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Neural Language Models memorize some training data

Extracting Training Data from Large Language Models
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Abstract

It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

‘We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

‘We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
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Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
75]—when a model’s training error is significantly lower

[1] Nicholas Carlini, Florian Tramer, et al. Extracting Training Data From Large Language Models. Usenix Security. 2021.
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trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
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ABSTRACT

Large language models (LMs) have been shown to memorize parts of their training
data, and when prompted appropriately, they will emit the memorized training data
verbatim. This is undesirable because memorization violates privacy (exposing
user data), degrades utility (repeated easy-to-memorize text is often low quality),
and hurts fairness (some texts are memorized over others).

We describe three log-linear relationships that quantify the degree to which LMs
emit memorized training data. Memorization significantly grows as we increase (1)
the capacity of a model, (2) the number of times an example has been duplicated,
and (3) the number of tokens of context used to prompt the model. Surprisingly,
we find the situation becomes more complicated when generalizing these results
across model families. On the whole, we find that memorization in LMs is more
prevalent than previously believed and will likely get worse as models continues to
scale, at least without active mitigations.

[1] Nicholas Carlini, Florian Tramer, et al. Extracting Training Data From Large Language Models. Usenix Security. 2021.
[2] Nicholas Carlini, Daphne Ippolito, et al. Quantifying Memorization Across Neural Language Models. ICLR. 2023.

> 1% of training data
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Are document models prone to privacy attacks ?

1. No privacy attacks against document models were documented in the literature
2. Document models are multimodal. Does it increase / decrease robustness ?

3. It’s harder to do reconstruction attacks on encoder-only models

Document Understanding ‘ Encoder-ont ‘ i 0 0
Models y W

Training
data

Modern Large Language ‘ _ é
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Are document models prone to privacy attacks ?

Short answer: YES
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Auxiliary MLM
(Trained on public data)
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How do we reconstruct training data ?
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How do we reconstruct training data ?
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In practice, it required many heuristics
to work on real data...
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Did it work in practice ?
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Did it work in practice ?
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Ablation #1 : Does memorization require overfitting ?
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No, it does not.

» Memorization starts well
before overfitting

» Overfitting increases
memorization

» Consistent with other
works such as [3]

[3] Chiyuan Zhang, Samy Bengio, et al.
Understanding deep learning requires
rethinking generalization. ICLR. 2017.



Ablation #2 : Does the visual modality memorize data ?

Document model

~ BERT + 2D position encoding + visual features
(text) (layout) (image)
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Ablation #3 : Does the layout memorize data ?

Document model

~ BERT + 2D position encoding
(text) (layout)




Ablation #3 : Does the layout memorize data ?
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Ablation #3 : Does the layout memorize data ?
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Conclusions

1. Document understanding models memorize training data

2. Reconstruction attacks are realistic, even without
overfitting / duplication

3. Document models are more vulnerable than pure-text
models for the same task



Future research directions

Improvements :

Implement the same attack strategy with pre-training rather than fine-tuning

On a broader scale :

Deepen our understanding of the nature of memorization and why it happens

10



Questions ?
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