
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

DarkFleece: Probing the Dark Side of
Android Subscription Apps

Chang Yue, Institute of Information Engineering, Chinese Academy of Sciences,
China; School of Cyber Security, University of Chinese Academy of Sciences, China;
Chen Zhong, University of Tampa, USA; Kai Chen and Zhiyu Zhang, Institute of

Information Engineering, Chinese Academy of Sciences, China; School of
Cyber Security, University of Chinese Academy of Sciences, China;

Yeonjoon Lee, Hanyang University, Ansan, Republic of Korea
https://www.usenix.org/conference/usenixsecurity24/presentation/yue

DARKFLEECE: Probing the Dark Side of Android Subscription Apps

Chang Yue1,2, Chen Zhong3, Kai Chen1,2*, Zhiyu Zhang1,2, and Yeonjoon Lee4*

1Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3University of Tampa, USA
4Hanyang University, Ansan, Republic of Korea

{yuechang, chenkai, zhangzhiyu1999}@iie.ac.cn, czhong@ut.edu, yeonjoonlee@hanyang.ac.kr

Abstract
Fleeceware, a novel category of malicious subscription apps,
is increasingly tricking users into expensive subscriptions,
leading to substantial financial consequences. These apps’
ambiguous nature, closely resembling legitimate subscrip-
tion apps, complicates their detection in app markets. To
address this, our study aims to devise an automated method,
named DARKFLEECE, to identify fleeceware through their
prevalent use of dark patterns. By recruiting domain ex-
perts, we curated the first-ever fleeceware feature library,
based on dark patterns extracted from user interfaces (UI).
A unique extraction method, which integrates UI elements,
layout, and multifaceted extraction rules, has been devel-
oped. DARKFLEECE boasts a detection accuracy of 93.43%
on our dataset and utilizes Explainable Artificial Intelligence
(XAI) to present user-friendly alerts about potential fleece-
ware risks. When deployed to assess Google Play’s app land-
scape, DARKFLEECE examined 13,597 apps and identified
an alarming 75.21% of 589 subscription apps that displayed
different levels of fleeceware, totaling around 5 billion down-
loads. Our results are consistent with user reviews on Google
Play. Our detailed exploration into the implications of our
results for ethical app developers, app users, and app market
regulators provides crucial insights for different stakeholders.
This underscores the need for proactive measures against the
rise of fleeceware.

1 Introduction

The integration of subscription models into mobile apps has
witnessed significant growth in recent years. Subscription
revenue has grown from around $1.5 billion in 2015 to $17.1
billion in 2022 [12]. However, the popularity of subscrip-
tions has led to an increase in their abuse. Deceptive mo-
bile apps, referred to as fleeceware [52], have been a per-
vasive issue in the mobile app market. These apps incorpo-
rate dark design patterns, such as unclear terms, to deceive

*The corresponding authors.

users into subscribing to overly expensive services. Users
may subscribe to apps without their consent, fail to realize
they will be charged after a free trial, or struggle to cancel
a subscription. Recent reports have highlighted subscription
scams [14, 30, 47, 50, 58]. According to Avast, 69 fleece-
ware apps generated $38.5 million in revenue in 2019 [4].

Given its widespread prevalence, automated detection of
fleeceware is imperative to minimize its harmful effects.
However, these apps typically do not contain malicious code
and exhibit coding patterns that closely resemble legitimate
apps, making it difficult to detect them using traditional
methods such as malicious code detection. Presently, app
markets largely lean on monetization requirements as a reg-
ulatory tool to combat fleeceware [28]. However, due to the
absence of automated detection methods, the process is man-
ual, which is neither timely nor scalable. This work is ded-
icated to investigating fleeceware at scale through the devel-
opment of an automatic fleeceware detection system.

Current observations reveal that fleeceware often employs
dark patterns [10, 50], which are deceptive interface designs
intended to manipulate users into paying subscription fees
beyond their initial intention. Therefore, we mainly focus on
identifying these dark patterns in UIs for fleeceware detec-
tion. An app with dark pattern features doesn’t automatically
qualify as fleeceware, so we utilize a model that combines
these features for detection. Our results are presented in a
user-friendly manner, making it easy for users to understand.

To effectively pinpoint fleeceware, we developed DARK-
FLEECE, a Dark Pattern-based Fleeceware Detector, which
meticulously scrutinizes the UI design of subscription-based
apps to uncover any embedded dark patterns. To realize
DARKFLEECE, we mainly addressed two challenges.
C1: Constructing a Fleeceware Feature Library. Imple-
menting an automatic fleeceware detection system requires
recognizing the distinct features of fleeceware. There is a
lack of research on identifying detectable features that can
accurately describe fleeceware, and the availability of a well-
labeled dataset for fleeceware is limited. Despite extensive
research on dark patterns, the automated detection of fleece-

USENIX Association 33rd USENIX Security Symposium 1543

ware remains elusive due to the complexities and variabilities
intrinsic to fleeceware patterns. Drawing a clear line between
fleeceware and legitimate apps is far from straightforward.

To address C1, we created a feature collection for fleece-
ware detection. This endeavor required us to draw heavily
from the extensive knowledge presented in dark pattern lit-
erature, predominantly in the domains of human-computer
interaction (HCI) and user experience (UX) design, as well
as platform-specific requirements. We invited ten experts in
Android and front-end development. They analyzed 1,486
user comments on fleeceware, identified seven common com-
plaints, and executed 79 fleeceware samples, uncovering var-
ious phenomena in subscription UI. Finally, we extracted en-
tities and attributes from the phenomena and identified 19 UI
features for fleeceware detection.
C2: Extracting Features in the form of Natural Lan-
guage. The most intricate aspect of the detection is extract-
ing the values of the identified features from an app’s UI.
Most of our features are based on the information in the form
of natural language, i.e., text describing a type of subscrip-
tion information. However, the subscription information in a
UI is usually fragmented and expressed in multiple formats
due to the vast variability inherent in UI design, encompass-
ing aspects like layouts, nested elements, and non-textual
components. The extraction process requires a deep under-
standing of the relationship between the UI elements and the
overall layout, as well as the capability to handle subscrip-
tion information displayed in diverse formats.

To address C2, we developed a method that factors in both
the UI elements and their layout information, incorporating
multiple extraction rules. This method allows us to derive
necessary information from the UI. Specifically, we devel-
oped a novel layout-based approach to link related subscrip-
tion information by identifying neighboring widgets, which
are descendant widgets of a parent widget like “ViewGroup”
or “RelativeLayout” in the layout file. Additionally, we
adopted a multi-rule-based approach to extract target infor-
mation, avoiding potential semantic misunderstandings as-
sociated with machine learning. This approach is inspired
by our analysis of 145 subscription UIs, where we observed
developers consistently using specific keywords or symbols
to describe subscription information, with numerical values
consistently positioned within the information. We then con-
structed a collection of regular expressions to extract sub-
scription details in various forms. This combined approach
accurately extracts the target information for each UI feature.

With C1 and C2 addressed, we built a decision tree model
for fleeceware detection. We chose this model because of its
ability to incorporate our domain knowledge during feature
engineering and its inherent model interpretability. To make
it more intuitive for ordinary users to identify which inter-
face features may present potential fleeceware risks, we em-
ployed SHAP, an Explainable Artificial Intelligence (XAI)
technique, to provide and visualize the explanations.

Fleeceware Measurement. Owing to our automated detec-
tion capabilities, we are able to quantify the presence of
fleeceware in the wild. We downloaded 13,597 apps from
Google Play, spanning across all app categories, and iden-
tified 589 subscription-based apps. Within an approximate
time frame of 10.12 minutes per app, we classified 443 of
these apps, representing 75.21%, as suspected fleeceware,
which may potentially cause unanticipated subscription costs
for users. These apps have collectively garnered over 5 bil-
lion downloads. Even popular apps like YouTube Music, with
over 1 billion downloads, contain fleeceware subscription
UIs, indicating that the issues are significant. Our detec-
tion results are consistent with users’ reviews on Google Play.
With the detection results, we reported our findings through
Google’s app policy violation reporting platform to bring the
problems to their attention.
Contributions. To sum up, the contributions are three-fold.
• We construct the first UI feature library for fleeceware
detection, which is the result of collaboration with domain
experts who possess in-depth knowledge of user interac-
tions with fleeceware behaviors. They meticulously analyzed
fleeceware samples and integrated insights from studies on
dark patterns and platform-specific UI design requirements.
• We develop a novel technique that merges layout-based in-
formation linking with a multi-rule-based information extrac-
tion method for efficient subscription information extraction.
This innovation stems from an extensive examination of sub-
scription UIs, unveiling a consistent placement of relevant
information within specific layout patterns and summarizing
diverse presentation formats into common patterns.
• We assess the prevalence of fleeceware throughout the app
market and uncover its extensive distribution. Moreover, we
investigate the developers, evolution, and app user percep-
tions of fleeceware, offering valuable insights to ethical de-
velopers, app users, and app market managers to mitigate its
detrimental impact.

2 Background and Motivation

2.1 Subscription and Fleeceware
Subscription is a type of product offered in in-app purchase
billing that allows app developers to sell content, services, or
features through their apps and automatically charge users
at regular intervals specified, e.g., a week or a month. To
attract users, developers often set up a free trial period, al-
lowing users to try out the subscription before purchasing.
And users can cancel subscriptions before the billing cycle
ends [27]. Figure 1 shows a subscription UI example, which
typically displays information such as the subscription price,
billing cycle, free trial details, etc.

Between 2015 and 2022, subscription revenue increased
from around $1.5 billion to $17.1 billion [12]. As subscrip-
tions gain popularity, they also become vulnerable to abuse

1544 33rd USENIX Security Symposium USENIX Association

Subscription Plan
(①Price ($19.99) and ②Billing Cycle (1 month))

③ Free Trial
(3 Days free trial)

④ Fee After Free
($74.99 yearly after trial)

⑤ Auto-renewed
(subscription will be

auto-renewed ...)

⑥ Subscription Management
(You can manage or turn off

subscription at …)

Figure 1: An example of a subscription interface

Table 1: Google requirements for subscription UI design
No. Requirements for Preventing Subscription Abuse

R1
Be transparent about the offer, including the offer terms, the
cost of the subscription, the frequency of the billing cycle, and
whether a subscription is required to use the app.

R2 Users should not have to perform any additional action to review
the subscription information.

R3

The content should accurately convey the meaning of the sub-
scription. An example of a violation is “Free Trial” or “Try Pre-
mium membership - 3 days for free” for a subscription with an
auto-recurring charge.

R4
Show how and when a free trial will convert to a paid subscrip-
tion, how much the subscription will cost, and whether a user
can cancel if they do not want to convert to a paid subscription.

by developers. Fleeceware [14] is a type of subscription app
that deceives users into incurring unclear or hidden charges.
Users may subscribe to apps without their consent, fail to
realize they will be charged after a free trial, or struggle to
cancel a subscription. Avast reported that the 204 fleeceware
apps (70 in Android and 134 in iOS) they identified in 2021
have brought in 403.5 million dollars in revenue [4].

2.2 App Markets Regulatory Mechanisms

Ensuring effective oversight of apps on platforms like
Google Play and AppStore poses significant challenges. The
typical strategy is to employ a rating and review system
to compile feedback from users. App reviews provide
valuable information, including bug reports and feature re-
quests [43]. App markets also use various vetting mecha-
nisms, such as analyzing information uploaded by the app
developer [49, 55], static scanning [60, 64], and dynamic ex-
ecution [11, 25], to detect common malware. In addition,
researchers have developed machine learning-based methods
to detect new types of malware [17, 35, 41, 61]. However, the
majority of these methods are ineffective at detecting fleece-
ware as fleeceware mainly utilizes hidden or contradictory
content on the UI to confuse users, and exhibit coding pat-
terns that closely resemble legitimate apps, without resorting

Table 2: Dark patterns

Category Definition

Nagging Redirection of expected functionality that persists be-
yond one or more interactions

Obstruction Making a process more difficult than it needs to be,
with the intent of dissuading certain action(s).

Sneaking Attempting to hide, disguise, or delay the divulging
of information that is relevant to the user.

Interface
Interference

Manipulation of the user interface that privileges certain
actions over others.

Forced Action Requiring the user to perform a certain action to ac-
cess (or continue to access) certain functionality.

to traditional malicious behaviors, such as stealing confiden-
tial data and causing system crashes.

Currently, app markets rely primarily on monetization re-
quirements as the regulatory mechanism to combat fleece-
ware. For example, Google mandates that subscription app
developers must not mislead users about subscription ser-
vices or content offered within the app and provides spe-
cific guidelines for the development of subscription inter-
faces [28], as outlined in Table 1. However, relying solely
on regulations is not sufficient to prevent the occurrence of
fleeceware. In addition, due to the absence of automated de-
tection methods, these markets are dependent on manual app
reviews, a process that is neither timely nor scalable. It is
crucial to identify the features which can indicate fleeceware,
and build an effective tool for detecting them.

2.3 Dark Patterns Observed in Fleeceware
Fleeceware is a form of subscription fraud that is found to
make use of dark patterns. To develop an automated fleece-
ware detection system, it is critical to employ the knowledge
from dark pattern studies. Dark patterns have been exten-
sively studied [10, 19, 21, 29, 40] in the human-computer
interaction (HCI) and user experience (UX) fields. They are
carefully crafted, deceptive interface design patterns that ma-
nipulate users into taking actions or making decisions they
did not intend to make [10]. Gray et al. [29] have proposed
a comprehensive categorization of dark patterns, including
nagging, obstruction, sneaking, interface interferences, and
forced action, as shown in Table 2.

In fleeceware, several dark patterns are observed. For ex-
ample, the interface intentionally hides subscription-related
information (Sneaking), causing users to unknowingly com-
plete a subscription. The interface prominently highlights
the “free trial” while making the subsequent payment infor-
mation difficult to notice using small font sizes and incon-
spicuous colors (Interface Interference), which gives the im-
pression that the app will not automatically charge fees. In
sum, fleeceware leverages dark patterns to orchestrate sub-
scription app scams, with most of these dark patterns observ-
able in the subscription UI, leading to users’ financial detri-
ment. This observation motivates us to detect fleeceware by
identifying these dark patterns within the subscription UI.

USENIX Association 33rd USENIX Security Symposium 1545

Fleeceware
Feature
Library

Detector

User
Alerts, Explanations

FeedbackEvaluator
Results

Updates

App to
detect

screenshot,
layout files

Feature Extractor

UI Collctor

Layout based Information Linking

Multi-rule based Information
Extraction

Domain
Experts

Dark Pattern Literature Review

Knowledge-Based Feature Construction

Recruiting Domain Experts
(Sceening based on

knowledge on Dark Patterns
and Mobile App UI)

Review Platform
Requirements

Review User Complaints

Dynamic analysis of
fleeceware samples

Collect User Complaints
Classifer XAI Feature Selection

Preference

Automated UI Collection

Keywords-based Filter

? Fleeceware Feature Library Construction ? Fleeceware Detection

Figure 2: Framework of the fleeceware detection system.

3 DARKFLEECE

3.1 Threat Model

Our system is specifically designed to address a growing con-
cern in the landscape of subscription apps: the use of decep-
tive UI designs (i.e., dark patterns) by app developers. These
practices exploit gaps in user awareness and cognitive biases,
leading to unwanted subscriptions and financial losses for
users. To address these fleeceware problems, our work fo-
cuses on such deceptive design detection, and subscription
UIs with such design are labeled as fleeceware UIs. Our aim
is to highlight unethical design practices resembling finan-
cial fraud, contributing to a safer digital environment.

3.2 Overview

We introduce DARKFLEECE (Dark Pattern-based Fleece-
ware Detector), which methodically examines the UI of sub-
scription apps to detect any existing dark patterns. The sys-
tem framework is depicted in Figure 2. Feature Library
is a key component, as the effectiveness of the system can
greatly depend on its quality. This library is constructed by
domain experts, drawing from observations of user interac-
tions with fleeceware behaviors and a review of fleeceware
samples, and integrates insights from dark pattern studies
and platform-specific app requirements (address C1). DARK-
FLEECE then utilizes a UI Collector to collect subscription
UIs from an app, and uses this feature library in its Feature
Extractor to draw out pertinent feature values from the UIs.
Within the extractor, we address the second challenge (C2)
using a novel layout-based information linking technique
and a multi-rule-based information extraction method to har-
vest target subscription information and obtain the feature
values. Then a Detector module applies a trained classifier
to detect potential fleeceware and utilizes an Explainable Ar-
tificial Intelligence (XAI) technique to provide explanations
for the outcomes to make it easier for users to notice and un-
derstand the issues on the UI. As users provide feedback, an
Evaluator module continually optimizes and updates the fea-
ture library to meet user needs. We will provide a detailed

Table 3: Typical fleeceware behaviors users complain about

No. Behaviors Reviews from Google Play

B1
Claim to be free but actually
not.

It says 3 days free trial, but
when you press “continue” it
makes you pay.

B2
Mislead users to subscribe
without their knowledge.

I cannot believe I did not sub-
scribe to this and they took
£80.00 from my account.

B3 Make users confused about
the charge plan.

Said it was $6.99/mo. Then it
charged me $79.99 for a year.

B4 Do not state the recurring
charge.

They billed me in June and
again in July.

B5
Make users confused about
canceling subscription.

I had uninstalled and canceled
the subscription. I was still
charged!

B6
Hard to close subscription UI. The developer blended in the

“X” in the corner so you can
barely see it.

B7 The price is unreasonable. I would never pay almost
$100 A WEEK.

description of the specific design and implementation of each
component below.

3.3 Knowledge-Based Feature Construction
Fleeceware identification necessitates a meticulous examina-
tion of fleeceware behaviors along with a solid understand-
ing of dark patterns. Our first step involves gathering data on
fleeceware behavior by accumulating user observations. Us-
ing these observations as a basis, we enlist domain experts to
analyze user-observed behaviors. Additionally, experts an-
alyze and execute a set of fleeceware to unearth any poten-
tial fleeceware patterns that may not have been observed by
users. To accumulate user observations, we collected 1,486
pertinent comments on fleeceware reported by Avast [4] from
Google Play. The complaints from users serve as a rich
source of information for documenting fleeceware behaviors.

In the subsequent step, we engaged a panel of ten domain
experts. This group was composed of two contributing au-
thors of this study and eight additional volunteers, who were
carefully selected through our professional networks to en-
sure a diverse yet highly specialized skill set was represented.
The group consisted of four researchers and six engineers,

1546 33rd USENIX Security Symposium USENIX Association

Table 4: The phenomena occurred in fleeceware subscription UIs

No. Phenomena Fleeceware
Behaviors

Violation of
Requirements

Category of
Dark Patterns

1 The entire interface lacks price information. B1, B2 R1, R2 sneaking
2 The entire interface lacks billing frequency information. B1, B2, B3 R1, R2 sneaking
3 If there is a free trial, the entire interface does not inform about the trial period. B1, B2 R2, R4 sneaking
4 The entire interface does not indicate whether the subscription will auto-renew. B4 R1, R2, R4 sneaking
5 If there is a free trial, it does not specify the charges after the trial. B1, B2 R4 sneaking
6 The total cost for a complete billing cycle is not provided. B3 R1 sneaking
7 The total charge is not highlighted when multiple price formats are presented. B3 R1 interface interference

8 A contradiction between the trial duration and the timing of the charge or cancellation
of the subscription. (e.g., claim a 3-day free trial but charge on the last day of the trial.) B2, B5 R4 interface interference

9
The interactive buttons do not convey the meaning of subscription (e.g., lack of keyword
"subscribe" or not display the pricing information), and there is a significant distance
between subscription information and the buttons.

B2 R1, R3 sneaking,
interface interference

10 The subscription information is not prominent (e.g., small font size, similar color to the
background, lack of emphasis in font style, buried within lengthy paragraphs). B1, B2, B3 R1 sneaking,

interface interference

11 The close button is not clearly visible. B6 R1 obstruction,
forced action

12 The subscription charges are unreasonable after the trial (e.g., charges after the trial
significantly surpass market prices or prices with a free trial are higher than those with-
out).

B7 - interface interference

each bringing over four years of substantial practical expe-
rience in both Android and front-end design and develop-
ment. These experts individually reviewed fleeceware sam-
ples alongside the documented fleeceware behaviors and met
twice to discuss them. During the initial meeting, the experts
summarized the documented fleeceware behaviors using the
dark patterns in Table 3 to gain an understanding of the dis-
tribution of dark patterns in user observations. After the
meeting, to discover potentially unobserved dark patterns,
the experts further examined and ran 79 fleeceware samples,
comprising 34 iOS apps and 45 Android apps. The results
were discussed in the second meeting, and in cases of dif-
fering results, the experts engaged in discussions to reach an
agreement. Remarkably, these fleeceware samples did not
exhibit any notable anomalies or irregular behaviors during
run time, with the exception of certain apps that frequently
displayed advertising links. Nonetheless, the experts’ anal-
ysis did uncover various dark patterns and breaches of plat-
form requirements within these fleeceware subscription UIs.
These findings, presented in Table 4, signify potential risk
areas where users could inadvertently miss or misinterpret
essential subscription information, mirroring problems out-
lined in Table 3.

Through expert analysis of the fleeceware samples, we
have identified several crucial subscription details that may
display characteristics of dark patterns. These details in-
clude the subscription cost, billing cycle, free trial period,
and whether the subscription will automatically renew. It is
imperative that these critical pieces of information be explic-
itly stated as required by the platforms (refer to the require-
ments in Table 1), as they play a crucial role in enabling
users to make informed decisions regarding their subscrip-
tion choices. The lack of these subscription details is iden-
tified in the subscription interface of the fleeceware samples
(No.1-No.4 in Table 4).

（a） （b）

（d）（c）

Figure 3: Examples of fleeceware. 3(a) shows that the charge
information is not easily discernible due to the small font size
and color. 3(b) claims a 3-day trial, but users must cancel it
24 hours before the trial ends. 3(c) shows the price after the
free trial is unreasonably higher than the price for a one-time
payment, which reflects the characteristic of fleeceware, i.e.,
excessive charging. 3(d) displays a monthly price for an an-
nual subscription, which violates Google’s policies and may
lead to user misunderstandings about the charges incurred.

Some fleeceware samples employ tactics to conceal or
redirect users’ attention away from critical subscription in-
formation (No.5-No.10). This can result in users inadver-

USENIX Association 33rd USENIX Security Symposium 1547

tently overlooking or misunderstanding the subscription de-
tails provided. Figure 3(d) showcases an interface that only
presents a monthly price for a 12-month subscription (No.6),
potentially misleading users regarding the long-term costs
they will incur upon subscribing. Similarly, if a UI high-
lights the weekly price rather than the total price of the cur-
rent subscription (No.7), it potentially causes users to under-
estimate the actual charges involved. Figure 3(b) claims a
3-day free trial, and users can cancel the subscription at any
time. However, the fine print reveals that users must cancel
one day before the trial ends to avoid automatic conversion
to a paid plan and charges (No.8), which increases the risk
of users missing the cancellation deadline and unintention-
ally incurring charges for the subscription. Interactive but-
tons are essential elements within a UI, serving as guides for
user actions and triggering specific functionalities or naviga-
tion. Thus, the information displayed on these buttons signif-
icantly impacts users’ understanding of their current actions.
However, if an interface only mentions “Continue to trial” on
the interactive button, while the information about automati-
cally transitioning to an annual subscription after the trial pe-
riod is displayed elsewhere (No.9). This design can mislead
users into believing they are engaging in a trial period with-
out realizing the subsequent charges. Font size, style, color,
and positioning of informational text on an interface greatly
influence users’ ability to quickly and clearly perceive cru-
cial information. In Figure 3(a), fleeceware employs small
font sizes and colors that closely resemble the background,
diverting users’ attention from the billing information while
emphasizing the “3-Days Free Trial” aspect (No.10).

Additionally, we found subscription interfaces that allow
users to close the UI, implying that users can access the app
without subscribing. However, in certain cases, the icon to
close the UI is obscured or shares a color too similar to the
background, making it difficult for users to notice (No.11),
potentially leading them to mistakenly believe that subscrip-
tion is the only way to continue using the app. Furthermore,
some fleeceware samples demonstrate unreasonable pricing
practices on their subscription interfaces (No.12). One such
example is the app Magic icon changer, a wallpaper design
app, which charges users a staggering $129.9 per week fol-
lowing a free trial period. Figure 3(c) illustrates an instance
where the price after the free trial surpasses the cost of a one-
time payment, further highlighting the exorbitant and unjus-
tified pricing strategies employed by fleeceware apps.

Finally, we consolidate the observed phenomena identi-
fied by experts, extract the relevant entities and attributes,
and formalize them into 19 features, as outlined in Table 6
in the Appendix C. Each feature serves as an indicator for
specific aspects of the fleeceware subscription UIs. Specif-
ically, Features F1-F5 and F9-F10 are utilized to determine
the presence of key subscription information for phenom-
ena No.1-No.5 and No.9, respectively. Feature F6 is de-
rived from Phenomenon No.6 and signifies the observation

that these interfaces often display more text describing the
billing frequency than the actual price. Phenomenon No.7 is
assessed using Feature F7, which calculates the ratio of the
font size of the total price to other prices, as well as examines
whether the font is bold, indicating if the total price informa-
tion is adequately highlighted. To determine the presence of
Phenomenon No.8, we utilize F8, which compares whether
these two time are consistent. To evaluate the proximity be-
tween the subscription information and the interactive button
in Phenomenon No.9, we employ Feature F11, which mea-
sures the relative vertical location of these elements on the
interface. For Phenomenon No.10, Feature F12 takes into
account the relative length, relative font size, and font style
of the price information compared to other text, assessing
the visibility and noticeability of the information. Further-
more, Features F13-F14 utilize optical character recognition
(OCR) techniques to evaluate the clarity and perceptibility of
the information presented on the interface. For Phenomenon
No.11, Feature F17 employs edge detection techniques to de-
termine whether an icon is clearly discernible. Lastly, we
extract relevant price information and calculate Features F18-
F19 to represent Phenomenon No.12.

In total, we identified 19 features and will train a classifi-
cation model based on them to detect fleeceware. In the next
section, we will outline the process of extracting the values
of these features from the UI.

3.4 UI Collector

The features we focus on are mainly related to UI entities
and attributes that are displayed on the subscription UIs, e.g.,
the text contents and position of visual elements. These el-
ements are static after the UI has been fully loaded and do
not change dynamically during the user’s interaction with the
app. Therefore, we first need to obtain the fully-loaded sub-
scription UIs. We utilize DroidBot [34], an automated tool
capable of capturing screenshots and layout information of
subscription UIs (including text, widget visibility, and lay-
out details) at runtime, to extract UIs from apps.

However, it is not easy to capture subscription UIs within
a limited time using DroidBot. This was due to the long
search path with multiple branches, resulting in a timeout.
To address this issue, we implement additional guided search
strategies in DroidBot based on our prior experience. These
strategies consider common patterns observed in subscrip-
tion apps and adjust the priority of interactive events accord-
ingly. (1) Handling introductory screens: In some apps,
users are initially presented with a series of screens highlight-
ing the app’s features. To progress to the next page leading
to the subscription UI, users need to click on buttons like
“continue” or “start”. We enable DroidBot to detect and in-
teract with these buttons first. (2) Scrolling down the inter-
face: During the introductory screens or other app UIs, users
may need to scroll down to reveal the button or content neces-

1548 33rd USENIX Security Symposium USENIX Association

sary to proceed. To ensure that all contents are loaded before
interacting, we prioritize the “ScrollEvent” in DroidBot’s in-
teractive events, allowing it to scroll down the page if neces-
sary. (3) Handling user input: Some app UIs require users
to fill in or select specific information before proceeding to
the subscription UI. To handle this, we give higher priority to
the “SetTextEvent” that fills text boxes in DroidBot, which
ensures that DroidBot enters the required information before
attempting to interact with buttons. Additionally, we pre-set
fields such as nickname, birthday, email, age, etc., to facil-
itate input verification. And we use pre-configured Google
accounts for requiring login. (4) Prioritizing relevant key-
words: To effectively trigger the subscription UIs, we add
relevant keywords to the “preferred lists” in DroidBot. These
keywords include terms like “subscribe”, “upgrade”, “VIP”,
“premium”. By prioritizing widgets associated with these
keywords, DroidBot can efficiently reach the subscription UI.
Finally, we utilize DroidBot on the crawled apps to generate
screenshots and layout files for further analysis.

DroidBot saves the information of all the UIs encountered
during the runtime. To improve efficiency, we use a keyword-
based method to pre-filter UIs that are unrelated to subscrip-
tions. Specifically, we collect all the texts in a UI, preprocess
the texts by converting all words to lowercase, expanding
abbreviations, removing non-ASCII characters and punctua-
tion (keeping the currency symbols), removing stop words,
and lemmatizing the words. Then, we filter out irrelevant
UIs by checking for the presence of subscription-related key-
words (e.g., “free”, “trial”, “$”, “month”, “subscription”),
which are collected by counting the word frequencies in the
subscription UIs previously gathered.

3.5 Feature Extractor

Each feature is composed of specific UI information, such as
the presence of certain subscription details, text length, font
size, etc. For example, to calculate F12, we need to locate
all subscription price information on the UI and extract the
length or font size of the information and the whole sentence.
However, accurately obtaining the information is difficult
(challenge C2). The complexity primarily arises from two
key aspects: (1) Fragmentation of Information: For exam-
ple, in Figure 4, “Yearly” and “$29.99” are separated, and
only when presented together as “Yearly $29.99”, the mean-
ing (i.e., subscription charge information) becomes clear to
users. We need to design a method to effectively locate and
concatenate these discrete pieces of information from the en-
tire UI. (2) Variable Display Formats: For example, the
charge information can be presented as “6 Months: $59.99”
or “59.99 USD/6-Months”. The diversity of information ex-
pression forms and the lack of dataset make it challenging for
machine learning-based natural language processing meth-
ods to accurately differentiate between different subscription
information and extract the values from them.

Figure 4: An example of neighboring widgets. w1, w2, w3 are
neighboring widgets, and they should be considered together.

Addressing the Fragmentation of Information: We design
a novel layout-based approach to link related subscription
information. Our idea is based on an observation that in a
layout file, each piece of information is defined in a widget
(a UI component that draws what users can see or interact
with), and all the related information is defined in neighbor-
ing widgets. These widgets are descendants of a parent wid-
get whose widget class is “ViewGroup”, “RelativeLayout”,
“LinearLayout”, etc. For example, in Figure 4, the three wid-
gets containing charge information are neighboring widgets,
which are children of a “ViewGroup” widget (i.e., the green
box). Therefore, by searching for all the neighboring widgets
of each widget, we can link all the related information.
Addressing Variable Display Formats: We adopt a multi-
rule-based approach to extract target information, avoiding
the potential semantic misunderstandings that could arise
from machine learning approaches. This idea comes from
the analysis of all the texts about subscription information
from 145 subscription UIs obtained from the 79 fleece-
ware. We discover that the developer usually uses certain
fixed keywords or symbols when describing each type of
subscription information, and the numerical values appear
in specific positions within the information. For example,
the price and billing cycle information always appear to-
gether, within which, there will always be numerical values,
currency symbols (e.g., “$”, “USD”), and time units (e.g.,
“week”, “month”). These elements appear in a specific or-
der. Therefore, we construct a collection of regular expres-
sions (available on our website[44]) to extract subscription
details expressed in various forms. We detail how to gener-
ate the regular expressions and how to use the layout-based
approach and the regular expressions to locate and extract
target subscription information (including textual and visual
information) as follows.
Layout-based textual information extraction. We first
generate regular expressions using Regex Generator++ [6, 7]
(an automated tool that creates text extraction patterns from
given examples) as the initial reference. We manually fine-
tune and expand these regular expressions based on specific
cases encountered during the analysis. To extract target in-
formation, we need to combine all the related subscription
information in a UI. For each widget, we find its closest par-
ent widget with the target class, i.e., if a widget’s parent wp
does not fall into the specified class, we continue searching
for the parent of wp. Once the parent widget is found, all the
descendant widgets are considered as neighboring widgets.
We link all the texts of neighboring widgets together and ap-
ply the regular expressions to get the target information.

USENIX Association 33rd USENIX Security Symposium 1549

However, directly applying the regular expressions to the
combined texts may lead to many mismatches. This is be-
cause irrelevant information can add noise to the original
texts and impact the accuracy of extraction. Moreover, when
multiple useful pieces of information appear together, it may
cause either information loss or incorrect information com-
bination. To prevent mismatches, we consider performing
real-time target information extraction during the process of
linking the texts of neighboring widgets. Specifically, for a
widget, if we can not extract any useful information from its
text using the regular expressions, we search for its neighbor-
ing widgets and link their texts according to the layout, prior-
itizing widgets with smaller view IDs. The view ID uniquely
identifies a widget and can be used to locate the widget. The
widget with a small view ID comes first in a UI. We link the
text in widgets in sequence, one by one. Assuming the pre-
viously concatenated text is t, then for a new neighboring
widget, if its text does not contain any relevant information
(i.e., numbers, words, and symbols mentioned in our regular
expressions), we skip it. In contrast, if it matches our regu-
lar expressions, we extract the useful information, record its
view ID, and link the remaining text to t. Once t matches
the regular expressions, we extract the matched information
and keep the remaining texts as t ′. By doing so, we can accu-
rately obtain all the necessary textual information and their
location indicated by view IDs.
Visual information extraction. The proposed features in-
clude not only textual information but also visual informa-
tion about the UI elements, such as font size, font style, and
visibility. With the help of DroidBot, we managed to ob-
tain information about widgets on the interface, such as the
position of each widget containing subscription information
according to the boundary field in the layout file indicated
by view IDs, as well as the size of the widget view. However,
we cannot directly obtain font-related information. To obtain
the visual information of target information, we first retrieve
the screenshots of related widgets and then utilize Tesseract-
OCR [51], which can output the font size, style, and color of
each word identified.

Since the text of a widget may contain more than just the
target information, we need to match the target information
with the strings recognized by OCR to obtain the desired vi-
sual information. Because OCR recognition can be inaccu-
rate and does not always align with human perception, we op-
timize the matching process using the Levenshtein distance
and Levenshtein ratio [63] to improve fault tolerance. The
Levenshtein distance measures the minimum number of edit
operations required to convert one string into the other, and
the Levenshtein ratio is calculated by sum−ldist

sum , where sum is
the total length of the two strings and ldist is the Levenshtein
distance between them. If the Levenshtein distance or Lev-
enshtein ratio is below (or above) a predetermined threshold,
we consider the strings to be a match and the target informa-
tion to be clearly visible, and we can get the font size and

style from the outputs of the OCR. If no strings match, we
consider the information invisible.

For the visibility of a target icon, we apply the Canny
Edge Detection technique [5, 22] to detect the icon in the
designated area. If no edges are detected, the icon is con-
sidered invisible. Specifically, we identify the widget that
represents the target icon by searching for keywords (e.g.,
“close”, “exit”) in the resource id field of each widget and get
its screenshot. We then apply a multi-scale template match-
ing method [31, 54] to recognize the icon. This method is
based on the observation that target icons have several fixed
styles, such as the shape of a cross for dismissing icons. The
method is applied as follows: We first extract several icons
with typical shapes as templates, and then slide the templates
of different scales on the screenshots processed by the Canny
operator and calculate the matching scores. Finally, we col-
lect the icon detection results based on empirical thresholds
for each template and vote for the final decision. If no tem-
plates match, the icon is regarded as invisible.

3.6 Detector

To account for which kind of UI may deceive users and make
them overlook or misunderstand certain subscription infor-
mation, a single feature may not be sufficient. We utilize
machine learning techniques to determine the combinations
of features and their respective weights that are indicative
of problematic UIs. Considering the limited availability of
training data and the fact that many features in our dataset are
boolean values, we opted for a shallow Decision Tree Classi-
fier model [9] to ensure accuracy while avoiding overfitting.
To facilitate users’ better understanding of detected issues on
the UI, we need to provide explanations for the detection re-
sults. Although the Decision Tree inherently offers a certain
level of interpretability, such interpretability might not be in-
tuitive enough for ordinary users to understand the detection
results, We integrated an additional step to address this is-
sue. We employed SHAP (Shapley Additive exPlanations)
[37, 38], an XAI technique, to visualize the most significant
features contributing to the prediction results for each data
sample. The integration of the XAI technique enables users
to intuitively grasp the rationale behind individual classifica-
tion results.

To create a reliable training dataset, we engaged ten ex-
perts, as detailed in Section 3.3, for three additional weeks
to manually label the samples, dedicating around three hours
each week to meticulous annotation. Additionally, these ex-
perts participated in an hour-long discussion weekly to en-
sure a consistent and accurate labeling process. The experts
were presented with a set of 136 subscription UIs (crawled
from the 45 Android fleeceware apps and another 45 sub-
scription apps from Google Play), and their task was to in-
dependently assess whether each UI was a suspected fleece-
ware UI. If a UI was deemed to be suspected, the experts

1550 33rd USENIX Security Symposium USENIX Association

Figure 5: An example of the alert and explanation.

were instructed to mark the specific dark patterns that con-
tributed to this assessment for the convenience of further dis-
cussion. An example of what experts need to label is shown
in Figure 9 in the Appendix B. In cases where there were dis-
crepancies, the experts engaged in peer discussions to reach
a consensus. To this end, we got a collection of 76 suspected
fleeceware UIs and 60 benign UIs. We then extracted UI
features to form input feature vectors for training.

Using the labeled instances, we utilize default parameters
provided by scikit-learn [45] to train a decision tree classifier.
To help users understand the result, we utilize the SHAP tech-
nique, a game theoretic method for explaining machine learn-
ing outputs, to identify the primary features that contribute to
the prediction outcome and visualize the explanations. Lever-
aging these insights, we offer alerts to users. The alert pro-
vided by DARKFLEECE for each identified suspected fleece-
ware UI highlights the specific elements or content on the UI
that require attention. Figure 5 shows an example of the alert
and an explanation of the identification. The visualization
shows an area on the subscription UI where the user is only
informed about the availability of a free trial, without being
notified that the trial will automatically convert to a recurring
charge after the trial period ends. Furthermore, the informa-
tion about the fees is concealed in a lengthy paragraph. This
alert assists users in circumventing the overlooking or misin-
terpretation of crucial subscription details.

3.7 Evaluator

Due to the lack of a clear definition for fleeceware and the
variations in how different people perceive the severity of
subscription issues, we aim to continuously adjust the set of
subscription UI features based on diverse security concerns.
On one hand, app markets and advanced users can run Dark-
Fleece locally to detect fleeceware within apps. They can an-
alyze their detection results according to their own security
needs and adjust the required features accordingly, such as

adjusting PR_MAX in F18. On the other hand, DarkFleece
can be run by third parties, where users upload apps and
receive the results. Users can provide feedback, based on
which, third parties can adjust the features most relevant and
likely to cause issues for the users. With the support of the
evaluator, DARKFLEECE can be personalized and continu-
ously enhance its capabilities.

4 Evaluation and Findings

4.1 Setting
Between 2021 and 2023, we crawled real-world apps from
Google Play and obtained 13,597 unique apps after remov-
ing duplicates based on their MD5 checksums. These apps
span across all 33 categories on Google Play. To perform
analysis on these apps, we utilized 10 workstations, each
equipped with 4 cores with a 1.80 GHz CPU, 32.0GB mem-
ory, and 1TB hard drive. We set up a virtual machine on each
workstation, with the virtual machine running Google Pixel4,
featuring 2 cores, 2GB memory, and 16GB hard drives. The
Android version used was 11.0.

4.2 Performance Evaluation
Effectiveness. We evaluate the effectiveness of DARK-
FLEECE based on the accuracy of extracting subscription UIs
and identifying suspected fleeceware. For the first one, we
randomly selected 100 apps that were successfully executed
by DroidBot and collected 1,148 UIs, out of which 135 were
subscription UIs after a manual check. Using our feature ex-
tractor, DARKFLEECE successfully extracted 140 subscrip-
tion UIs, including all the 135 UIs above. Therefore, the
accuracy of extracting subscription UIs is 99.57%.

For the second one, we re-selected UIs for evaluation con-
sidering the balance of the samples. Based on the results
of DARKFLEECE, we selected 81 (10% of the total sub-
scription UIs we collected) fleeceware UI samples and 81
benign samples. Considering the similarity of subscription
UIs, we specifically sourced UIs from a diverse range of
app categories to guarantee distinct UI designs. Addition-
ally, we manually removed duplicate UIs to ensure an unbi-
ased performance evaluation. We then asked the ten experts
to label the samples and compared their results to assess the
performance. Our analysis showed that 144 subscription in-
terfaces are correctly labeled by DARKFLEECE, while 10
are mislabeled, including 7 false positives and 3 false neg-
atives. Therefore, the accuracy of identifying fleeceware UIs
is 93.83%. Overall, DARKFLEECE can achieve an accuracy
of 93.43% (99.57% × 93.83%) for detecting fleeceware UIs.

We analyzed the reasons behind the errors in these two
processes. The first reason is that developers don’t follow
traditional coding practice, such as not using the Button class
to represent buttons, not using the TextView class to repre-
sent text, not using the RelativeLayout class to hierarchically

USENIX Association 33rd USENIX Security Symposium 1551

structure the UI, as a result, the information we extract is
inaccurate. The second reason is that there are advertising
contents in the UI, which disrupts the target information.
Runtime Performance. On average, DARKFLEECE re-
quires approximately 10.12 minutes per app for processing,
which includes UI collection, UI pre-filtering, feature extrac-
tion, and fleeceware detection. Although collecting the UIs
of an app could take up to 10 minutes, the subsequent proce-
dures take less time, averaging 7.17 seconds per app. UI pre-
filtering takes about 3.29 seconds per app (37,346.94 seconds
for 13,597 apps), while feature extraction and fleeceware de-
tection take an average of 3.88 seconds per app (4,373.03
seconds for 1,128 apps).
Users Study. To demonstrate the effectiveness of DARK-
FLEECE in helping app users pay attention to problems on
subscription UIs and avoid mistakes, we conducted a survey
study by recruiting participants from universities and col-
lected 37 valid responses. Participants in the survey were
presented with ten UIs from various subscription apps and
asked to make an initial judgment regarding the UI’s poten-
tial deceptiveness, without knowing the ground truth. Fol-
lowing their initial decisions, we asked them to review our
detection results. The survey questions can be accessed on
our website[44].

Specifically, we asked participants to identify suspicious
UI issues and rate their confidence levels. And they were re-
quired to provide reasons for each selected UI. Subsequently,
we provided them with explanations generated by DARK-
FLEECE, and asked them to re-select fleeceware UIs and
rate their confidence levels again. 34 participants were un-
dergraduate or graduate students, with one-third of them ma-
joring in non-computer-related disciplines. The other 3 par-
ticipants are family members, all aged 50 or above. Our
study finds that 30 participants (81.08%) have encountered
subscription problems before, and our explanations signifi-
cantly improve users’ ability to notice issues on fleeceware
UIs. Specifically, our explanations on the 10 provided sam-
ples all draw more attention to the issues on the UIs, with an
average increase of 5 participants noticing issues on the ten
UIs provided. The most successful explanation resulted in 9
more (from 13 to 22) participants noticing the issues on the
UI. All participants also reported higher confidence levels af-
ter receiving the explanations.

In addition, we observed that participants without a back-
ground in computer science and the three older individuals
were more susceptible to fleeceware. Before we presented
our results, these participants struggled to identify issues on
the UI. Even when the UI employed only a few simple tricks,
they were prone to overlooking crucial information. This
was likely due to their limited familiarity with subscriptions
and relatively less experience using mobile apps. This find-
ing further supports that the features we proposed indeed con-
tribute to potential harm. Moreover, through this user study,
we discovered that the constructed features effectively cov-

ered the issues reported by participants, highlighting their
comprehensiveness.
Assessing Flexibility in a Use Case. As outlined in Sec-
tion 3.5, we recognize users’ diverse perceptions of subscrip-
tion issues and their differing tolerance levels towards fleece-
ware. Consequently, we equip users with the capability to
modify the detection rate by customizing the features uti-
lized in DARKFLEECE. We tested the flexibility by evalu-
ating a use case. This use case addresses specific fleeceware
concerns, particularly those involving the UI that emphasizes
free usage while hiding pricing information, as well as cases
where the claimed trial period is different from the actual
billing time. With this specific concern, we re-evaluated and
selected features from Table 6. We then re-annotated 100
subscription user interfaces based on these concerns. The
features chosen were F5 and F8 through F13. Out of these
100 samples, 67 were marked as “suspected”, and 33 as “be-
nign”. DARKFLEECE accurately detected 93 of these sam-
ples, but misclassified 7, comprising 5 false positives and 2
false negatives. It shows that the accuracy rate for identify-
ing fleeceware user interfaces remained at 93.00%, aligning
closely with our earlier results.

4.3 Findings in the Wild

Landscape. We analyzed 13,597 apps across all 33 Google
Play categories, which were collected based on their popular-
ity1. Surprisingly, out of the 589 apps with subscription UIs
(813 in total), DARKFLEECE detected 443 (75.21%) apps as
suspected fleeceware. These suspected apps have been down-
loaded over 5 billion times collectively. Moreover, each sus-
pected fleeceware app had more than one fleeceware UI on
average (629 UIs in 443 apps). Notably, some of the most
popular apps, ranked in the top-200 list, were also identified
as suspected fleeceware. In July 2022, we assessed the preva-
lence of fleeceware in popular apps ranked in the top 200 of
the free, best-seller, and popularity lists. According to our
findings, there were 7 suspected apps in the free list, 13 in
the bestseller list, and 5 in the popularity list.

We also observed suspected fleeceware apps across all
categories of apps. Table 5 in the Appendix A presents
the distribution of suspected apps across various categories.
Our investigation revealed that the issue was particularly
widespread in the “Photography” and “Entertainment” cat-
egories, where the suspected fleeceware apps accounted for
almost a quarter of all suspected cases. We report our find-
ings to Google to get their recognition through their official
feedback website2.

1We used the website https://app.diandian.com/rank/googleplay for effi-
cient categorizing and ranking.

2We reported through https://support.google.com/googleplay/android-
developer/contact/policy_violation_report. Within the form, we categorized
these apps under the “monetization and ads/subscription” category and spec-
ified their policy violation.

1552 33rd USENIX Security Symposium USENIX Association

Figure 6: A case where two apps developed by the same
developer were found to contain similar fleeceware UIs.

Common Strategies in Fleeceware UIs. Based on the inter-
pretability outputs of DARKFLEECE, which indicate the fea-
tures that contribute to UIs being classified as fleeceware UIs,
we summarized the common strategies used in these UIs.
The most common strategy observed is the lack of explicit
indication on buttons about the ongoing subscription action
(Phenomenon No.9, 270 in 629 suspected UIs, 42.93%),
while emphasizing the free trial on the interface, e.g., not
informing the user that the free trial will automatically tran-
sition into a paid subscription after the trial (Phenomenon
No.5, 368 UIs, 58.51%), using a light font color and a small
font size for the billing information (Phenomenon No.10,
182 UIs, 28.93%). In addition, 332 UIs (52.78%) do not
clearly indicate whether the subscription will automatically
renew (Phenomenon No.4). 111 UIs (17.65%) mislead users
regarding the cancellation period (Phenomenon No.8). They
claim to offer a 3-day free trial but require users to cancel
one day in advance, otherwise, it will automatically convert
to a paid subscription on the third day.
Fleeceware Developers. After collecting the names and con-
tact details of developers of suspected fleeceware, we investi-
gated them and found that apps developed by the same devel-
oper often have similar UIs with the same issues. 19 develop-
ers are found engaged in such practices. Figure 6 shows that
the UIs of these two apps are almost the same and only em-
phasize the “free trial” option. Moreover, some developers
are found to try to make more money by using different App
IDs and names for nearly identical apps. For instance, apps
named Bravo cleaner and Bravo Security are developed by
the same developer, and have almost the same functionality
and UIs. We also found that 12 suspected apps had no valid
contact information or website for their developers. We sug-
gest creating a blacklist for these developers and scrutinizing
their apps more closely.
Fleeceware Evolution. We conducted a follow-up investi-
gation to gain a better understanding of the evolution of sus-
pected fleeceware over time. We selected 100 subscription

Figure 7: A case that a UI becomes problematic from 2021
to 2022. The information “1 Month: $19.99” was changed
to “Free for new Users”. After the trial, it automatically
switches to an annual subscription. But this information has
a small font and a light color, making it easy for users to
overlook.

apps (75 suspected and 25 benign) that were collected in
June 2021. We downloaded their versions in August 2022
and their latest versions in June 2023. In 2022, 35 suspected
fleeceware apps were taken down. Out of the 60 apps we
were able to collect (39 suspected and 21 benign), only 2 sus-
pected apps improved their subscription UIs and were classi-
fied as benign. However, we also identified 1 new suspected
fleeceware app, as shown in Figure 7, where the price infor-
mation of “1 Month: $19.99” was changed to “Free for new
users”, potentially misleading users into believing the app is
free, and they may unknowingly be charged for a yearly sub-
scription after the free period. In 2023, another 12 suspected
fleeceware apps were taken down. Among the remaining 48
apps (24 suspected and 24 benign), 4 previously suspected
apps became benign, but we also identified 1 new suspected
app. Among the 4 apps transitioning to a benign model, we
make a surprising discovery that an app called PictureThis -
Plant Identifier adds a reminder feature, which notifies users
before the trial period ends to remind them about the upcom-
ing subscription fee. In summary, these findings demonstrate
that app markets are making efforts to address the subscrip-
tion issues, however, the continued emergence of suspected
fleeceware suggests that developers are still motivated by the
financial gains associated with fleeceware practices.
Generalizability for non-English apps. DARKFLEECE is
built on UI features, allowing it to be applied to apps in dif-
ferent languages. However, adjusting keywords and regular
expressions for specific languages is necessary when extract-
ing feature values. On 25 subscription apps in Chinese and
25 in German crawled on September 6th, 2023, we identified
10 and 14 suspected fleeceware separately.
User Perceptions. User reviews are a valuable source for
analyzing app issues, where we uncover numerous interest-
ing subscription problems. Many users reported their chil-
dren subscribing to an app without their consent or knowl-
edge. Some users believed that the app would not automat-
ically renew their subscription or deduct money if they did

USENIX Association 33rd USENIX Security Symposium 1553

Figure 8: The fleeceware UI detected in YouTube Music. The
button only claims “FREE TRIAL”, and the UI states a 1-
month free trial at the top, but users reported being charged
3 days later.

not have sufficient funds or uninstalled the app. Addition-
ally, many users admitted to forgetting to cancel their sub-
scriptions. These findings suggest that users are vulnerable
to the threat of fleeceware due to their lack of awareness and
caution when it comes to detecting and avoiding such scams.

We utilized user reviews as an indirect method of validat-
ing our experimental results. Specifically, we sampled the de-
tected results and thoroughly examined all associated user re-
views. Whenever we encountered user complaints about de-
ceptive UI design within these reviews, we cross-referenced
them with our detection results and explanations to deter-
mine whether our model had accounted for the issues high-
lighted by users. For example, the widely used application
YouTube Music, which has been downloaded over 1 billion
times, was detected fleeceware subscription UI as shown in
Figure 8, and we have found user complaints related to the
issue under the reviews of this application on Google Play
(e.g., one said “Signed up for month free trial but google
charged me for premium 3 days later”), indicating the po-
tential risks. However, due to some newly published apps
lacking reviews and many users not accurately or comprehen-
sively expressing themselves when writing reviews, reviews
cannot entirely reflect the issues existing in apps. Therefore,
we primarily used reviews as a reference for validating the
completeness of our features.

5 Lessons

The results of our investigation offer valuable lessons for app
users, ethical developers, and app markets on how to avoid
fleeceware issues and minimize their impact.

5.1 Ethical Developers

Some ethical developers may unintentionally introduce fea-
tures that resemble fleeceware during development. They
may not be aware that certain design choices could have an
impact on users. Therefore, for these ethical developers, we
provide some development recommendations to help them
be more mindful. When designing subscription interfaces,
developers should prioritize ethical practices by making user-
friendliness a key consideration. This includes presenting
subscription-related information clearly, accurately, and con-
cisely in the UI. Important design considerations may in-
clude: (1) Present subscription information in simple and
concise sentences. This may include stating the subscrip-
tion plan and the cancellation deadline, such as “$9.99/week”
and “cancel before the current period ends”. Providing a
link or brief description of where users can unsubscribe (e.g.,
“Google Play - Settings - Subscriptions”) and clearly indi-
cating if the subscription will automatically renew, using
phrases like “auto-renewed” or “no automatic renewal”, can
also be helpful. (2) Highlight important information, such as
current charge information, with a larger font size to make
it more visible. (3) Place useful information near or on
the interactive buttons, like “subscribe” and “continue”, so
that users can easily access the information before proceed-
ing. (4) Clearly display the dismiss icon in a familiar lo-
cation, such as the upper-left or upper-right corner, so that
users can easily close the UI if they choose not to subscribe.
(5) Incorporate notification features to alert users of criti-
cal events, such as subscription confirmations, cancellations,
or approaching deadlines. These notifications can be in the
form of pop-up messages or emails, and they can help users
stay informed and avoid unexpected charges or renewals. Ad-
ditionally, a simple test (such as a math question) before
confirming a subscription can prevent accidental sign-ups
by children without their guardians’ consent. Another use-
ful suggestion is to use various widget classes in a standard-
ized way when designing UI interfaces (especially in XML
files). For example, use the “Button” class for buttons and
the “TextView” class for text, which can greatly improve the
efficiency and accuracy of software testing.

5.2 App Users

Lack of awareness and caution make many users vulnera-
ble to the threat of fleeceware. To address this, we have
developed a user manual to help users better understand
subscriptions[44]. The manual covers crucial information
such as what subscriptions are, what to pay attention to, how
to cancel a subscription, and how to avoid common scams.
For complete details, please visit our website. Some of the
suggestions include: (1) Be patient with subscription pop-
ups. Some apps will block users from accessing their ser-
vices by displaying subscription pop-ups. If users really need

1554 33rd USENIX Security Symposium USENIX Association

the app, read the subscription terms carefully to avoid sub-
scribing by mistake. (2) Be cautious when navigating sub-
scription UIs to avoid falling into traps. Some apps delib-
erately hide subscription terms or make false claims about
being free. Be careful before clicking any buttons in a UI,
especially when seeing phrases like “use for free” or “free
trial”. (3) Pay attention to essential subscription information,
such as the price, billing frequency, trial period, cancellation
deadline, and auto-renewal terms when reading a subscrip-
tion UI. Do not subscribe if this information cannot be found
or understood easily. (4) Understand the right way to cancel
a subscription. Uninstalling an app does not mean canceling
the subscription. The common ways to cancel subscriptions
are given in the user manual. Users can familiarize them-
selves with these cancellation ways before subscribing. (5)
provide feedback to the app developers or app market man-
agers as soon as possible if you encounter any problems.

5.3 App Markets
As a centralized platform for apps, the app market should
strive to provide better services and enforce stricter manage-
ment of the apps displayed on it to benefit users. (1) A more
user-friendly way to manage subscriptions can be proposed
to improve the user experience by providing. The informa-
tion could be demonstrated on the download pages of all sub-
scription apps to make it easy for users to find. (2) Establish
an effective feedback channel for users to report issues about
fleeceware and anything else. (3) Using user reviews as a
source for regulating apps. In our research, we find that user
reviews can reveal many issues with an app. These reviews
not only help developers understand areas for improvement
but also enable platforms to analyze and identify apps that
pose potential threats. Platforms can then conduct further
testing and monitoring of such apps to ensure compliance
and user safety. (4) Considering the use of a wider range of
tools to detect potential risks in the app market. The issues
present in app marketplaces encompass various behaviors
that can impact users. Market managers should consider em-
ploying different types of tools to discover and address these
issues. Our tool can also help to detect suspected fleeceware
in a cost-effective way. (5) Consider implementing a reputa-
tion credit system for developers and penalizing those who
deliver fleeceware and other malicious apps.

6 Discussion

Deployment: DARKFLEECE currently operates as an
offline-analysis tool that analyzes application packages and
provides detection results before user interaction with the
app, rather than during usage. Therefore, DARKFLEECE can
be primarily used for offline analysis. App users can utilize it
locally to detect fleeceware designs within apps before usage,
averting potential deception. Benign app developers can use

it to scan their apps before deployment to preemptively ad-
dress any unintentional fleeceware issues. App markets can
leverage it for large-scale scanning. Third-party app evalu-
ators can also employ it to evaluate apps and share results
with others.

DARKFLEECE can enhance detection performance and ef-
ficiency based on external information. For example, it can
adjust detection strategies based on user feedback to achieve
more customized and accurate detection. Furthermore, user
reviews can raise alerts about potential fleeceware problems
in the future, helping to refine detection targets and improve
detection efficiency. For instance, when relevant user com-
plaints are detected or formal reports are submitted, app mar-
kets can use DARKFLEECE to investigate potential fleece-
ware issues.
“Overcharge” Attribution Detection. Quantifying over-
charge is subjective, any charge made without the end-user’s
knowledge constitutes an overcharge, so we emphasize iden-
tifying fleeceware’s deceptive characteristics through dark
patterns. In addition, we set PR_MAX in Feature F19 ad-
justable. End users can set this value based on their accept-
able price range, and market regulators can set more appro-
priate values based on market statistics to achieve a more
accurate estimation of the overcharge.
UI Static Analysis. The fleeceware features we focused on
covered all types of dark patterns and platform requirements
except for those related to dynamic interactions (i.e., the cat-
egory nagging and requirement R4). Dynamic interactions
were not considered for three reasons. Firstly, most subscrip-
tion dark patterns and requirements for UI development are
about static elements and layouts on the UIs. Secondly, the
dark patterns related to interaction, such as subscription ads
popping up repeatedly, may primarily affect the user experi-
ence when using the app rather than causing financial loss.
Additionally, static analysis of subscription UIs can be more
widely applicable as it can be conveniently used in any app,
as long as the subscription UI can be obtained. However, sub-
scription UI analysis may be affected by irrelevant elements
on the UIs, such as in-app purchase information and pop-ups,
which may cause DARKFLEECE to mistakenly analyze them
as subscription UIs, resulting in false positives. We can fur-
ther observe the features of these UIs and design methods to
filter them out.
Features Extraction. DARKFLEECE extracts UI features
by utilizing UI structure information, which may not be able
to handle non-standardized development practices, such as
the misuse of tags (e.g., misusing“TextView” and “Button”),
displaying text within images, customizing view positions,
complex interface hierarchies, and arbitrary naming of wid-
gets. Further research could minimize dependence on the
structure information by directly employing image process-
ing techniques to extract and locate relevant elements within
the subscription UI. This also enhances the robustness of our
method. If attackers attempt to influence our extraction by al-

USENIX Association 33rd USENIX Security Symposium 1555

tering the UI displayed to users, users may observe the issue
and avoid being deceived.

In addition, regular expressions are utilized to extract im-
portant textual information. However, the vast number of
apps in the market and the various expressions of informa-
tion make it difficult to create regular expressions that cover
all cases. To address this challenge and improve efficiency
and comprehensiveness, an AI-based regular expression gen-
erator could be incorporated. Moreover, we used OCR tech-
niques to extract visual information but encountered limita-
tions that caused some elements to be inaccurately identified.
Future research could leverage advanced computer vision
techniques to obtain more precise information.

7 Related Work

Existing Android malware detection technologies mainly in-
clude static detection and dynamic detection. Static analy-
sis performs feature extraction by disassembling source code
to detect suspicious code without running the application
[1, 2, 24, 32, 39], but cannot solve code obfuscation and
dynamic code loading [3, 56]. Dynamic analysis can deal
with code obfuscation by checking the characteristics of sus-
picious Android applications at runtime [13], but it will con-
sume more resources and storage space [48], and malware
can use anti-simulation methods to evade dynamic analysis
[23, 57]. Recent deep-learning-based techniques can better
identify unknown malware, but the effect depends on the al-
gorithm design and dataset [59]. However, the existing tech-
niques cannot detect fleeceware, because most fleeceware
does not contain malicious code and exhibit coding patterns
that closely resemble legitimate apps, without resorting to
traditional malicious behaviors, such as stealing confidential
data and causing system crashes.

Analyzing UIs can provide valuable insights for develop-
ers and designers to create effective UI design styles, accel-
erating the process of building UIs for their apps [8, 15, 18].
Moreover, UI analysis can reveal issues within an app,
such as rendering problems and inefficient image display.
DRAW [26] conducts UI rendering analysis to help develop-
ers identify and resolve short delays, while TAPIR [33] aims
to detect inefficient image displays in mobile apps. Owl-
Eye [36] can identify display issues, such as text overlap
and missing images, and locate the specific region of the
problem within a UI. Automated UI testing, a crucial as-
pect of UI analysis, involves dynamically exploring the user
interfaces of an application to obtain relevant information.
Various tools have been developed to facilitate this, such
as Monkey [53], which generates a series of random oper-
ations (e.g., clicking, swiping) to execute an app automati-
cally, and DroidBot [34], which uses a model-based strategy
to enhance exploration efficiency. However, these studies
and tools are mainly focused on functional testing and gen-
eral display issues and are not adequate for detecting prob-

lematic subscription UIs. In our work, we utilize and modify
DroidBot’s search strategy to better detect subscription UIs.

Dark patterns are UI designs that deceive users into mak-
ing decisions that do not align with their best interests. Re-
cent research has focused on the negative impact of dark pat-
terns and proposed solutions [10, 16, 19, 21, 29, 40, 42].
Gray et al. [29] categorize dark patterns into nagging, ob-
struction, sneaking, interface interferences, and forced ac-
tion. Meanwhile, Narayanan et al. reviewed the history
and ethical implications of dark patterns [42]. Additionally,
Yada et al. [62] constructed a dataset for dark pattern detec-
tion, which comprised 1,818 dark pattern texts from shop-
ping sites, and machine learning methods were applied to
detect them. Furthermore, a study by Geronimo et al. [21] ex-
plored the prevalence and impact of dark patterns in mobile
applications and suggested recommendations for designers
and developers to create more ethical and user-friendly UIs
that avoid the use of dark patterns. Chen et al. [16] uses gen-
eral attributes of UI elements such as hierarchy, color, and
font size to detect common UI dark patterns like layer over-
lays, pre-selected options, and hidden text. However, due to
the unique deceptive practices of fleeceware, such as varying
UI layouts and confusing textual expressions that convey am-
biguous or contradictory semantics, this proposed approach
lacks semantic analysis of interface information and is not ef-
fective for automatically detecting dark patterns on subscrip-
tion UIs. We address this issue by extracting features related
to specific subscription information and analyzing the over-
all accuracy and reasonableness of subscription information
expression.

8 Conclusion

This work is dedicated to investigating fleeceware at scale
through the development of an automatic fleeceware detec-
tion system called DARKFLEECE. To identify detective fea-
tures for fleeceware, we construct a feature library based on
expert knowledge drawing from observations of user inter-
actions with fleeceware behaviors, a review of fleeceware
samples, and insights from dark pattern studies and platform-
specific UI design requirements. Then a novel layout-based
information linking technique and a multi-rule-based infor-
mation extraction method are designed to harvest subscrip-
tion information, which is then converted to UI features. And
a classifier is finally applied to detect whether the UI is sus-
pected. With an accuracy of 93.43%, DARKFLEECE accu-
rately identifies suspected fleeceware UIs and provides eas-
ily understandable alerts to users to comprehend the potential
risks of fleeceware. We also ran DARKFLEECE in the wild
to investigate the landscape, app developers, evolution, and
user perception of fleeceware. Our findings offer valuable
insights for app users, developers, and app market managers
on how to prevent such problems. We have reported our find-
ings to Google to get their recognition.

1556 33rd USENIX Security Symposium USENIX Association

Acknowledgements
The IIE authors are supported in part by NSFC (92270204)
and Youth Innovation Promotion Association CAS. And
the HYU author was supported by the Institute of Infor-
mation & communications Technology Planning & Evalu-
ation (IITP) grant (No. RS-2022-00155885, Artificial In-
telligence Convergence Innovation Human Resources De-
velopment (Hanyang University ERICA)) and the Na-
tional Research Foundation of Korea (NRF) grant (NRF-
2022R1F1A1074999), both funded by the Korea govern-
ment (MSIT).

References

[1] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer:
Mining api-level features for robust malware detection in an-
droid. In Security and Privacy in Communication Networks:
9th International ICST Conference, SecureComm 2013, Syd-
ney, NSW, Australia, September 25-28, 2013, Revised Selected
Papers 9, pages 86–103. Springer, 2013.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[3] Ömer Aslan Aslan and Refik Samet. A comprehensive re-
view on malware detection approaches. IEEE Access, 8:6249–
6271, 2020.

[4] Avast. Lists of fleeceware apps. https://github.com/ava
st/ioc/tree/master/Fleeceware, 2021.

[5] Paul Bao, Lei Zhang, and Xiaolin Wu. Canny edge de-
tection enhancement by scale multiplication. IEEE TPAMI,
27(9):1485–1490, 2005.

[6] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabi-
ano Tarlao. Inference of regular expressions for text extraction
from examples. IEEE Transactions on Knowledge and Data
Engineering, 28(5):1217–1230, 2016.

[7] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabi-
ano Tarlao. Learning text patterns using separate-and-conquer
genetic programming. In EuroGP, 2015.

[8] Farnaz Behrang, Steven P Reiss, and Alessandro Orso.
Guifetch: supporting app design and development through gui
search. In MOBILESoft’ 18, pages 236–246, 2018.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and regression trees (cart). Biometrics,
40(3):358, 1984.

[10] Harry Brignull. Deceptive design. https://www.deceptiv
e.design/, 2022.

[11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system for an-
droid. In SPSM ’11, pages 15–26, 2011.

[12] BusinessofApps. Global consumer spending in subscription
apps reached $17.1 billion in 2022. https://www.busine
ssofapps.com/data/app-revenues/, 2022.

[13] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao.
Droidcat: Effective android malware detection and categoriza-
tion via app-level profiling. IEEE Transactions on Informa-
tion Forensics and Security, 14(6):1455–1470, 2018.

[14] Jagadeesh Chandraiah. Fleeceware apps overcharge users for
basic app functionality. https://news.sophos.com/en-u
s/2019/09/25/fleeceware-apps-overcharge-users-f
or-basic-app-functionality/, 2019.

[15] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing,
and Yang Liu. From ui design image to gui skeleton: a neural
machine translator to bootstrap mobile gui implementation. In
Proceedings of the 40th ICSE, pages 665–676, 2018.

[16] Jieshan Chen, Jiamou Sun, Sidong Feng, Zhenchang Xing,
Qinghua Lu, Xiwei Xu, and Chunyang Chen. Unveiling the
tricks: Automated detection of dark patterns in mobile appli-
cations. In Proceedings of the 36th UIST, New York, NY,
USA, 2023. Association for Computing Machinery.

[17] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan
Zhang, Heqing Huang, Wei Zou, and Peng Liu. Finding un-
known malice in 10 seconds: Mass vetting for new threats at
the {Google-Play} scale. In 24th USENIX Security Sympo-
sium, pages 659–674, 2015.

[18] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li,
Yang Liu, and Lihua Xu. Storydroid: Automated generation
of storyboard for android apps. In 2019 IEEE/ACM 41st ICSE,
pages 596–607. IEEE, 2019.

[19] Gregory Conti and Edward Sobiesk. Malicious interface de-
sign: Exploiting the user. In Proceedings of WWW ’10, page
271280, New York, NY, USA, 2010. Association for Comput-
ing Machinery.

[20] Alexandre Dewez. Benchmarking the pricing strategy of 100+
subscription based mobile apps. https://alexandre.su
bstack.com/p/-benchmarking-the-pricing-strategy,
2020.

[21] Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio
Palomba, and Alberto Bacchelli. Ui dark patterns and where
to find them: A study on mobile applications and user percep-
tion. In Proceedings of CHI ’20, page 114, New York, NY,
USA, 2020. Association for Computing Machinery.

[22] Lijun Ding and Ardeshir Goshtasby. On the canny edge detec-
tor. Pattern recognition, 34(3):721–725, 2001.

[23] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Gan-
moor, Manoj Singh Gaur, Mauro Conti, and Muttukrishnan
Rajarajan. Android security: a survey of issues, malware pen-
etration, and defenses. IEEE communications surveys & tuto-
rials, 17(2):998–1022, 2014.

[24] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo
Suarez-Tangil, and Steven Furnell. Androdialysis: Analysis
of android intent effectiveness in malware detection. comput-
ers & security, 65:121–134, 2017.

[25] Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and
Yuwan Ma. A novel dynamic android malware detection sys-
tem with ensemble learning. IEEE Access, 6:30996–31011,
2018.

[26] Yi Gao, Yang Luo, Daqing Chen, Haocheng Huang, Wei
Dong, Mingyuan Xia, Xue Liu, and Jiajun Bu. Every pixel
counts: Fine-grained ui rendering analysis for mobile applica-
tions. In IEEE INFOCOM 2017-ICCC, pages 1–9, 2017.

[27] Google. Google play billing system overview. https://
developer.android.google.cn/google/play/billing,
2022.

[28] Google-Developers. Policy center. https://support.
google.com/googleplay/android-developer/answer/
9900533?hl=en&ref_topic=9857752, 2022.

[29] Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and
Austin L. Toombs. The dark (patterns) side of ux design. In
Proceedings of CHI ’18, page 114, New York, NY, USA, 2018.
Association for Computing Machinery.

[30] ITRC. Subscription renewal scams are another way to steal
your identity. https://www.idtheftcenter.org/post/s
ubscription-renewal-scams-are-another-way-to-s
teal-your-identity-itrc/, 2021.

[31] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. Perfor-
mance measurement of a general multi-scale template match-

USENIX Association 33rd USENIX Security Symposium 1557

https://github.com/avast/ioc/tree/master/Fleeceware
https://github.com/avast/ioc/tree/master/Fleeceware
https://www.deceptive.design/
https://www.deceptive.design/
https://www.businessofapps.com/data/app-revenues/
https://www.businessofapps.com/data/app-revenues/
https://news.sophos.com/en-us/2019/09/25/fleeceware-apps-overcharge-users-for-basic-app-functionality/
https://news.sophos.com/en-us/2019/09/25/fleeceware-apps-overcharge-users-for-basic-app-functionality/
https://news.sophos.com/en-us/2019/09/25/fleeceware-apps-overcharge-users-for-basic-app-functionality/
https://alexandre.substack.com/p/-benchmarking-the-pricing-strategy
https://alexandre.substack.com/p/-benchmarking-the-pricing-strategy
https://developer.android.google.cn/google/play/billing
https://developer.android.google.cn/google/play/billing
https://support.google.com/googleplay/android-developer/answer/9900533?hl=en&ref_topic=9857752
https://support.google.com/googleplay/android-developer/answer/9900533?hl=en&ref_topic=9857752
https://support.google.com/googleplay/android-developer/answer/9900533?hl=en&ref_topic=9857752
https://www.idtheftcenter.org/post/subscription-renewal-scams-are-another-way-to-steal-your-identity-itrc/
https://www.idtheftcenter.org/post/subscription-renewal-scams-are-another-way-to-steal-your-identity-itrc/
https://www.idtheftcenter.org/post/subscription-renewal-scams-are-another-way-to-steal-your-identity-itrc/

ing method. In 2015 IEEE 19th INES, pages 153–157, 2015.
[32] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques

Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. Iccta: De-
tecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th ICSE, volume 1, pages 280–291, 2015.

[33] Wenjie Li, Yanyan Jiang, Chang Xu, Yepang Liu, Xiaoxing
Ma, and Jian Lü. Characterizing and detecting inefficient im-
age displaying issues in android apps. In 2019 IEEE 26th
SANER, pages 355–365. IEEE, 2019.

[34] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.
Droidbot: a lightweight ui-guided test input generator for an-
droid. In 2017 IEEE/ACM 39th ICSE-C, pages 23–26, 2017.

[35] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei
Sun, and Haifeng Liu. A review of android malware detec-
tion approaches based on machine learning. IEEE Access,
8:124579–124607, 2020.

[36] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun
Hu, and Qing Wang. Owl eyes: Spotting ui display issues via
visual understanding. In 35th IEEE/ACM ASE, pages 398–
409. IEEE, 2020.

[37] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave,
Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmel-
farb, Nisha Bansal, and Su-In Lee. From local explanations
to global understanding with explainable ai for trees. Nature
Machine Intelligence, 2(1):2522–5839, 2020.

[38] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi
Horibe, Michael J Eisses, Trevor Adams, David E Liston,
Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim, et al.
Explainable machine-learning predictions for the prevention
of hypoxaemia during surgery. Nature Biomedical Engineer-
ing, 2(10):749, 2018.

[39] Alejandro Martín, Héctor D Menéndez, and David Camacho.
Mocdroid: multi-objective evolutionary classifier for android
malware detection. Soft Computing, 21:7405–7415, 2017.

[40] Arunesh Mathur, Mihir Kshirsagar, and Jonathan Mayer.
What makes a dark pattern... dark? design attributes, norma-
tive considerations, and measurement methods. In Proceed-
ings of CHI ’21, New York, NY, USA, 2021. Association for
Computing Machinery.

[41] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong
Kang, Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh
Safaei, Erik Trickel, Ziming Zhao, Adam Doupé, et al. Deep
android malware detection. In Proceedings of the seventh
ACM CODASPY, pages 301–308, 2017.

[42] Arvind Narayanan, Arunesh Mathur, Marshini Chetty, and
Mihir Kshirsagar. Dark patterns: Past, present, and future:
The evolution of tricky user interfaces. Queue, 18(2):6792,
may 2020.

[43] Ehsan Noei, Feng Zhang, and Ying Zou. Too many user-
reviews! what should app developers look at first? IEEE
TSE, 47(2):367–378, 2019.

[44] Our website. https://sites.google.com/view/stud
y-about-subscription-uis/.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[46] Google Play. Subscription apps on google play:
User insights to help developers win. https:
//services.google.com/fh/files/misc/subscrip
tion_apps_on_google_play.pdf, 2017.

[47] Thomas (TJ) Porter. What to do if youve become the victim of
a subscription scam. https://www.mybanktracker.com/

money-tips/money/subscription-scam-296704, 2022.
[48] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam

Malek. A taxonomy and qualitative comparison of program
analysis techniques for security assessment of android soft-
ware. IEEE TSE, 43(6):492–530, 2016.

[49] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-
Pedrero, Javier Nieves, Pablo G Bringas, and Gonzalo Ál-
varez Marañón. Mama: manifest analysis for malware detec-
tion in android. Cybernetics and Systems, 44(6-7):469–488,
2013.

[50] Andriy Slynchuk. How to know you’re being scammed by a
fleeceware app. https://clario.co/blog/how-to-spo
t-fleeceware-apps/, 2021.

[51] Ray Smith. An overview of the tesseract ocr engine. In ICDAR
2007, volume 2, pages 629–633. IEEE, 2007.

[52] Sophos. Dissecting fleeceware apps: the million-
dollar money-making machine in android and ios.
https://vb2020.vblocalhost.com/presentations/di
ssecting-fleeceware-apps-the-million-dollar-mon
ey-making-machine-in-android-and-ios/, 2020.

[53] Android Studio. Ui/application exerciser monkey. developer.
android. com. https://developer. android. com/studio/test/mon-
key (accessed Sep. 3, 2020), 2017.

[54] Feng Tang and Hai Tao. Fast multi-scale template matching
using binary features. In WACV ’07, pages 36–36. Citeseer,
2007.

[55] Peter Teufl, Michaela Ferk, Andreas Fitzek, Daniel Hein, Ste-
fan Kraxberger, and Clemens Orthacker. Malware detection
by applying knowledge discovery processes to application
metadata on the android market (google play). Security and
communication networks, 9(5):389–419, 2016.

[56] Sitalakshmi Venkatraman, Mamoun Alazab, and R Vinayaku-
mar. A hybrid deep learning image-based analysis for effec-
tive malware detection. Journal of Information Security and
Applications, 47:377–389, 2019.

[57] Timothy Vidas and Nicolas Christin. Evading android run-
time analysis via sandbox detection. In Proceedings of the
9th ASIACCS, pages 447–458, 2014.

[58] JAKUB VÁVRA. How fleeceware apps have earned over $400
million on android and ios. https://blog.avast.com/f
leeceware-apps-on-mobile-app-stores-avast, 2021.

[59] Zhiqiang Wang, Qian Liu, and Yaping Chi. Review of an-
droid malware detection based on deep learning. IEEE Access,
8:181102–181126, 2020.

[60] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee,
and Kuo-Ping Wu. Droidmat: Android malware detection
through manifest and api calls tracing. In Seventh Asia joint
conference on information security, pages 62–69. IEEE, 2012.

[61] Ke Xu, Yingjiu Li, Robert H Deng, and Kai Chen. Deepre-
finer: Multi-layer android malware detection system applying
deep neural networks. In EuroSP ’18, pages 473–487. IEEE,
2018.

[62] Yuki Yada, Jiaying Feng, Tsuneo Matsumoto, Nao
Fukushima, Fuyuko Kido, and Hayato Yamana. Dark pat-
terns in e-commerce: a dataset and its baseline evaluations.
In 2022 IEEE International Conference on Big Data, pages
3015–3022, 2022.

[63] Li Yujian and Liu Bo. A normalized levenshtein distance met-
ric. IEEE TPAMI, 29(6):1091–1095, 2007.

[64] Win Zaw Zarni Aung. Permission-based android malware de-
tection. International Journal of Scientific & Technology Re-
search, 2(3):228–234, 2013.

[65] Sergey Zubkov. Subscription prices have increased by 40%,
whats next? https://adapty.io/blog/subscriptio
n-prices-have-increased-by-40-percent/, 2022.

1558 33rd USENIX Security Symposium USENIX Association

https://sites.google.com/view/study-about-subscription-uis/
https://sites.google.com/view/study-about-subscription-uis/
https://services.google.com/fh/files/misc/subscription_apps_on_google_play.pdf
https://services.google.com/fh/files/misc/subscription_apps_on_google_play.pdf
https://services.google.com/fh/files/misc/subscription_apps_on_google_play.pdf
https://www.mybanktracker.com/money-tips/money/subscription-scam-296704
https://www.mybanktracker.com/money-tips/money/subscription-scam-296704
https://clario.co/blog/how-to-spot-fleeceware-apps/
https://clario.co/blog/how-to-spot-fleeceware-apps/
https://vb2020.vblocalhost.com/presentations/dissecting-fleeceware-apps-the-million-dollar-money-making-machine-in-android-and-ios/
https://vb2020.vblocalhost.com/presentations/dissecting-fleeceware-apps-the-million-dollar-money-making-machine-in-android-and-ios/
https://vb2020.vblocalhost.com/presentations/dissecting-fleeceware-apps-the-million-dollar-money-making-machine-in-android-and-ios/
https://blog.avast.com/fleeceware-apps-on-mobile-app-stores-avast
https://blog.avast.com/fleeceware-apps-on-mobile-app-stores-avast
https://adapty.io/blog/subscription-prices-have-increased-by-40-percent/
https://adapty.io/blog/subscription-prices-have-increased-by-40-percent/

Appendix

A Distribution of Fleeceware across Categories
Table 5: categories of suspected fleeceware.

Categories Number of apps Ratio Video Players & Editors 20 4.51%
Photography 48 10.84% Education 18 4.06%

Entertainment 48 10.84% Lifestyle 18 4.06%
Health & Fitness 28 6.32% Weather 15 3.39%
Music & Audio 27 6.09% Productivity 15 3.39%
Personalization 25 5.64% Maps & Navigation 14 3.16%

Tools 25 5.64% Art & Design 12 2.71%
Business 24 5.42% Others1 87 19.64%

Communication 21 4.74% Total 443
1 “Others” contains 18 other categories, e.g., “Comics”, “Sports”, “Events”, “House & Home”, “Travel & Local”, each

of which accounts for less than 2.5%.

B Label Tool
We developed an annotation tool to enhance the labeling efficiency of experts. The interface is shown in Figure 9.

Figure 9: An example showing what users need to label.

USENIX Association 33rd USENIX Security Symposium 1559

C Features of Subscription UIs

Table 6: Features of Subscription UIs
(S is a given subscription UI)

Features Phenomena

F1 =

{
1 ∃t ∈ TS,TPI ∈ t
0 Otherwise , where TS is the text set of the UI S, TPI is the text of price information (PI). No.1

F2 =

{
1 ∃t ∈ TS,TBF ∈ t
0 Otherwise , where TS is the text set of the UI S, TBF is the text of billing frequency (BF) information. No.2

F3 =

 −1 ∀t ∈ TS,TFT /∈ t
1 ∃t ∈ Ts,TT D ∈ t
0 Otherwise

, where TFT is is the text of free trial information, TT D is the text of trial duration information No.3

F4 =

{
1 ∃t ∈ TS,TAR ∈ t
0 Otherwise , where TS is the text set of the UI S, TAR is the text of auto-renewal information. No.4

F5 =

{
1 ∀(t ∈ TS and TFT ∈ t),TPI ∈ t
0 Otherwise , where TFT is the text of free trial information, TPI is the text of price information. No.5

F6 =

{
1 ∃t ∈ TS,NBF ≤ NPI
0 Otherwise , where NBF and NPI are the number of BF information and PI information in text t respectively. No.6

F7 =

 min
t∈TS ,NPI≥2 and NBF≥2

{
k1

f nt_sz(TPI1)

f nt_sz(TPI2)
×Fbold(TPI1)

}
∃t ∈ TS,NPI ≥ 2 and NBF ≥ 2

2 Otherwise
, where f nt_sz(TPI2) and f nt_sz(TPI2)

are the font size of price information with the largest and the second largest billing frequency respectively. Fbold(TPI) ={
k2 f nt_sty(TPI) = “bold”
1 Otherwise , f nt_sty(TPI) is the font style of the text of PI, ki is the weight parameters which can be adjusted.

No.7

F8 =

{
0 ∃TCD ∈ TS,val(TCD) ̸= val(TT D)
1 Otherwise , where TCD is cancellation deadline for subscription, val() outputs the value of an element. No.8

F9 =

{
1 ∀b ∈ BS,“subscri∗ ” ∈ Tb
0 Otherwise , where BS is the button set in the UI S, Tb is the text of the button. No.9

F10 =

{
1 ∀b ∈ BS,TPI ∈ Tb
0 Otherwise , where Tb is the text of interactive button in the UI S, TPI is the text of price information. No.9

F11 =
min

TPI∈TS ,b∈BS
{dis(ver_loc(TPI),ver_loc(b))}

HS
, where ver_loc() outputs the vertical location of an element, HS is the UI’s height. No.9

F12 = max
t∈TS ,TPI∈t

{
k1

len(TPI)
len(t) × k2

f nt_sz(TPI)
f nt_sz(t) ×Fbold(TPI)

}
, where f nt_sz() outputs the font size of the text. No.10

F13 =

 −1 F1 = 0
0 ∃TPI ∈ TS,obs(TPI) = False
1 Otherwise

, where obs(TPI) outputs whether the price information can be clearly observed. No.10

F14 =

 −1 F2 = 0
0 ∃TBF ∈ TS,obs(TBF) = False
1 Otherwise

, where obs(TBF) outputs whether the BF information can be clearly observed. No.10

F15 =

 −1 F3 =−1 or F3 = 0
0 ∃TT D ∈ TS,obs(TT D) = False
1 Otherwise

, where obs(TT D) outputs whether the trial duration information can be clearly observed. No.10

F16 =

 −1 F4 = 0
0 ∃TAR ∈ TS,obs(TAR) = False
1 Otherwise

, where obs(TAR) outputs whether the auto-renewal information can be clearly observed. No.10

F17 =

{
1 ∀ic ∈ ICS,obs(ic) = True
0 Otherwise , where ICS is the icon set of a UI S, obs(ic) indicates whether ic can be clearly observed. No.11

F18 =

{
1 ∀TPI ∈ TS,val(TPI)≤ PR_MAX
0 Otherwise , where val(TPI) is the value of PI, PR_MAX is the reasonable market price. No.12

F19 =

{
1 ∀ TPI1 ,TPI2 ∈ TS,val(TPI1)≤ val(TPI2)
0 Otherwise , where TPI1 and TPI2 are price with and without a trial. No.12

Note: According to reports [20, 46, 65], we set PR_MAX as “$15/week” and “$40/month” in our work. The value can be changed according to user’s expectation and the market
price.

1560 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Subscription and Fleeceware
	App Markets Regulatory Mechanisms
	Dark Patterns Observed in Fleeceware

	DarkFleece
	Threat Model
	Overview
	Knowledge-Based Feature Construction
	UI Collector
	Feature Extractor
	Detector
	Evaluator

	Evaluation and Findings
	Setting
	Performance Evaluation
	Findings in the Wild

	Lessons
	Ethical Developers
	App Users
	App Markets

	Discussion
	Related Work
	Conclusion
	Distribution of Fleeceware across Categories
	Label Tool
	Features of Subscription UIs

