reducing the overheads due to increased DRAM timing parameters

« solving the exacerbated performance impact as Ny, decreases

« stopping preventive refreshes from being exploited by memory
performance attacks
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