ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

wusenix wusenix ~wusenix

AVAILABLE FUNCTIONAL REPRODUCED

ABACuUS

All-Bank Activation Counters for Scalable
and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul F. Nisa Bostanci
Ismail Emir Yiksel Haocong Luo Steve Rhyner
A. Giray Yaglikgi Geraldo F. Oliveira Onur Mutlu

SAFARI ETHzurich

Outline

1. Background & Motivation
e

2. ABACuUS: Key Idea and Mechanism

B
3. Evaluation

4. Conclusion

SAFARI 2

Outline

S
1. Background & Motivation

S
2. ABACuUS: Key Idea and Mechanism

B
3. Evaluation

4. Conclusion

SAFARI 3

DRAM Organization

B & o smn-as-in
e, M471B52T3CH

DRAM Chip

SAFARI

e A
o SIHIne " prAM cell
) Subarray ©
= / Wordline
x | —O0-FO0-O-0O—
: : DRAM
. . Row
‘\ J i

DRAM Bank

B Row Buffer
\. J

/ DRAM Subarray
Cache block (e.g., 512 bits)

DRAM Read Disturbance

« Read disturbance in DRAM breaks memory isolation
 Prominent example: RowHammer

4 DRAM Subarray)

closed Row 2 Aggressor Row

Repeatedly opening (activating) and closing a DRAM row
many times causes RowHammer bitflips in adjacent rows

SAFARI [Kim+, ISCA’14] 5

Read Disturbance Worsens

« Read disturbance bitflips occur
at much smaller row activation counts

- More than 100x decrease in less than a decade

At

139K 9.6K <1K
[Kim+, [Kim+, [Luo+,
ISCA'14] ISCA20] ISCA23]

Mitigation techniques against read disturbance attacks
need to be effective and efficient for highly vulnerable systems

SAFARI [Bostanci+, HPCA’24] 6

Read Disturbance Mitigation Approaches

There are many ways to mitigate RowHammer bitflips
 More robust DRAM chips and/or error-correcting codes
» Increased refresh rate

* Physical isolation

Generally more resource-efficient
and lower overhead

than other approaches
*|Preventive refresh

* Proactive throttling

« Row remapping

SAFARI 7/

Preventive Refresh

4)

DRAM Chip

Row O Victim Row

(A rov1 sggressorron]

Row 2 Victim Row

Refreshing potential victim rows
mitigates read disturbance bitflips

ﬂ Requires aggressor row activation count
estimation or tracking

SAFARI [Kim+, ISCA’20] 8

Problem & Goal

Problem

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs

Prevent RowHammer bitflips
at low performance, energy, and area cost
especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

SAFARI 9

2. ABACuUS: Key Idea and Mechanism

3. Evaluation

4. Conclusion

SAFARI 10

Key Observation

Many workloads access the same row address
in different banks at around the same time

.. Bank 0 Bank 1

| |
| RowX | | RowX |
| A | | A |
Bank 2 Bahk 3
| |
| Row ow X |
| |
Load request targeting
bank 0 row X Sibling rows
Time

--[LD<3Y>]--

SAFARI

Explanation for the Key Observation

o Spatial locality in memory accesses
(e.g., [Smith+, ACM CSUR 1982])

« A program tends to access neighboring
cache blocks at around the same time

* e.g., a streaming access to an array

9 Modern physical > DRAM address mappings
(e.g., [Pessl+, USENIX Security 2016 and Kaseridis+, MICRO 2011])
« Place neighboring cache blocks

into different banks, but into the same row

 Leverage DRAM bank-level parallelism
for higher-throughput DRAM access

SAFARI 12

Sibling Row Activation Count

for RowHammer Threshold = 500

RowHammer Threshold = 500

;4‘; 500

oG 384

2§ 256

5T 128
<C

Memory Intensive SPEC06/17, TPC, MediaBench, YCSB Workloads

If a row is activated 500 times
its siblings are likely activated more than 250 times

The sibling row with the highest activation count
yields a good estimate for the activation count of all siblings

SAFARI 13

Sibling Row Activation Count

for RowHammer Threshold = 125

RowHammer Threshold = 125

gt

Memory Intensive SPEC06/17, TPC, MediaBench, YCSB Workloads

=
UuCDLOI\J

o N

Sibling Row
Activation Count

The sibling row with the highest activation count
yields an even better estimate for the activation count
of all sibling rows

SAFARI 14

Existing Per-Bank Activation Counters

Induce High Storage Overhead

« There are many (e.g., 16) banks in a DRAM chip

- Newer DRAM standards (DDR5) have more (32) banks
- # of activation counters linearly increases with # of banks

Bank O Bank 1 Bank 15

i 11] i 1 .
| Counter X || Counter x| " |Counter x| | Néed twice as many
I 11 1 | 1 counters for DDR5

Existing Row Activation Tracker

SAFARI 15

ABACuUS: Key Idea

« There are many (e.g., 16) banks in a DRAM chip

- Newer DRAM standards (DDR5) have more (32) banks
- # of activation counters linearly increases with # of banks

 Sibling rows have similar activation counts

 Have one counter for all siblings
- Reduce the number of counters by a factor of the number of banks

SAFARI

16X reduction in number of counters

Bank O Bank 1 Bank 15 Bank 0-15
| 11 1 | 1 | 1
| Counter X || Counter X| * | Counter X| | Counter X |
| 11 | | | | |
Existing Row Activation Tracker ABACuS-Based Tracker
u

16

Maximum Activation Count

e Track the maximum

(worst) activation count

across all sibling rows using one counter

Bank O Bank 1 Bank 15 Bank 0-15
| 1 | | | |
| 32 | 14 97 (max.) | | >97 |
I] I I I I
Existing Row Activation Tracker ABACuS-Based Tracker

ABACUS counter value vs. maximum activation count

If ABACuUS counter is smaller

« Cannot preventively refresh on time
« Cannot mitigate bitflips

* Not secure

If ABACUS counter is larger

« Unnecessary preventive refreshes
 Higher perf. and energy overheads

« Lower performance

Our design goal

ABACuUS counter value =

SAFARI

= maXimum activation count
17

ABACuUS Counting Algorithm

 Intuition behind the counting algorithm

The ABACuUS
Activation count of sibling FOWS counter’s state
Bank 0 Bank 1 Bank 15 Bank 0-15 ‘
I 1 I 1 I]
| 32 | 197 (max.) | | 97 | |
l] LRI | | l 1]

« ABACUS “remembers” the sibling row whose activatio
increased the counter value to 97

- The row in bank 15 in this example

Increment ABACuUS counter if
1) bank 15 is activated again OR 2) any other bank is actiyated twice

 Need one bit per bank to store additional statel

SAFARI https://arxiv.org/pdf/2310.09977.pdf 18

https://arxiv.org/pdf/2310.09977.pdf

ABACuUS: Implementation

ARTIFACT
EVALUATED

usenix

sssssssssss

ARTIFACT
EVALUATED
susenix

sssssssssss

ARTIFACT
EVALUATED

susenix
sssssssss

AVAILABLE

REPRODUCED

ABACuS: All-Bank Activation Counters
for Scalable and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul

Haocong Luo Steve Rhyner Abdullah Giray Yaglikci

Nisa Bostanci Ismail Emir Yuksel
Geraldo F. Oliveira Onur Mutlu

ETH Zurich

We introduce ABACuS, a new low-cost hardware-counter-
based RowHammer mitigation technique that performance-,
energy-, and area-efficiently scales with worsening RowHam-
mer vulnerability. We observe that both benign workloads and
RowHammer attacks tend to access DRAM rows with the same
row address in multiple DRAM banks at around the same time.
Based on this observation, ABACuS’s key idea is to use a single
shared row activation counter to track activations to the rows
with the same row address in all DRAM banks. Unlike state-
of-the-art RowHammer mitigation mechanisms that implement
a separate row activation counter for each DRAM bank, ABA-
CuS implements fewer counters (e.g., only one) to track an equal

number of aggressor rows. ‘counter-based mechanismsi. Using counters to determine

SAFARI

RowHammer threshold (Ngg), has reduced by more than an
order of magnitude in less than a decade [14]E| As many prior
works demonstrate on real systems [1,2,4/15,20-83], RowHam-
mer bitflips can lead to security exploits that 1) take over a sys-
tem, 2) leak security-critical or private data, and 3) manipulate
safety-critical applications’ behavior in undesirable ways. As a
result, a large body of work [1}15,19,38} 44,55, 84-88,/88-135]
proposes mitigation mechanisms to prevent RowHammer bit-
flips.

Key Problem. Many prior works (e.g., [1, 98,102,106, 107,
110}112,116,117,125, 134, 135]) propose using a set of coun-
ters to track the activation counts of potential aggressor rows

https://arxiv.org/pdf/2310.09977.pdf

|

19

https://arxiv.org/pdf/2310.09977.pdf

3. Evaluation

4. Conclusion

SAFARI 20

Evaluation Methodology

- Performance and energy consumption evaluation:
Cycle-level simulations using Ramulator [Kim+, CAL 2015]
and DRAMPower [Chandrasekar+, DATE 2013]

- System Configuration:

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank, 3200 MT/s
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 16
Last-Level Cache 2 MiB (single-core), 16 MiB (8-core)

« Comparison Points: 4 state-of-the-art RowHammer mitigations

- Graphene (best performing), Hydra (area-optimized best performing),
Low Processor Chip Area Cost: REGA, PARA

 Workloads: 62 1- & 8-core (multiprogrammed) workloads
- SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

SAFARI 21

Single-Core Performance and Energy

o 1.05 1.05
(a ©
5 0 1.2%
S S O
S Eo
*C—)C
: 22
Z 0.95 — g§O.95 .
@ ©
g T
<°>E) 0.9 | ! ! : < 0.9 - ! |
1000 500 250 125 1000 500 250 125
RowHammer Threshold RowHammer Threshold

ABACuS prevents bitflips with very small
average performance and DRAM energy overheads
compared to a baseline system with no RowHammer mitigation

SAFARI 22

8-Core Performance Comparison

S =3 ABACuUS| [=J Graphene | =1 Hydra [0 REGA [PARA|

©

O - — .

V1.0 - — S 14.4% =
(Vp]

< 0.8

% 2.6%

0.6

Q

=04 59.6%
D

N 0.2

©

o 1000 500 250 125

=

RowHammer Threshold (Ngy)

ABACuUS outperforms Hydra and PARA at all RowHammer thresholds

SAFARI 23

8-Core Performance Comparison

S == ABACUS | [Graphene)[E==l Hydra [REGA [PARA

©

¢ [ine weighted speeles »

AR TR i A —
wn 't O e

8 0.8 ' | T | | —O— | (0]

- s 111.7% ¢ 111.9% v 112.6% *114.4%
0.6 y | - " IR o
Q ¢ J_ L
=04 ! $: T
3 ' ‘

N 0.2 :

©

o 1000 500 250 125

=

RowHammer Threshold (Ngy)

ABACuUS outperforms Hydra and PARA at all RowHammer thresholds

ABACuUS incurs a small performance overhead over Graphene

SAFARI 24

8-Core DRAM Energy Comparison

_5 [0 ABACUS [Graphene [Hydra [REGA [1 PARA|

-

54

Qo ﬁ 70.40/0
b =
:. 0 '

> 19.6%

gl 2 ‘ s . K ! _ $ T
- R ° 4.0%

o] " T -U 70 O]
o ¢ o]

—_ 1 I - __‘h_.o_ﬁ —— Ll k S

g Baseline DRAM enefgy 34.0%
B 1000 500 250 125

=

RowHammer Threshold (Ngy)

ABACuUS consumes less energy than Hydra, REGA, and PARA
for RowHammer thresholds smaller than 1000

ABACuUS incurs a small DRAM energy over Graphene

SAFARI 25

Area Overhead

Area overhead analysis using
CACTI [Balasubramonian+, ACM TACO 2017]

Area overhead for a dual-rank system

B ABACUS

B Graphene B Hydra

o
IN

22.7X

*REGA modifies
DRAM chips

o
w

*PARA needs
a secure random
number generator

Area Overhead (mm?2)
o O
= N

o

1K 125
RowHammer Threshold

SAFARI 26

More In the Paper

« Security analysis of ABACuUS:
- Inductive proof for maximum activation count tracking

» Single-core performance and energy comparison

« VVerilog-level circuit area, latency, energy, and power
- E.g., ABACuUS takes 1.2 ns to update one counter

« Performance under adversarial workloads
- Alternative ABACuUS design

« Performance & energy sensitivity analysis

- Number of ABACuUS counters
- Number of banks
- DRAM address mapping functions...

« Discussion on accounting for RowPress
SAFARI 27

The Paper

ARTIFACT
EVALUATED

usenix
sssssssssss

ARTIFACT
EVALUATED
susenix

sssssssssss

ARTIFACT
EVALUATED

Jusenix
sssssssssss

AVAILABLE REPRODUCED

ABACuS: All-Bank Activation Counters
for Scalable and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul

Haocong Luo Steve Rhyner Abdullah Giray Yaglikci

Nisa Bostanci Ismail Emir Yuksel
Geraldo F. Oliveira Onur Mutlu

ETH Zurich

We introduce ABACuS, a new low-cost hardware-counter-
based RowHammer mitigation technique that performance-,
energy-, and area-efficiently scales with worsening RowHam-
mer vulnerability. We observe that both benign workloads and
RowHammer attacks tend to access DRAM rows with the same
row address in multiple DRAM banks at around the same time.
Based on this observation, ABACuS’s key idea is to use a single
shared row activation counter to track activations to the rows
with the same row address in all DRAM banks. Unlike state-
of-the-art RowHammer mitigation mechanisms that implement
a separate row activation counter for each DRAM bank, ABA-
CuS implements fewer counters (e.g., only one) to track an equal
number of aggressor rows.

RowHammer threshold (Nrr), has reduced by more than an
order of magnitude in less than a decade [14]E| As many prior
works demonstrate on real systems [1,2,4,15,20-83], RowHam-
mer bitflips can lead to security exploits that 1) take over a sys-
tem, 2) leak security-critical or private data, and 3) manipulate
safety-critical applications’ behavior in undesirable ways. As a
result, a large body of work [1,15,19,38,44,55,84-88,88-135]
proposes mitigation mechanisms to prevent RowHammer bit-
flips.

Key Problem. Many prior works (e.g., [1,98,102,106, 107,
110,112,116,117,125, 134, 135]) propose using a set of coun-
ters to track the activation counts of potential aggressor rows
(counter-based mechanisms). Using counters to determine

https://arxiv.org/pdf/2310.09977.pdf

SAFARI

28

https://arxiv.org/pdf/2310.09977.pdf

4. Conclusion

SAFARI 29

ABACUS Summary

Key Observation: Many workloads access the same row address
in different DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds (e.g., 125),
ABACuUS:

* Induces small system performance and DRAM energy overhead

« Outperforms the state-of-the-art mitigations Hydra, REGA, and PARA
except the highly area costly Graphene

« Induces 22.7X smaller chip area than Graphene

SAFARI https://github.com/CMU-SAFARI/ABACuUS 30

https://github.com/CMU-SAFARI/ABACuS

Extended Version on arXiv

https://arxiv.org/pdf/2310.09977.pdf

All fields

ar 1V > cs > arXiv:2310.09977

Help | Advanced Search

Computer Science > Cryptography and Security AcCcess Paper'

¢ Download PDF
ABACuS: All-Bank Activation Counters for Scalable and Low Overhead RowHammer * PostScript

s R e Other F t
Mitigation At

[Submitted on 15 Oct 2023]

Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. f:g;"t browse context:
Oliveira, Onur Mutlu <prev | next>

new | recent | 2310
We introduce ABACuS, a new low-cost hardware-counter-based RowHammer mitigation technique that performance-, energy-, and area- Change to browse by:

efficiently scales with worsening RowHammer vulnerability. We observe that both benign workloads and RowHammer attacks tend to access DRAM cs
rows with the same row address in multiple DRAM banks at around the same time. Based on this observation, ABACuS's key idea is to use a single cs.AR

shared row activation counter to track activations to the rows with the same row address in all DRAM banks. Unlike state-of-the-art RowHammer References & Citations

mitigation mechanisms that implement a separate row activation counter for each DRAM bank, ABACuS implements fewer counters (e.g., only
one) to track an equal number of aggressor rows.

Our evaluations show that ABACuS securely prevents RowHammer bitflips at low performance/energy overhead and low area cost. We compare
ABACuUS to four state-of-the-art mitigation mechanisms. At a near-future RowHammer threshold of 1000, ABACuS incurs only 0.58% (0.77%)
performance and 1.66% (2.12%) DRAM energy overheads, averaged across 62 single-core (8-core) workloads, requiring only 9.47 KiB of storage
per DRAM rank. At the RowHammer threshold of 1000, the best prior low-area-cost mitigation mechanism incurs 1.80% higher average
performance overhead than ABACuUS, while ABACUS requires 2.50X smaller chip area to implement. At a future RowHammer threshold of 125,
ABACuUS performs very similarly to (within 0.38% of the performance of) the best prior performance- and energy-efficient RowHammer mitigation
mechanism while requiring 22.72X smaller chip area. ABACuS is freely and openly available at this https URL.

SAFARI

« NASA ADS
¢ Google Scholar
« Semantic Scholar

Export BibTeX Citation

Bookmark

K@

31

https://arxiv.org/pdf/2310.09977.pdf

ABACuUS is Open Source and Artifact Evaluated

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
cusenix susenix “usenix
\ @ ASSOCIATION \ @ ASSOCIATION \ @ ASSOCIATION

AVAILABLE REPRODUCED

@ o CMU-SAFARI | ABACUS [Q Type [Jto search | >-J | ["' M] O

<> Code () Issues I Pulirequests () Actions [Projects (@ Security |~ Insights 3 Settings

ABACuUS [> EditPins ~] [® Unwatch (&) =] [% Fork (0) | =] [# Starred (3) | S]
P 1branch © 0tags [Gotofile][Add file ~] <> Code ~ About by
(New RowHammer mitigation mechanism
olgunataberk add verilog sources and update readme eflc89c yesterday)8 commits that is area-, performance-, and energy-
efficient especially at very low (e.g., 125)
B8 abacus_cacti add abacus cacti sources yesterday RowHammer thresholds, as described in
B abacus_verilog add verilog sources and update readme yesterday the USENIAX Security'24 paper
https://arxiv.org/pdf/2310.09977.pdf
B configs/ABACUS Initial commit 3 days ago
0 Readme
B ext Initial commit 3 days ago a5 MIT license
B scripts Initial commit 3 days ago - Activity
m s Initial commit 3 days ago Tr 3stars
& 4 watching
.gitignore Initial commit 3 days ago
D giig yeag % 0forks
[CMakeListstxt Initial commit 3 days ago Report repository
D Doxyfile Initial commit 3 days ago

https://qgithub.com/CMU-SAFARIT/ABACUS

SAFARI 32

https://github.com/CMU-SAFARI/ABACuS

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

wusenix wusenix ~wusenix

AVAILABLE FUNCTIONAL REPRODUCED

ABACuUS

All-Bank Activation Counters for Scalable
and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul F. Nisa Bostanci
Ismail Emir Yiksel Haocong Luo Steve Rhyner
A. Giray Yaglikgi Geraldo F. Oliveira Onur Mutlu

SAFARI ETHzurich

Backup Slides

ABACUS Summary

Problem: As DRAM becomes more vulnerable to read disturbance,
existing RowHammer mitigation techniques either prevent bitflips

- at high area overheads or
« with prohibitively large performance and energy overheads

Goal: Prevent RowHammer bitflips at low performance, energy,
and area cost especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

Key Observation: Many workloads access the same row address
in different DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds, ABACuS:

* Induces small system performance and DRAM energy overhead
 Outperforms the state-of-the-art mitigation (Hydra)

« Takes up 22.7X smaller chip area than state-of-the-art (Graphene)

SAFARI https://github.com/CMU-SAFARI/ABACUS 35

https://github.com/CMU-SAFARI/ABACuS

DRAM Organization

DRAM Subarray

Wordline
Drivers

.

DRAM
MAT

Wordline
Drivers

Sense Amplifiers

Sense Amplifiers

Wordline

Drivers

1

Capacitor

DRAM

SAFARI

[Olgun+, ISCA’21]

36

Preventive-Refresh-Based Mitigations

Row A Counter A Tag A | Counter A
Row B Counter B Tag B | Counter B
Row C 1 Counter C Tag C | Counter C
Row D Counter D

Processor Processor
DRAM Chip Chip

Shared Counters
Tag A

Counter A

Tag B | Counter B

Processor Chip

One ACT counter
per DRAM row

One ACT counter
per aggressor row

Area Performance
Cost | & Energy (Posts

VERY LOW
r ________ N
Many DRAM rows
| (&gl =10 j
VERY HIGH

LOW

HIGH

<1 counter
per DRAM row

High DRAM |
bandwidth |
consumption

SAFARI

[Bostanci+, HPCA’'24]

n

RowHammer
Attacks

ted aga

U sjq _
9pP0I3P 97
m%:@ ¥ .
PW6ly
Wq|'0Ly
WqI'6TS
0 dwsnaz <y
PEAIUO0]0) 617G
dl1qg4swe9 65y
X3|d0Ss ' 0Gt
) nmwzmwfmmv
ddisuwo’Qzs
W EEY
{ o] Zyod)
° wnjuenbql|'z9y
Juugoue|ex g8y
£TYyd2d) _
9pooua zdl
Jejse’c/y
ddijouwo 1/t
IWdVvsnlded'9¢y
odew dm
EYY8 IM
PWg0g
9podap zdl
gXulyas zgy
ZX"'[QS _
19AJI3se gsdoA

£#920d) _
19AI9SD_QSIA

19AI9Sq QqSDA

1sa1ed Q1S
J9AIDSD QSOA

iva

t

ing row is ac

suoljeAlloe mod bul|qis
JO JoqWInN

©
()
P’
©
2
i
O
©
/)
S
O
| &
(=)
=
2
/)
Y
o
&
)
Ko
=
=
Z

before one sibl

38

Workload

SAFARI

ABACuUS: Key Components

« Adopt a frequent item counting algorithm
- Area-efficient, fewer counters to track more DRAM rows
- ABACuUS is compatible with other counter-based mitigations

ABACuUS Counter Table \

‘ ABACuUS Counter R

Row Activation Counter (RAC)

x Sibling Activation Vector (SAV)) > Nentries

ABACuUS Counter]

ABACuS .Coun.ter |] j

Spillover Counter

SAFARI 39

ABACuUS: Operation

Row ID | Activation Count

M
un®
wn®
.
an®

an
as
an®
ut
"

X 72 X 128 7 X 31 e X 42
Bank 0 Bank 1 Bank 2 Bank N

 The RAC always stores the maximum activation count
- Store small additional information in SAV

“Which siblings were activated
since RAC was last incremented?”

ABACuS Counter One bit per bank

Row Activation Counter (RAC) Sibling Activation Vector (SAV) J

Increment only when a sibling is activated “again”
(i.e., activate targets a set SAV bit)

SAFARI https://arxiv.org/pdf/2310.09977.pdf 40

ABACuUS: Operation (I)

Row ID *RAC *SAV ACT RowID RAC SAV
13 27 0001 Row ID: 13 13 27 0011
Bank ID: 1
9 12 0101 9 12 0101
—>
1 14 1000 @uUpdate 14 1000
12 (Spillover Counter) 12 (Spillover Counter)

*RAC: Row Activation Counter, SAV: Sibling Activation Vector

Row D RAC SAV RowID RAC SAV

ACT ACT
Row ID: 13 13 28 0010 Row ID: 20 13 28 0010

Bank ID: 1)
9 12 0101 Bank ID: 2 20 13 0100
_>

—>
Aupdate | 14 1000 @) Replace | 1 14 1000
12 (Spillover Counter) 12 (Spillover Counter)

SAFARI 41

ABACuUS: Operation (II)

RowID RAC SAV RowID RAC SAV

ACT
13 28 0010 Row ID: 7 13 28 0010

20 13 0100 | BanklID:1 20 13 0100

—>
12 (Spillover Counter) Update 13 (Spillover Counter)

SAFARI 42

Area, Energy, and Power

Ngryg =1000
Mitigation Mechanism SRAM CAM Area Access Energy Static Power
KB KB mm? % CPU %DRAM (pJ) (mW)
ABACuS 10.63 8.30 0.04 0.02 - 25.98 12.22
Row ID Table - 5.64 0.01 <0.01 - 12.85 6.61
Row Activation Counter Table - 2.66 0.02 <0.01 - 11.13 4.66
Sibling Activation Vector 10.63 - 0.01 <0.01 - 2.00 0.95
PARA [1] - - - <0.01 - - -
Graphene [102 - 286.51 0.81 0.35 - 873.38 187.98
Hydra [106 61.56 - 0.10 0.04 - 43.07 24.17
REGA | - - - - 2.06 - -
Nprg =125
Mitigation Mechanism SRAM CAM Area Access Energy Static Power
KB KB mm? % CPU % DRAM (pJ) (mW)
ABACuS 85.00 66.41 0.25 0.11 - 36.87 50.54
Row ID Table - 45.16 0.12 0.05 - 20.64 27.56
Row Activation Counter Table - 21.25 0.06 0.03 - 11.66 15.53
Sibling Activation Vector 85.00 - 0.07 0.03 - 4,57 7.44
PARA [1] - - - <0.01 - - -
Graphene [102] - 2037.09 5.68 2.43 - 1042.49 1385.52
Hydra 106 56.5 - 0.07 0.03 - 40.26 23.21
REGA | - - - - 2.06 - -
SAFARI 43

DRAM Address Mapping Function

Rank « @4
Bank Group 0 < @4
Bank Group 1 « (P<
Bank 0 <+ @1
Bank 1 |Co| [2:0]|
Physical f '
Address ...123122121,20119/18)17y...411410;9,8 716 15413121 ,0
Row [Col 9:3]] Cache Block

Figure 7: Simulated address mapping

SAFARI 44

Key Configuration Parameters of

RowHammer Mitigations
Mechanism Configuration Parameter Value
All mechanisms | RowHammer Threshold 1000 500 250 125
Number of table entries 2720 5440 10880 21760
Graphene Threshold for aggressor tracking 500 250 125 63
Reset window 64 ms
Row group size 128 rows
Row count table entry size 2B 1B
Hvdra Row count cache size 4K entires per DRAM rank
Y Group count table threshold 400 200 100 50
Tracking threshold 500 250 125 63
Periodic reset 64 ms
REGA Row cycle time (t rc) 45.0ns | 62.5ns | 97.5ns | 167.5ns
PARA Probability threshold 0.034 0.067 0.129 0.241
SAFARI 45

HIGH RBMPKI

ueapoan
diap™syq_
€00TWd siq
AuTsiqg

2podap $9zY
sdnb

pwrecy
wdqroLy
wqrets
dwsnaz et
PENIUOIOY 1S
aLadswa9’6sy

) |

m

fa— —
M~

—

(LARNRRRANNS

ol Al

1

1
N =

HIGH RBMPKI

[ﬂﬂ

—
<
~N

i

ueapoan
digp siq
£002W2 siq
Au~syq

2podap ¥9zyY
sdnb

Pwrezy
waroLy
wqI'61S
dwsnaz ey
PENIUOIOI 61S
alQ4swe9 65y

O
4

—
—_—
_—
—_—
—
———
—_—
—
—_—
—_—
W_
Ie—————= x3|dos’0S¥ x3|dos oSt
. B reolserLey 1 PERIIS3I LEY
" = ddiauwo0zs n ddiauwoozs
o E——— DJWIEEY o~ =—— o|weey
|| e W% I TE twd
- WW wnjuenbqi'zoy T WWW wnuenbql|'z9t
= | O i JWQoueex'egy = @ E|E dwgouelexegy
S ————— QUAUIRLH TEE L1yddy
N] CE[E sposuszdr
SEE——= eseEly ES E= ‘eseely
EPe—— ddpuwo'i/y B==V= ddiuwo 1/
o Ee—== wavsnoe>oty o WQvsnide2 9ey
Q l—— - o
I £FP8 oM [b8 M
(@) | B pwsos z B)wsos
z| E=== opooep udl = apodap zdf
gxulyds-zgy gxulyds'zgy -
: ZX' [GS .w _H_ ZX[GS o
EE————= pnese sk O Jonise g2k O
© —— e B sk S
= 1BASY sk S S JaAI9537qsd S
2 Y= nMesq gsh = 1 e JanRsq gk
I 1sased QTS I w 15940d°0TS
z 13AI353 qSIA & | JaAI95qs2A
r = J9AIaSp gsdA = ,mMmml J9AIBSp gsdA
0 L= Jwqouelex€zs _H_ £ 5[wapuerexecs
: = youagad oS o EE youaqad-00g
Y & o 9udd «cElE owdr
— u o = E=———= onesbge gsiA o mw WW wwwmmm%mm qsoA
3 3 >0 eos S m“ww NSSan1oes /0s
0 O s 2 2 s
I zdiza'1ov I ¢dizq' 10y
———— 5 z B== >wqobsyy
P n z Jgoeb sy = soewolb’
= soewoIB SEY = SEY
fusls'gsi bualsggy
LL] i BusisdaapTES 1 E= ouelsdsopes
e OQ@ElQWLm = WENCWOW
puet 80S > v97X'GTS
¥9ZX'SZS o ity
Ee——— qeu !
O s s < 12puU|q'9Zs
12pus|q'9z5 Er 2oB20p
16cor i
: = Jawwy oGy
M < $RI19ZU Y9V
LEV—= ProTurY [125D L b
: [a)
v —
D < uemm u vy 2 do1bewrges
— c wummm.E_ 8€s E o931 The
[_;. IS " UM 18Y
% w_ .Hmmv % Aeanod'11G —
d s BINOC'TTS 3p0oouUa $9zy R
[e EP———=— spooua vozy
T T T <L
(| n ™~ © @« © — — — o F
— — o o
ABisu 3zZ1|ewlo
S () Jdl PoZI|eWION 3 Wvdd pazl| N M

Sensitivity to

Number of ABACuUS Counters

10 - Baseline v!eighted spgedup -))) }
B =

¢
¢

o o
ELY (@)

Normalized
Weighted Speedup
o
N

¢

o
o

2720 5440 10880 21760 43520 87040 174080
(Default)

Number of ABACuS Counters at ngy = 125

SAFARI 47

Sensitivity to Number of Banks

[ABACuUS I Graphene B Hydra I REGA (I PARAJ

=
=

Baseline IPC

c o =
® © O

rmalized IPC Distribution

Norm
© o o o o o
N w LN ()] (@) ~

16 32 64
Number of banks

SAFARI 48

Performance Under Adversarial Workloads

[0 ABACuUS [Graphene I Hydra [REGA (— PARAJ

_5 Baseline IPC
D 1.0 - emOem—e———— e — — --q-—-q-—‘—— W I - —
.g ¢ (o]
£038 3 s ’ - _L
a) s
L 0.6 | .
a ¢
$ 0.4
N

©

=0 ;

@]
Z 0.0

RowHammer Attack Hydra-Adversarial ABACuS-Adversarial

&

= C : -Bi
=5 Baseline IPC [ABACuS [ABACUS Bng

GJ 45; 1.0 —w———w——— *——
ELQ o)

M -

chos —]

.2

o O

= RowHammer Attack Hydra-Adversarial ABACuS-Adversarial

SAFARI 49

ing

o
o
o
>3
v
n
v
-
O
C
<
O
)
>~
)

\'4

Sensi

1.050

N ABACuS-4CL EEE ABACuS-8CL I3 ABACUS—64CLI

[ABACuS-2CL

[ABACuUS

1.025

Baseline IPC

A

1.000

0.975
0.950
0.925

Jd| pazjjewloN

0.900

0.875

0.850

ueapoan
digpTsiq
£00ZWd syq
Au~s)q

2podep $9zy
sdnb

Pwrezy
wqroLy
warets
dwsnaz'yey
PEAIUICY 617G
aLa4swe9'65t
x3|dos St
pE3ISa'LEY
ddisuwo gzs
JlWEEY

zZyady
wnyuenbql|'zot
Jwigdueex’ggy
LTYody
apooua zd(
lejseg/dy
ddysuwo 1/
IWAavsnidesx'9cy
odew om
EVrE8 oM
$UWS0S
apodap zdl
exulyds-zgy
ZX[GS

Janiase qsdh
$920dh
FEVNEL e [
Janasq qsdA
1saued Q1S
FETVEERNERTY
J19AI9Sp qsdA
JWQdURRX' €26
youaqiad 00s
9yads
anesbge qsoA
236°Z0%
NSSanioed’/0s
2diza To¥
Jwqob Gyt
soewolb gEy
buals'gsy
bualsdaap 1£s
odew daub
pweurgos
79ZX'GES
qeuyys
19puR|q-97s
206°€0%
Jawwy oGy
J2IF9ZY 9T
11183p" LY
pweu iyt
3o16ewlges
SEETR 7

UM T8Y

Aeanod TTS
apodua $9zy

Workload

50

SAFARI

Limitations of Target Row Refresh

= 70K
<
o) 60K Reverse engineered (in [55]) TRR configuration
o
ﬁ 50K Future configurations with more counters
Q
c 40K
—
5 30K
- Minimum observed
c 20K | RowHammer Threshold
(O
:g .8k IIIIII
S ===

16 32 04 96 128 164
Number of counters

SAFARI 51

Applicability to Other Mitigations

 Many workloads access the same row address
in different banks at around the same time

* This observation can be leveraged by many
other RowHammer mitigations

- Hydra, Graphene (what we showcase),
Per Row Activation Counting (PRAC),
ProTRR, ...

SAFARI 52

Industry Solutions to Read Disturbance:
Per Row Activation Counting (PRAC)

Back-Off Threshold
normal traffic recovery PRAC-N
(180 ns) (N RFMs)

ACT ACT ACT >

DRAM Commands

SAFARI [Canpolat+, DRAMSec 2024]

PRAC is NOT the Silver Bullet

Goal: Rigorously analyze and characterize the security and
performance implications of the DDR5 standard PRAC mechanism

Mathematical analysis & extensive simulations show that PRAC:
« provides security as long as no bitflip occurs below 10 activations
 has non-negligible performance (10%) and energy (18%) overheads

« poorly scales for future DRAM chips, leading to significant
overheads on performance (49%) and energy (136%)

« allows memory performance attacks to hog
significant amount of DRAM throughput (up to 79% throughput loss)

Future work: More research is needed to improve PRAC by

* reducing the overheads due to increased DRAM timing parameters

« solving the exacerbated performance impact as Ny, decreases

« stopping preventive refreshes from being exploited by memory
performance attacks

SAFARI [Canpolat+, DRAMSec 2024] 54

	Slide 1: ABACuS All-Bank Activation Counters for Scalable and Low Overhead RowHammer Mitigation
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: DRAM Organization
	Slide 5: DRAM Read Disturbance
	Slide 6: Read Disturbance Worsens
	Slide 7: Read Disturbance Mitigation Approaches
	Slide 8: Preventive Refresh
	Slide 9: Problem & Goal
	Slide 10: Outline
	Slide 11: Key Observation
	Slide 12: Explanation for the Key Observation
	Slide 13: Sibling Row Activation Count for RowHammer Threshold = 500
	Slide 14: Sibling Row Activation Count for RowHammer Threshold = 125
	Slide 15: Existing Per-Bank Activation Counters Induce High Storage Overhead
	Slide 16: ABACuS: Key Idea
	Slide 17: Maximum Activation Count
	Slide 18: ABACuS Counting Algorithm
	Slide 19: ABACuS: Implementation
	Slide 20: Outline
	Slide 21: Evaluation Methodology
	Slide 22: Single-Core Performance and Energy
	Slide 23: 8-Core Performance Comparison
	Slide 24: 8-Core Performance Comparison
	Slide 25: 8-Core DRAM Energy Comparison
	Slide 26: Area Overhead
	Slide 27: More in the Paper
	Slide 28: The Paper
	Slide 29: Outline
	Slide 30: ABACuS Summary
	Slide 31: Extended Version on arXiv
	Slide 32: ABACuS is Open Source and Artifact Evaluated
	Slide 33: ABACuS All-Bank Activation Counters for Scalable and Low Overhead RowHammer Mitigation
	Slide 34
	Slide 35: ABACuS Summary
	Slide 36: DRAM Organization
	Slide 37: Preventive-Refresh-Based Mitigations
	Slide 38: Number of sibling rows activated before one sibling row is activated again
	Slide 39: ABACuS: Key Components
	Slide 40: ABACuS: Operation
	Slide 41: ABACuS: Operation (I)
	Slide 42: ABACuS: Operation (II)
	Slide 43: Area, Energy, and Power
	Slide 44: DRAM Address Mapping Function
	Slide 45: Key Configuration Parameters of RowHammer Mitigations
	Slide 46: Single Core Performance and DRAM Energy
	Slide 47: Sensitivity to Number of ABACuS Counters
	Slide 48: Sensitivity to Number of Banks
	Slide 49: Performance Under Adversarial Workloads
	Slide 50: Sensitivity to Address Mapping
	Slide 51: Limitations of Target Row Refresh
	Slide 52: Applicability to Other Mitigations
	Slide 53: Industry Solutions to Read Disturbance: Per Row Activation Counting (PRAC)
	Slide 54: PRAC is NOT the Silver Bullet

