

Efficient Privacy Auditing in Federated Learning

Hongyan Chang, Brandon Edwards, Anindya S. Paul, Reza Shokri

Information Leakage in FL

Information Leakage in FL

Measuring Information Leakage

- Approach: membership inference attacks (MIA)
- Goal: Infer whether a data point is in the training dataset

Information Leakage in FL

The adversary observes **multiple model snapshots** the **whole training dynamic**

Existing Solutions

- MIA in Federated Learning: leverage all snapshots
- *Train* inference models on
 - Computationally expensive signals (e.g., per-sample gradient)
 - Concatenation on all model snapshots

Existing Solutions

- MIA in Federated Learning: leverage all snapshots
- *Train* inference models on
 - Computationally expensive signals (e.g., per-sample gradient)
 - Concatenation on all model snapshots
- Efficiency
 - Computing signal alone
 - ~380 times long than local training
 - 3 GPU hours -> 46 GPU days!
 - Not feasible for parties with limited resources

Existing Solutions

- MIA in Centralized Learning: leverage one snapshot
- Train a set of reference models
 - Simulate the model behavior: trained with/without the target point
- Efficiency:
 - Need to train lots of reference models (>16 models)
- Effectiveness:
 - Ignore multiple model snapshots

How can parties effectively audit privacy risks without training additional models?

At a single round

At any single round

Members' confidence

Non-members' confidence

Our solution: whole training dynamic

Members' confidence grows *faster*

Non-members' confidence grow slower

- **Slope:** rate of change in model performance
- **Computation**: fit a linear function

•
$$\hat{c}_t = bt + a$$

Slope

Efficiency

- Computed on the confidence, loss, and logits of the model. • Already computed in FL (no addition cost)
- Slope signal is a weighted sum
 - Also fast
- Real-time auditing

Algorithm

- Compare the computed slope with threshold τ

Metric

• Effectiveness metric: TPR at low FPR

Auditing Pipeline

For each communication round:

- Update the global model using the local dataset to get the local model
- 2. Evaluate the privacy risk
- 3. Send local model to server

Auditing Results for a Party

Impact of communication rounds

Model: ResNet56 Data: CIFAR10 Number of Party: 4 Auditing global model

Privacy risk keeps increasing even though the accuracy barely changes

Impact of communication rounds

Model: ResNet56 Data: CIFAR10 Number of Party: 4 Auditing global model

Privacy risk keeps increasing even though the accuracy barely changes

Impact of data heterogeneity

- Parties are experiencing different levels of risk, especially in the Non-IID setting.
- Average privacy risk **reduces** when **increasing** data heterogeneity.

Takeaway

- Privacy auditing framework
 - Slope: leverage whole training dynamic
- Effective and efficient
- Comprehensive evaluation
 - Check for more details