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Measuring Information Leakage 

• Approach:  membership inference attacks (MIA)
• Goal: Infer whether a data point is in the training dataset
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Information Leakage in FL

The adversary observes 
multiple model snapshots—
the whole training dynamic
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Existing Solutions

•MIA in Federated Learning: leverage all snapshots
• Train inference models on
• Computationally expensive signals (e.g., per-sample gradient)
• Concatenation on all model snapshots 
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centralized and federated learning." SP, 2019



Existing Solutions

•MIA in Federated Learning: leverage all snapshots
• Train inference models on
• Computationally expensive signals (e.g., per-sample gradient)
• Concatenation on all model snapshots 

• Efficiency 
• Computing signal alone

• ~380 times long than local training
• 3 GPU hours -> 46 GPU days!

• Not feasible for parties with limited resources
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Existing Solutions

•MIA in Centralized Learning: leverage one snapshot
• Train a set of reference models
• Simulate the model behavior: trained with/without the target 

point
• Efficiency:
• Need to train lots of reference models (>16 models)

• Effectiveness: 
• Ignore multiple model snapshots
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How can parties effectively audit privacy 
risks without training additional models?
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Histogram at Round 60

At a single round

Non-members' confidence
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At any single round
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Our solution: whole training dynamic

Non-members' confidence grow slower

Members' confidence grows faster
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• Slope: rate of change in model 
performance 
• Computation: fit a linear function

• �̂�! = 𝑏𝑡 + 𝑎
Slope



Efficiency

• Computed on the confidence, loss, and logits of the model.
oAlready computed in FL (no addition cost)

• Slope signal is a weighted sum 
• Also fast

• Real-time auditing
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Algorithm

Predict as 
Non-Members Predict as Members𝜏

Non-members Members

• Compare the computed slope with threshold 𝜏  
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Metric

𝜏Predict as 
Non-Members Predict as Members
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1. Fix the FPR (e.g., 1%) we are interested in
2. Iterate through 𝜏 and pick the best one

• Effectiveness metric: TPR at low FPR
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For each communication round:
1. Update the global model using the 

local dataset to get the local 
model

2. Evaluate the privacy risk
3. Send local model to server
 

 

Auditing Pipeline
Auditing Results for a Party
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Effectiveness VS Efficiency

Effectiveness: 
TPR at low FPR (1%) 

Efficiency: 
GPU time (second) for computing the signals for one round 

Ours:
(1.2 seconds, 12.9%TPR)

second
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Model: ResNet56
Data: CIFAR10

Number of Party: 4
Auditing global model
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Effectiveness VS Efficiency

Effectiveness: 
TPR at low FPR (1%) 

Efficiency: 
GPU time (second) for computing the signals for one round 

Ours:
(1.2 seconds, 12.9%TPR)

MIA Centralized Setting (Lira, SP2022):
(73 seconds, 8.3%TPR)

MIA Online Learning (Back-Front, PETS 2023):
(1.2 seconds, 1.2%TPR)

MIA  FL (Gradient-Cosine/Diff, 
ICLR2023):
(860 seconds, 2.8%TPR)

MIA FL (Fed-Loss, 
ICLR2023):
(1.2 seconds, 0.9%TPR) second
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Local update: 
2.3 seconds

Model: ResNet56
Data: CIFAR10

Number of Party: 4
Auditing global model
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Impact of communication rounds

• Privacy risk keeps increasing even though the accuracy barely 
changes
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Efficient Baselines

Model: ResNet56
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Impact of data heterogeneity
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Heterogeneity level

LowerHigher

• Parties are experiencing 
different levels of risk, 
especially in the Non-IID 
setting.
• Average privacy risk reduces 

when increasing data 
heterogeneity.
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Takeaway

• Privacy auditing framework
• Slope: leverage whole training dynamic

• Effective and efficient 
•Comprehensive evaluation
• Check for more details
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