
SDFuzz: Target States Driven 
Directed Fuzzing

Penghui Li1,2, Wei Meng1, Chao Zhang2,3

1 The Chinese University of Hong Kong 

2 Zhongguancun Laboratory   3 Tsinghua University



• Directed grey-box fuzzing (DGF) tests towards highly valuable locations 

• PoC generation

• Vulnerability validation

• Recent works prunes irrelevant code paths

Directed Fuzzing

2

main

option1 option2

target

L6L4

L19

L20

L2

L22

L7

Static analysis of ICFG can hardly decide which 

relevant code path is better



• Major tasks of DGF provide detailed descriptions of the target vulnerabilities

Target States

3

Crash dump

Taint flow

main

option1 option2

target

L6L4

L19

L20

L2

L22

L7



• Major tasks of DGF provide detailed descriptions of the target vulnerabilities

Target States

4

Crash dump

Taint flow

[ 𝐹𝑢𝑛𝑐1, 𝐶𝑡𝑥1 , 𝐹𝑢𝑛𝑐2, 𝐶𝑡𝑥2 ,… , (𝐹𝑢𝑛𝑐𝑛, 𝐶𝑡𝑥𝑛)]

Formalize a target state as a sequence of 
ordered function calls and their 

invocation contexts



• Reduced testing scope

• Test only required code specified in target states

• Improved throughput

• Early terminate executions that cannot reach target states

SDFuzz in a Nutshell

5



• Identify code required to reach target states

• A subset of the code for reaching target sites

• Functions specified in target states and their

dependent functions

• Coverage feedback from only required code

• Selective instrumentation

• Other code is hidden from the fuzzer

Required Code Identification

6



• Early aborts the executions that cannot reach the target states

• Runtime program state monitoring

• Check the deviation of current program state against target state

Early Execution Termination

7

PS1: deviation (input, L2) could be recovered into (option1, L4) because there is a path from L2 to L4

PS3: deviation (clean, L7) could not be recovered because there is no path from L7 to L4

PS2: no deviation



• Target state feedback

• Calculate how close current program state is to target states

• Improved distance feedback

• Prior solutions consider every edge in CG equally

• Design a precise edge weight

Feedback Mechanisms

8



• What is the capability of SDFuzz in exposing vulnerabilities?

• How do the techniques contribute to SDFuzz’s performance?

• How effective is SDFuzz in discovering new vulnerabilities?

Evaluation

9



• 45 vulnerabilities selected from Google Fuzzer Test Suite, AFLGo, etc.

• AFLGo/WindRanger/Beacon/SieveFuzz/SDFuzz exposed 36/37/34/40/44 cases

• SDFuzz used shortest time in 77.8% of cases

Vulnerability Exposure

10



• SDFuzz eliminated 43.29% more unrequired code than SieveFuzz

• SDFuzz improved fuzzing throughput by 9.32 times compared to AFLGo

Characterization

11



• AFLGo+et early terminated 56.23% of the executions

• AFLGo+df achieved less significant improvement than AFLGo+sf

Component-Wise Analysis

12

Each enables a feature atop AFLGo

• AFLGo+si for selective instrumentation

• AFLGo+et for execution termination

• AFLGo+sf for target state feedback

• AFLGo+df for distance feedback

Vulnerability exposure time against AFLGo



• Integrate SDFuzz with saber checker of SVF into a fully automated solution

• Static analysis had many false positives

• Vulnerability-triggering paths are exact paths reported by SVF for those 

validated vulnerabilities 

New Vulnerability Discovery

13



• Requirement of target states

• They might not be available in some scenarios like patch testing

• Overlook other valuable paths not included in target states

• Reasonable trade-off

• Infeasible ones dominate program paths 

• Paths stated in target states are preferred working ones

Discussion

14



• Target states extracted from DGF tasks are helpful

• Eliminating unnecessary exploration greatly improve fuzzing throughput

• SDFuzz could effectively expose vulnerabilities and validate static analysis alerts

Summary

15



Thank You!

Feel free to contact me for follow-up discussions:

 lipenghui315@gmail.com


	幻灯片 1: SDFuzz: Target States Driven Directed Fuzzing
	幻灯片 2: Directed Fuzzing
	幻灯片 3: Target States
	幻灯片 4: Target States
	幻灯片 5: SDFuzz in a Nutshell
	幻灯片 6: Required Code Identification
	幻灯片 7: Early Execution Termination
	幻灯片 8: Feedback Mechanisms
	幻灯片 9: Evaluation
	幻灯片 10: Vulnerability Exposure
	幻灯片 11: Characterization
	幻灯片 12: Component-Wise Analysis
	幻灯片 13: New Vulnerability Discovery
	幻灯片 14: Discussion
	幻灯片 15: Summary
	幻灯片 16: Thank You!

