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• Directed grey-box fuzzing (DGF) tests towards highly valuable locations 

• PoC generation

• Vulnerability validation

• Recent works prunes irrelevant code paths

Directed Fuzzing
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Static analysis of ICFG can hardly decide which 

relevant code path is better



• Major tasks of DGF provide detailed descriptions of the target vulnerabilities

Target States
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• Major tasks of DGF provide detailed descriptions of the target vulnerabilities

Target States
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Crash dump

Taint flow

[ 𝐹𝑢𝑛𝑐1, 𝐶𝑡𝑥1 , 𝐹𝑢𝑛𝑐2, 𝐶𝑡𝑥2 ,… , (𝐹𝑢𝑛𝑐𝑛, 𝐶𝑡𝑥𝑛)]

Formalize a target state as a sequence of 
ordered function calls and their 

invocation contexts



• Reduced testing scope

• Test only required code specified in target states

• Improved throughput

• Early terminate executions that cannot reach target states

SDFuzz in a Nutshell
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• Identify code required to reach target states

• A subset of the code for reaching target sites

• Functions specified in target states and their

dependent functions

• Coverage feedback from only required code

• Selective instrumentation

• Other code is hidden from the fuzzer

Required Code Identification
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• Early aborts the executions that cannot reach the target states

• Runtime program state monitoring

• Check the deviation of current program state against target state

Early Execution Termination
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PS1: deviation (input, L2) could be recovered into (option1, L4) because there is a path from L2 to L4

PS3: deviation (clean, L7) could not be recovered because there is no path from L7 to L4

PS2: no deviation



• Target state feedback

• Calculate how close current program state is to target states

• Improved distance feedback

• Prior solutions consider every edge in CG equally

• Design a precise edge weight

Feedback Mechanisms
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• What is the capability of SDFuzz in exposing vulnerabilities?

• How do the techniques contribute to SDFuzz’s performance?

• How effective is SDFuzz in discovering new vulnerabilities?

Evaluation
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• 45 vulnerabilities selected from Google Fuzzer Test Suite, AFLGo, etc.

• AFLGo/WindRanger/Beacon/SieveFuzz/SDFuzz exposed 36/37/34/40/44 cases

• SDFuzz used shortest time in 77.8% of cases

Vulnerability Exposure
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• SDFuzz eliminated 43.29% more unrequired code than SieveFuzz

• SDFuzz improved fuzzing throughput by 9.32 times compared to AFLGo

Characterization
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• AFLGo+et early terminated 56.23% of the executions

• AFLGo+df achieved less significant improvement than AFLGo+sf

Component-Wise Analysis
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Each enables a feature atop AFLGo

• AFLGo+si for selective instrumentation

• AFLGo+et for execution termination

• AFLGo+sf for target state feedback

• AFLGo+df for distance feedback

Vulnerability exposure time against AFLGo



• Integrate SDFuzz with saber checker of SVF into a fully automated solution

• Static analysis had many false positives

• Vulnerability-triggering paths are exact paths reported by SVF for those 

validated vulnerabilities 

New Vulnerability Discovery
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• Requirement of target states

• They might not be available in some scenarios like patch testing

• Overlook other valuable paths not included in target states

• Reasonable trade-off

• Infeasible ones dominate program paths 

• Paths stated in target states are preferred working ones

Discussion
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• Target states extracted from DGF tasks are helpful

• Eliminating unnecessary exploration greatly improve fuzzing throughput

• SDFuzz could effectively expose vulnerabilities and validate static analysis alerts

Summary
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Thank You!

Feel free to contact me for follow-up discussions:

 lipenghui315@gmail.com
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