Less is More: Revisiting the Gaussian Mechanism for Differential Privacy

Tianxi Ji[†] and Pan Li*

[†]Texas Tech University *Case Western Reserve University

33rd USENIX Security Symposium Philadelphia, PA, USA August 14-16, 2024

- Geometric representation of the privacy loss in DP
- Approaches to design new DP mechanisms by leveraging measure concentration of random triangles

- Background
- The curse of full-rank covariance matrices
- A new mechanism (R1SMG)
- Open problems

 (ϵ, δ) -DP is recognized as the fundamental building block for privacy-preserving database query, data mining, learning...

Definition

A randomized mechanism \mathcal{M} satisfies (ϵ, δ) -DP if for any two neighboring datasets, \mathbf{x}, \mathbf{x}' , and any outcome $\mathbf{s} \in S \subseteq \text{Range}(\mathcal{M})$,

 $\Pr[\text{PLRV} \geq \epsilon] \leq \delta$

holds, where $PLRV = ln\left(\frac{\Pr[\mathcal{M}(\boldsymbol{x})=s]}{\Pr[\mathcal{M}(\boldsymbol{x}')=s]}\right)$, $\epsilon > 0$ and $0 < \delta \ll 1$.

The Gaussian mechanism is an essential tool to achieve (ϵ, δ) -DP for a given computation $f(\mathbf{x}) \in \mathbb{R}^{M \times N}$, $M \ge 1, N \ge 1$.

Variants of the mechanism:

- The classic Gaussian mechanism adds $\mathcal{N}(\mathbf{0}, \sigma_C^2)$ to $f(\mathbf{x})$ [Dwork et al., EUROCRYPT 2006]
- The analytic Gaussian mechanism adds $\mathcal{N}(\mathbf{0}, \sigma_A^2)$ to $f(\mathbf{x})$ [Balle and Wang, ICML 2018]
- The MVG mechanism adds $\mathcal{N}_{M,N}(\mathbf{0}, \Sigma, \Psi)$ to $f(\mathbf{x})$ [Chanyaswa et al., CCS 2018]

 $\sigma_{C}^{2}, \sigma_{A'}^{2} \Sigma$, and Ψ are all calibrated by ϵ, δ , and sensitivity $\Delta_{2} f = \max_{\mathbf{x} \sim \mathbf{x}'} ||f(\mathbf{x}) - f(\mathbf{x}')||_{2}$

5/19

- E - F

Background

The curse of full-rank covariance matrices

- A new mechanism (R1SMG)
- Open problems

-

э

< □ > < A >

The curse of full-rank noise covariance matrices

Define accuracy loss for mechanism $\ensuremath{\mathcal{M}}$

$$\mathcal{L} = ||\mathcal{M}(f(\boldsymbol{x})) - f(\boldsymbol{x})||_2^2 = ||\boldsymbol{n}||_2^2.$$

When \mathcal{M} is the classic Gaussian mechanism (or its variants)

 $\mathbb{E}[\mathcal{L}] = Tr[Cov(\mathbf{n})].$

Theorem

$$f(\mathbf{x}) \in \mathbb{R}^{M}, \mathbb{E}_{classic}[\mathcal{L}] = Tr[\sigma^{2}\mathbf{I}_{M \times M}] \geq C_{C}(\Delta_{2}f)^{2}, C_{C} = \frac{2\ln(\frac{1.25}{\epsilon^{2}})}{\epsilon^{2}}M$$

$$f(\mathbf{x}) \in \mathbb{R}^{M}, \mathbb{E}_{analytic}[\mathcal{L}] = Tr[\sigma^{2}_{A}\mathbf{I}_{M \times M}] \geq C_{A}(\Delta_{2}f)^{2}, C_{A} = \frac{(\Phi^{-1}(\delta))^{2} + \epsilon}{\epsilon^{2}}M$$

$$f(\mathbf{x}) \in \mathbb{R}^{M \times N}, \mathbb{E}_{MVG}[\mathcal{L}] = Tr[\Sigma \otimes \Psi] \geq C_{M}(\Delta_{2}f)^{2}, C_{M} = \frac{(\frac{5}{4}H_{r} + \frac{1}{4}H_{r,\frac{1}{2}})}{2\epsilon}MN$$

Curse: $\mathbb{E}[\mathcal{L}]$ is on the order of the dimension of $f(\mathbf{x})$

"The algorithmic foundations of differential privacy" by Dwork and Roth (p. 261-265)

- $f(\cdot)$ is a query function, i.e., $f: \mathbf{X} \in \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{M}$
- Interested in $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ that can obscure $\mathbf{v} \triangleq f(\mathbf{x}) f(\mathbf{x}')$
- $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ is spherically symmetric; represent the noise **n** using any fixed orthonormal basis $\boldsymbol{b}_1, \boldsymbol{b}_2, \cdots, \boldsymbol{b}_m$, i.e, $\mathbf{n} = \sum_{i=1}^M \lambda_i \boldsymbol{b}_i$, $\lambda_i \sim \mathcal{N}(\mathbf{0}, \sigma^2), i \in [1, M]$
- WLOG, assume **b**₁ is parallel to **v**. Consequently,

$$\operatorname{PLRV}_{(\mathcal{G}(\boldsymbol{x})||\mathcal{G}(\boldsymbol{x}'))}^{(\mathbf{s})} = \left| \frac{1}{2\sigma^2} \left(||\boldsymbol{n}||^2 - ||\boldsymbol{n} + \boldsymbol{v}||^2 \right) \right| \ldots \leq \frac{1}{2\sigma^2} \left((\Delta_2 f)^2 + 2\lambda_1 \Delta_2 f \right)$$

A hidden Clue: PLRV is only related to λ_1 and $\Delta_2 f$

- Background
- The curse of full-rank covariance matrices
- A new mechanism (R1SMG)
- Open problems

э

Image: Image:

The R1SMG mechanism—Design

Recall the clue: multivariate Gaussian noise whose covariance matrix has rank-1 is sufficient to achieve (ϵ, δ) -DP

The R1SMG Mechanism

For an arbitrary *M*-dimensional query function, $f(\mathbf{x}) \in \mathbb{R}^{M}$, the R1SMG mechanism is defined as

 $\mathcal{M}_{R1SMG}(f(\boldsymbol{x})) = f(\boldsymbol{x}) + \mathbf{n}$ $\mathbf{n} = \mathbf{v}\sqrt{\sigma_*}z, \text{ where } z \sim \mathcal{N}(0, 1), \quad \mathbf{v} \sim \mathbb{S}^{M-1}$

v uniformly sampled from the unite sphere \mathbb{S}^{M-1} embedded in \mathbb{R}^M .

v is random

Make PLRV well-defined.

Prevent privacy leakage of utilizing vector in the null space of $\boldsymbol{v}.$

Tianxi Ji, Pan Li

The R1SMG mechanism—Privacy Guarantee

Theorem

The R1SMG mechanism achieves (ϵ, δ) -DP when M > 2, if $\sigma_* \geq \frac{2(\Delta_2 f)^2}{\epsilon \psi}$ where $\psi = \left(\frac{\delta \Gamma(\frac{M-1}{2})}{\sqrt{\pi} \Gamma(\frac{M}{2})}\right)^{\frac{2}{M-2}}$, and $\Gamma(\cdot)$ is the Gamma function.

Proof sketch: use (i) measure concentration of the random angle formed by random noise vectors \mathbf{n} and \mathbf{n}' and (ii) law of sine

Less is More

Measure concentration: $\Pr\left[\left|\theta - \frac{\pi}{2}\right| \geq \theta_0\right] \leq \cdots = \delta$

 θ converges to $\frac{\pi}{2}$ when dimension approaches infinity

Theorem (Less is more. Hide in the crowd.)

For any fixed feasible $\epsilon > 0, 0 < \delta < 1$, given a query result $f(\mathbf{x}) \in \mathbb{R}^M$, $\mathbb{E}_{R1SMG}[\mathcal{L}]$ has a decreasing trend as M increases. When M approaches infinity, $\mathbb{E}_{R1SMG}[\mathcal{L}]$ can be as low as $\frac{2(\Delta t)^2}{\epsilon}$.

- - E - F

Accuracy loss for a mechanism: $\mathcal{L} = ||\mathcal{M}(f(\mathbf{x})) - f(\mathbf{x})||_2^2 = ||\mathbf{n}||_2^2$.

 \mathcal{L} with both larger kurtosis and skewness is preferred

- Kurtosis, a descriptor of "tail extremity" of a probability distribution, defined as $\frac{\mathbb{E}[\mathcal{L}^4]}{(\mathbb{E}[\mathcal{L}^2])^2}$. A larger kurtosis means that extreme large values are less likely to be generated
- Skewness, a descriptor of the "bulk" of a probability distribution, defined as $\frac{\mathbb{E}[\mathcal{L}^3]}{(\mathbb{E}[\mathcal{L}^2])^{3/2}}$. A larger skewness means that the bulk of the samples is at the left region of the PDF

Theorem

The kurtosis and skewness of \mathcal{L} in R1SMG is the largest.

The R1SMG mechanism—Caveat

Recall: the classic Gaussian mechanism requires $\epsilon < 1$ to obscure an arbitrary $\mathbf{v} = f(\mathbf{x}) - f(\mathbf{x}')$ Geometric interpretation:

- if *ε* < 1, the noise components along the direction of *v* are also sufficient to obscure the difference, i.e., λ₁*b*₁ (*b*₁^T*n*')*b*₁ = *v*
- if ϵ exceeds the upper bound, the magnitude of **n** and **n**' might be too small to obscure **v**, since $||\mathbf{n}||$, $||\mathbf{n}'|| \propto \frac{1}{\epsilon}$

Rule of thumb: $\epsilon < \frac{1}{M} \epsilon_{classic}$ (the exact bound is on our to-do list)

Tianxi Ji, Pan Li

The R1SMG mechanism—Case study

Release the counts of Uber pickups in NYC from "4/1/2014 00:11:00" to "4/3/2014 23:57:00" in a DP manner. $f(\mathbf{x}) \in \mathbb{R}^{89 \times 89}$

Figure: Non-private counts and differentially private 2D counts.

	4	미 › 《 @ › 《 홈 › 《 홈 ›	E
Tianxi Ji, Pan Li	Less is More	August 14-16, 2024	15/19

The R1SMG mechanism—Case study

Validation on stability of various $\mathcal L$

Figure: Accuracy loss introduced by different mechanisms when $\delta = 10^{-7}$, $\epsilon = 10^{-5}$ for the R1SMG mechanism and $\epsilon = 0.5$ for the other mechanisms.

Tianxi Ji, Pan Li

э

- Background
- The curse of full-rank covariance matrices
- A new mechanism (R1SMG)
- Open problems

э

Image: Image:

- An exact privacy regime
- The impact of the degree of freedom in the noise magnitude on utility, privacy, and stability
- $\frac{1}{sin^2(\theta)}$ ~ BetaPrime. Measure concentration on BetaPrime r.v. can be leveraged to analyze cumulative privacy loss

Conclusions

- Identify the curse (bottleneck) of utility improvement in existing Gaussian mechanisms
- Propose a new DP mechanism that lifts the curse of full-rank noise covariance matrix
- Leverage measure concentration of random geometric object to bound privacy loss, achieve high utility and stability

Contact : Tianxi Ji tiji@ttu.edu Pan Li lipan@case.edu

Less is More