
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Can Virtual Reality Protect Users from
Keystroke Inference Attacks?

Zhuolin Yang, Zain Sarwar, Iris Hwang, Ronik Bhaskar, Ben Y. Zhao,
and Haitao Zheng, University of Chicago

https://www.usenix.org/conference/usenixsecurity24/presentation/yang-zhuolin

Can Virtual Reality Protect Users from Keystroke Inference Attacks?

Zhuolin Yang
University of Chicago

Zain Sarwar
University of Chicago

Iris Hwang
University of Chicago

Ronik Bhaskar
University of Chicago

Ben Y. Zhao
University of Chicago

Haitao Zheng
University of Chicago

Abstract
Virtual Reality (VR) has gained popularity by providing

immersive and interactive experiences without geographi-
cal limitations. It also provides a sense of personal privacy
through physical separation. In this paper, we show that de-
spite assumptions of enhanced privacy, VR is unable to shield
its users from side-channel attacks that steal private informa-
tion. Ironically, this vulnerability arises from VR’s greatest
strength, its immersive and interactive nature. We demonstrate
this by designing and implementing a new set of keystroke
inference attacks in shared virtual environments, where an at-
tacker (VR user) can recover the content typed by another VR
user by observing their avatar. While the avatar displays noisy
telemetry of the user’s hand motion, an intelligent attacker
can use that data to recognize typed keys and reconstruct
typed content, without knowing the keyboard layout or gath-
ering labeled data. We evaluate the proposed attacks using
IRB-approved user studies across multiple VR scenarios. For
13 out of 15 tested users, our attacks accurately recognize
86%-98% of typed keys, and the recovered content retains up
to 98% of the meaning of the original typed content. We also
discuss potential defenses.

1 Introduction

Virtual Reality (VR) offers a whole new dimension of on-
line interaction significantly more immersive and lifelike than
those offered by existing services. By eliminating the need
for physical proximity and formal attire, VR cultivates a more
convenient, comfortable, and efficient environment for work,
play, and social interaction. Thus, VR is increasingly adopted
for both personal and professional purposes [40, 42]. In par-
ticular, remote work through VR has witnessed remarkable
growth. Numerous companies actively promote its adoption
with their remote work platforms, including Meta’s Horizon
Workrooms [41] and VR applications and startups such as
Valve [2] and vSpatial [54]. Apple’s recent launch of Vision
Pro [4] serves as further validation of the substantial interest
and investment being made in VR-based remote work.

Because users interact with others using their digital repre-
sentations or avatars, VR also provides them with a unique
sense of privacy and added security. Representation through
their digital selves can be particularly attractive for sensi-
tive professional/work activities [26]. In general, VR users
can customize how they present themselves and choose what
they want to show of their physical environments. This “nat-
ural filter” can help prevent the unwanted leakage of private
information without the user’s knowledge. For example, it
might block traditional side-channel attacks, where an attacker
can use physical observations of a user or their devices to
steal information, e.g., screen peeking, shoulder surfing, and
keystroke inference [58, 59, 62].

In this paper, we challenge this assumption by investigating
the feasibility of keystroke inference attacks in shared VR
environments, where one VR user may attempt to recover
the content typed by another user by recording and analyz-
ing their avatar’s actions. Since typing is the primary input
method for sensitive information to computing systems [57],
successful keystroke inference attacks can cause significant
damage, such as unauthorized disclosure of confidential or
classified data that may lead to breaches of personal privacy or
even financial losses. Compared to physical attacks, keystroke
inference attacks over VR can be much more powerful, be-
cause a single attacker can target numerous remote victims
without physical proximity constraints.

Ironically, we show that VR’s most appealing properties,
its immersive and interactive nature, are the source of VR
users’ vulnerability to keystroke inference attacks. Specifi-
cally, immersive experiences in VR rely on each individual’s
expressive avatars [16, 28], which display the user’s body
movements, hand gestures, and facial expressions. When an
individual performs physical actions such as grasping objects,
clapping hands, or typing on a keyboard, their avatar demon-
strates an approximate, digital version of those hand move-
ments, which are visible to other users in the same virtual
space. Thus, VR actually “facilitates” side-channel attacks by
eliminating the need and costs of physical sensing.

Our work shows that, while the accuracy, resolution, and

USENIX Association 33rd USENIX Security Symposium 2725

U’s view A’s view of U’s avatar

A in physical world

A and U in a virtual beachside cafe

a b c

U in physical world

Figure 1: An illustrative example of keystroke inference attacks in the shared VR space. (a) In this scenario, U is replying to emails
while enjoying the immersive experience of a virtual beachside cafe. U types comfortably and swiftly on a physical keyboard that is
wirelessly connected to the VR headset. This is a typical setup of a VR office. Adversary A is another VR user in the same virtual
beachside cafe. (b) From their VR headset, U sees the typed content on a virtual screen and a rendered view of their own hands. (c) A’s
view of U’s avatar, displayed by A’s VR headset. Using this information, A seeks to recover the content that U is typing. Credit: The
VR scenes are screenshots taken when running the Horizon Workroom application from Meta [41].

granularity of these VR movements are far from those of
physical observations (e.g., a physical video recording of
the hands), intelligent attackers can still use them to extract
detailed information “carried” by the movements, e.g., keys
being typed. Therefore, the same feature of VR that drives
growing usage and adoption is also enabling a real-world
threat against user privacy and information security.

In this paper, we describe the design, implementation, and
evaluation of keystroke inference attacks in shared VR spaces.
Figure 1 plots an illustrative scenario of the attack. This attack
occurs entirely in the virtual space between avatars, without
any sensing or data from the physical world. An attacker in
the same virtual space as the target gathers the noisy digital
representation of hand movements displayed by the target’s
avatar, and uses it to reconstruct the typed data. We hereby
refer to these digital movements as telemetry of the VR user.

An effective attack faces two unique challenges: (i) the
excessive amount of noise and inconsistency in the telemetry
data, and (ii) the lack of knowledge and labeled data on the
target user and their physical devices, as they are physically
isolated from the adversary. These factors, combined with the
inherent complexity and variability of human typing, make it
challenging to extract meaningful information from the avail-
able data. Commonly used transferability-based attacks (i.e.,
training a model on known users and applying it to others)
are ineffective because an individual’s typing behaviors are
unique [9, 14, 23] and do not transfer to others [58].

We address these challenges by developing a componen-
tized, self-supervised learning pipeline. We decompose the
difficult task of keystroke inference into three sequential com-
ponents, responsible for detecting keystroking events, identi-
fying finger used, and recognizing the key, respectively. For
each component, we first run statistical analysis on simplified
telemetry data to produce initial inference results, leveraging
general understandings of human typing. Then in the second
component, we use these results to curate labeled training
data and train a DNN classifier (i.e., a transformer), one that

learns the intricate relationship between keystrokes and the
full telemetry data. The output of this DNN classifier is then
fed to the final component. Using this componentized design,
our attack can progressively extract, filter, and learn important
keystroke information from the noisy telemetry data, while
minimizing the spread of error in the pipeline.

Our attack also supports flexible placement of the adversary
in the virtual space, whether it is sitting at the same table
(Figure 1), across the room, or floating in the air on a balloon.
This is achieved by applying a coordinate transformation to
normalize telemetry data seen by arbitrary VR users onto a
unified coordinate system so that a wide variety of attacks can
be executed using a single attack pipeline.

Our work makes four key contributions.

• We identify three forms of keystroke inference attacks that
can be executed by a VR adversary in the same virtual space
as the target user. These attacks consider different levels of
information access available to the adversary, including the
original 3D telemetry collected by the target’s headset, the
transformed 3D telemetry sent to the adversary to render the
target’s avatar, and its 2D version extracted directly from the
adversary’s screenshots of the avatar (i.e., Figure 1(c)).

• We design an effective attack pipeline to infer keystroke
content from noisy attack data, using a componentized self-
supervised learning approach.

• We perform IRB-approved user studies to evaluate the pro-
posed attacks under a variety of VR scenarios and settings,
varying avatar distance and placement, keyboard device, and
typing content. Moreover, we test the attacks on 15 users.
On average, our attacks accurately recognize 91.3% of the
typed keys, and the recovered content retains 71.5% of the
meaning of the typed content (see Table 5).

• We explore potential defenses and find that adding zero-
mean Gaussian noise to the telemetry data can reduce attack
effectiveness while preserving the immersive experience to
some degree.

2726 33rd USENIX Security Symposium USENIX Association

To the best of our knowledge, our work is the first to explore
and demonstrate the feasibility of keystroke inference attacks
in shared VR environments. Our work identifies the crucial
challenge of designing VR systems that can provide immer-
sive and engaging experiences while ensuring personal and
information security. Also, our attack methodology represents
a substantial departure from the conventional understanding
of transformers. We hope our results can inspire more self-
supervised, transformer-based attack/defense designs.

2 Background and Related Work
In this section, we first describe existing keystroke inference
attacks in both physical and VR environments. We then dis-
cuss the key features adopted by VR to create immersive
experiences (which are the base of our proposed attack) and
the general landscape of privacy threats in VR.

2.1 Existing Keystroke Inference Attacks
In a keystroke inference attack, an attacker can reconstruct a
target’s typed content without control over their input devices.
We divide existing attacks into three categories: (i) physical
attacks that place sensors near the target to capture their typing
actions, (ii) remote attacks analyzing the target’s network
traffic, and (iii) attacks where the target is a VR user.
Physical attacks. By physically placing sensors (e.g., cam-
eras, microphones, inertial measurement units (IMU), elec-
tromagnetic (EM), and radio frequency (RF) devices) near
a target, attackers can record data related to the target’s typ-
ing actions. The recorded sensor data includes audio [62]
and video [8, 34, 43, 47, 56, 59], as well as vibration, EM [31],
WiFi and LTE measurements [15,33,35]. As pressing different
keys causes changes in signals recorded by sensors, attackers
can use statistical or machine learning analysis to determine
keystroke content. For example, a well-known audio-based
attack [62] placed a microphone next to the target to cap-
ture key-specific sounds generated by typing on a mechanical
keyboard, and trained a machine learning model to identify
key entries from the recording. Follow-up works replace mi-
crophones with other sensors like IMUs, WiFi/LTE radios,
or EM sniffers. Other examples use cameras to capture the
screen and the pressing fingertip reflected by the target’s eyes
or eyeglasses [43, 56], or to record the reflections around the
pressing fingertip produced by a reflective typing surface,
such as a tablet [59].

Physical attacks are mostly ineffective in the VR attack
settings where the adversary, a VR user, cannot place or ac-
cess sensors or side channels (e.g., eye reflection or surface
reflection) in the target’s physical space. Moreover, many
physical attacks require knowledge of the keyboard and its
layout, which are inaccessible to the VR attacker.
Remote attacks by traffic analysis. Song et al. [49] show
that by analyzing encrypted SSH traffic, attackers can detect
when a user is typing a password, and estimate the password

length and content. This is possible because SSH pads data
for encryption using an 8-byte boundary and sends packets
upon each keystroke in interactive mode. Thus, attackers can
infer password length by counting packets and estimate its
content using packet inter-arrival times. On the other hand,
this attack is only applicable to SSH sessions.
Attacks against VR users. Recent works have examined
keystroke inference attacks against VR users [5, 36, 37, 50].
They all target VR users who use a virtual keyboard to input
text. To enter a key, the user may either rotate their head to
move the cursor on the virtual keyboard and make a specific
hand gesture to select the key [36], or type by moving two
fingers (one per hand) in the air [50] or by pointing handheld
controllers [5]. These virtual keystrokes result in simple and
slow typing movements that can be monitored by attackers
using methods such as deploying a stereo camera [36] or a pair
of WiFi devices [5] near the target, or by installing malware
directly on the target’s VR headset [36,50]. These attacks also
assume perfect knowledge of the “virtual keyboard” layout
and screen location, and often labeled data from the target.

2.2 Creating Immersive Experiences in VR
Expressive avatars. The most compelling aspect of VR
is its capacity to generate immersive experiences through
expressive avatars. Expressive avatars foster a heightened
sense of presence and connection by closely emulating users’
real-life movements and expressions. To build such avatars,
modern VR systems (e.g., Meta Quest 2/3/Pro, HTC VIVE
XR Elite) deploy real-time hand tracking and isomorphic
rendering, so users can see and manipulate virtual objects
with their own hands. The rendering of hand movements and
gestures in their avatars adds an additional layer of immersion,
allowing users to communicate, gesture, and interact with
others naturally in the VR environment. This level of realism
and expressiveness provides a true sense of presence and
social interaction [52].
Hand tracking. Hand tracking in VR tracks the position and
orientation of a user’s physical hands. Today, it is achieved
using multiple cameras and IMUs deployed on the user’s VR
headset [53]. The accuracy of hand tracking is influenced
by various factors such as the relative position of the hands
and headset, the number and placement of IMUs and cameras,
lighting conditions in the environment, and the type and speed
of hand movements. Even with advanced VR systems, some
level of error, latency, or jitter in tracking may still occur,
particularly when the user’s hands are moving rapidly.

Currently, the accuracy of hand tracking falls short of the
level required for precise keystroke recognition [20]. This
is due to the fast and intricate finger movements that are
specific to each user and constantly changing, along with the
natural obstruction of the headset-mounted cameras by the
user’s hands. To overcome this challenge, commercial VR
systems utilize a physical keyboard as the input device, while
researchers suggest incorporating additional sensors, such as

USENIX Association 33rd USENIX Security Symposium 2727

IMUs on the user’s wrists [39], to improve the capture of
finger-tapping movements.

2.3 Privacy Threats and Defenses in VR
As VR systems can gather large amounts of data, includ-
ing user activity, location, and behavior, they are inherently
susceptible to privacy attacks that steal or misuse personal
information or sensitive data. A recent study [25] summarizes
the landscape of VR privacy threats and defenses by review-
ing 68 publications, which lists 30 VR attacks, including the
two keystroke inference attacks [5, 36] discussed in §2.1. The
other 28 attacks focus on revealing the user’s demograph-
ics (e.g., age, gender, ethnicity) or sensitive attributes (e.g.,
emotion, physical and mental health, and wealth).

3 Keystroke Inference Attacks in a Shared Vir-
tual Environment

We study a new, VR-based scenario for keystroke inference
attacks where both the target and the adversary are VR users
in the same virtual environment (see Figure 1). While the
target types, the adversary seeks to recover the typed content
using information displayed by the target’s avatar. Without
the constraints of physical proximity to the target, a single
adversary can attack many remote victims, increasing the
potential reach and impact of the attack. Next, we discuss the
motivation behind the attack and the threat model.

3.1 Motivation and Real-World Implications

Our attack is driven by two important trends in VR. First,
productive typing on a full physical keyboard is becoming a
common mode of input in VR systems. Compared to virtual
keyboards, physical keyboards offer precision, comfort, famil-
iar use, and haptic feedback [12]. Popular VR platforms like
Oculus Quest 2/3/Pro and HTC VIVE and VR apps like vSpa-
tial and Immersed already support physical keyboards through
Bluetooth connection [1,2,29,54]. Many VR users also prefer
to use them to input text, especially when working for ex-
tended period of time [12]. As users can now type efficiently
and professionally in their VR workspace, text input in VR
will quickly grow to encompass emails, documents, and other
text-based materials that may contain sensitive information
and personal data.

Second, VR enables immersive interaction among people
in shared virtual environments where each VR user is rep-
resented by their own avatar rather than their physical self.
This contrasts with the well-known privacy issue in physical
spaces where people are directly visible to each other.

These two developments prompt the following question,
which motivated our study: “Is it safe to type sensitive infor-
mation in a shared virtual environment, since VR users can
only see each other’s avatars?”

Horg

x

y

z

Target’s first person view
of their rendered hands

Server

T3d (PoV)

x
z

y

Adversary’s VR headset
Target’s hands rendered

at the adversary side

T2d (PoV)

Original
telemetry

Observed
telemetry

Rendered
handpose

Video-based
hand tracking

VR hand tracking

Figure 2: The three keystroke inference attacks considered by
our work, operating on the original telemetry, the observed
telemetry (used to render the target’s avatar), or the video of the
target’s avatar displayed on the adversary’s VR screen.

3.2 Threat Model
We consider a VR user U, who is doing work in VR by
typing on a physical keyboard wirelessly connected to their
VR headset. We consider an adversary A who is another
VR user sharing the virtual environment with U. To enable
seamless interaction, the VR platform uses an expressive
avatar to represent each user in the virtual environment, which
displays their nonverbal behaviors such as body movements
and hand gestures [16, 28].

We assume that A can only gather data related to U’s
avatar. To render U’s avatar to be seen by A , the headset of
A will receive a continuous stream of U’s telemetry data, i.e.,
U’s handposes. We note that although hand tracking is a built-
in feature of modern VR headsets, the regulations governing
the access and sharing of its data are still in development.
Upon user consent, VR apps can access, store, and stream
this information to render avatars on other devices. There-
fore, we investigate various attack scenarios by varying the
adversary’s level of information access and the design of the
VR app. Following this process, we identify three versions
of the attack, defined by the telemetry data gathered by the
adversary (see Figure 2).

• Attack I: Original telemetry attack operating on Horg.
This represents the strongest adversary, one who has access
to either the target’s headset or the VR rendering server [25].
Here Horg is the 3D telemetry data on U’s hands collected
by U’s headset, which is extracted from a top-down (or
bird’s-eye) view of the hands.

• Attack II: Observed telemetry attack operating on
T3d(PoV). Here the adversary obtains U’s avatar data by
setting up a virtual camera. To render the virtual hands of
U’s avatar to be seen by A , the VR system needs to trans-
form the original telemetry data Horg to screen coordinates
of A’s virtual camera. The latter is defined by PoV , A’s cam-
era point-of-view (PoV) with respect to U. For example,
when A’s avatar (thus the camera) directly faces U, i.e.,
PoV = (0,0), the observed telemetry T3d(0,0) captures a

2728 33rd USENIX Security Symposium USENIX Association

frontal-view of U’s hands. Depending on the VR system/app
design, T3d(PoV) can be calculated by the VR server and
sent to A’s headset, or by A’s headset after receiving Horg.
Here we note that the latter makes it possible for A to gather
Horg directly from A’s VR device and launch the Attack I
mentioned above.

• Attack III: Rendered handpose attack using T2d(PoV).
The attack operates on a 2D projection of T3d(PoV) used
by Attack II such that the depth-to-camera data is removed.
This represents a limited adversary who has no access to any
telemetry data, but instead records U’s avatar shown on A’s
VR screen and applies a hand tracking tool to extract the 2D
handpose per video frame.

In our attack design, the only assumption is that the attacker
is aware of the language used by the target (English in this
study). More importantly, the attacker has no other informa-
tion about the target. This means the attacker lacks knowledge
of the target’s keyboard layout and position, does not have
access to labeled data or prior observations of the target, and
does not have any additional side-channel information besides
the avatar telemetry/handpose data previously discussed.
Extension to virtual keyboards. Note that our proposed
attack naturally extends to future VR systems allowing
controller-free virtual typing on a surface. The attack works
because it requires only handpose data and no knowledge of a
“keyboard.” While such virtual typing is infeasible today due
to insufficient accuracy in hand tracking, it may become a re-
ality in the near future as VR hardware/technology advances.
Ironically, improvements in the accuracy of VR hand tracking
systems will only increase the potency of our attack.

4 Design Challenges and Baseline Solutions
The proposed attack scenario is unique because the adversary
only utilizes telemetry/handpose data of the target’s avatar.
However, this also presents significant difficulties in construct-
ing a successful attack due to the high levels of noise present
in the data. In this section, we address this challenge through
a thorough analysis of the attack data and an examination of
potential attack designs. Our discussion focuses on the orig-
inal telemetry attack (Horg) because T3d and T2d are lossy
transformations of Horg.

4.1 A Closer Look at the Telemetry Data
We examine the 3D telemetry data Horg produced by the Ocu-
lus Quest Pro headset, using bird’s-eye views of the wearer’s
hands captured by the headset’s four cameras. At a sampling
time t, the 3D telemetry is represented by (x,y,z) for each of
the 46 joints on both hands (23 joints per hand). This 3D co-
ordinate system is arranged by p, the physical position of the
headset measured at the start of the VR session, and remains
unchanged throughout the session even as the user’s head
moves around. Therefore, given the (x,y,z) coordinate of a
joint, y is the depth of the joint to p, while the (x,z) are the

Figure 3: The virtual hands rendered by VR headset, overlaid
on top of their corresponding physical hands.

deviation from p in the horizontal plane. Figure 4 (a) shows
a sample instance of Horg, where the left pinky is pressing
a key. Since the physical keyboard is placed on a horizontal
plane, the y value captures the relative height to the keyboard
while the xz values indicate the positions within the keyboard.
Virtual vs. physical hands. Figure 3 plots a sample ob-
servation seen by U, where the virtual hands (rendered by
U’s headset from Horg) are overlaid on top of the physical
hands. The virtual hands do not align with the physical hands,
especially at the fingertips, demonstrating that the telemetry
data is noisy. This is expected as hands can often obstruct
fingertips from the view of the headset cameras and typing on
a physical keyboard is rapid and delicate.
Error analysis. We present an in-depth analysis of the
noise in the telemetry data. As it is challenging to obtain
ground truth positions of hand joints, we choose to analyze
the fingertip coordinates when the user is pressing a key.
Accurate recording of timing and keystrokes is ensured by the
physical keyboard. For each keystroking event, we determine
the corresponding pressing fingertip by manually reviewing
an external video of the typing hands.

Noise in (x,z): Figure 4 (b) shows, for two users, the
spread of (x,z) values of pressing fingertips (reported by Horg)
on top of the actual physical keyboard. Each press point is
marked by the color of the key being pressed. For clarity,
we only show the top 15 frequently used letters. Both users
exhibit clear deviations, with variations among keys and users.
The physical size and spacing of keys do result in some level
of separation in the xz-plane of pressing points.

Noise in y: The noise effect on the depth y value is greater
due to the tendency of users to rest their hands on the physi-
cal keyboard and only slightly lift their fingers to press keys.
This results in a small depth difference between pressing and
non-pressing fingertips. Figure 4 (c) plots, for two users, the
error of depth measurements for pressing the letter ‘e’, nor-
malized by the key height (4.4mm). These results come from
300 instances of typing ‘e’, extracted from a random typing
session. For each instance, we find the pressing fingertip’s
y value, subtract from it the ground truth depth of the key-
board, and divide the residual by the key height. Ideally, the
values should be very close to 0 (i.e., the blue line marking
the ground truth depth of the keyboard). The actual results
demonstrate significant deviations and display a user-specific
bias. For both users, over 50% of the typing instances have
depth errors higher than 2×key height.

The same depth noise affects non-pressing fingers, making

USENIX Association 33rd USENIX Security Symposium 2729

y

z

x

N
or

m
al

iz
ed

De
pt

h
Er

ro
r

a b c

300 Sequential Keystroke “e”

N
or

m
al

iz
ed

De
pt

h
Er

ro
r

Figure 4: (a) A sample instance of Horg where the left pinky is pressing a key. (b) VR collected (x,z) touchpoints from 2 participants.
The corresponding ground truth key positions are marked with the same color. Top-15 frequent letter samples are shown. (c) Depth of
sequential keystrokes when ‘e’ is typed by Participants 1 and 2. Normalized depth error puts the ground truth at zero and scales by the
height of an individual key. Standard Deviation for Participant 1: 1.639. Standard Deviation for Participant 2: 1.853.

it challenging to identify both keystroking events and their cor-
responding pressing fingertips. To study the impact on identi-
fying the pressing fingertip, we compute, for each keystroking
event, the deviation from the “lowest” non-pressing fingertip’s
y to the pressing fingertip’s y. Ideally, the deviation should
be positive and ≥ 1× key height, since the pressing finger-
tip is the lowest across all fingers. Yet we find that, for both
users, more than 30% of the instances have negative values,
i.e., at least one non-pressing fingertip is wrongly reported as
pressing lower than the pressing fingertip.
Summary. These findings collectively demonstrate the pres-
ence and impact of excessive noise in the 3D telemetry data
Horg, particularly for the y values. We also note that, for the
other two forms of handpose data (T3d and T2d), the errors
are exacerbated by the lossy transformations from Horg.

4.2 Exploring Attack Design Options
In our quest to find an effective attack, we attempted the
following methods, but none proved to be successful. We
present them below and summarize key limitations of each.
Denoising telemetry data. An important question is
whether techniques such as data pre-processing and denoising
can enhance the quality of the telemetry data. Unfortunately,
this is challenging as the noise in the telemetry data follows a
Gaussian distribution. For instance, noise in the depth y value
of the pressing fingertip is confirmed to be Gaussian through
KS goodness-of-fit tests, with a p-value greater than 0.5.
Manual inspection. A curious attacker can manually
inspect each telemetry frame to identify keystroke events
and the corresponding pressed key. However, we attempted
this and found that the random noise in the telemetry data
makes it challenging for the human eye to accurately identify
keystrokes and the finger responsible.
Attack by transferability. Another option is to leverage
transferability across users [50], i.e., collecting accurately la-
beled keystroke/telemetry data from a set of users, training a
DNN inference model, and applying it to infer keystroke con-
tent of other target users. We examined this attack among 7
users, applying leave-one-out cross validation. In each round,

we selected 6 users, trained a supervised DNN keystroke clas-
sification model using labeled telemetry data from them, and
tested the trained model on the one new user. We evaluated the
attack by comparing the typed and recovered content (after ap-
ply spell correction). The results were consistent: the attack on
a new user unseen during training produced a large character
error rate (56% ±11%) and could not recover any meaningful
content. But on trained users, the models can correctly de-
tect and recognize more than 90% of keystrokes (i.e., <10%
character error rate). This aligns with other keystroke studies,
which show that human typing behaviors are user-specific
and transferability-based attacks are ineffective [50, 58].
Statistical analysis of fingertip motion. With no labeled
data from the target to train an ML model, one can apply un-
supervised inference by studying the target’s fingertip move-
ments. Specifically, one can extract fingertip positions from
the telemetry data, and apply statistical analysis to detect the
keystroking events and identify the corresponding pressing
fingertip. However, given the abundant noise in the telemetry
data, the attack is ineffective (see our experiments in §7.5).

Our finding aligns with existing studies on VR keystroke
recognition [39]: the depth y of the VR hand tracking lacks the
required accuracy to identify keystroking events and the press-
ing finger. To compensate for these errors, researchers propose
placing extra IMUs on the user’s wrists and collecting labeled
data to train a DNN model for finger identification [39]. Yet
both are infeasible under our attack scenario.

5 Our Proposed Attack
In this section, we present the proposed attack design. We
begin with the key insights behind our design and a summary
of the attack pipeline. Later in §6 we delve into the individual
components and the implementation of the attack.

5.1 Design Insights
Our exploration of the transferability-based attacks (in §4.2)
revealed that, with accurately labeled training data from the
target user, a sophisticated DNN model can be trained to learn
the intricate connections between keystrokes and noisy 3D

2730 33rd USENIX Security Symposium USENIX Association

 Original telemetry Ηorg
 (in frames)

DNN keystroke detector
D

D

DNN finger identifier
F

DNN keystroke classifier
C

C

Labeled data

A S D H

BC

IR
E

F

T

L

L

P

A

W

M
.

E

K

A S D F H L

OIUTRE
W

C B N M

Inference

Training

Filtering using
consistency
checks

P

H

E
Y

H
E

Y

Labeled data

The impending

risks to security

and privacy in the

age of AI are....

Detecting Keystroking Frames Identifying Pressing Fingertips Recognizing Typed Keys

Coordinate
Transformation

Ηorg

Τ2d

Τ3d

Finger
acceleration

analysis

Finger
displacement

analysis

Clustering & HMM

Ηorg

Ηorg

Ηorg

Labeled data

Y

K

UY

N

O

Figure 5: The end-to-end attack design, using a componentized self-supervised learning pipeline

telemetry data, allowing it to correctly recognize over 90% of
keystrokes. This suggests that an effective attack is possible
if we can self-label some of the target’s 3D telemetry data
and use them for model training. Such labeling is done on the
target’s data since transferability-based attacks are ineffective.

The concept of self-curating labeled training data from
the target data is an established technique in self-supervised
learning [3, 61]. A recent work [58] applies this concept to
recognize keystrokes from a video recording of the target’s
physical hands. This is done by first applying hand tracking
to locate the target’s fingertips in each video frame, followed
by a HMM-based statistical analysis to estimate labels for
a small subset of the video frames. These labeled data are
then used to train CNN models to recognize the keystrokes
captured by all video frames.

But when applying the method of [58] to our attack sce-
nario, we observe significant failures (see Table 5). This is
because the amount of noise included in our attack data is
higher than that of [58], i.e., our attack data is the noisy hand
tracking results estimated by the VR headset, while [58] uses
the raw video capturing the target’s physical fingers as the
input to their CNNs. This qualitative change renders the
method of [58] ineffective and requires a new approach.
Self-supervised learning of noisy handposes using task-
specific transformers. To handle the extremely noisy
telemetry data, we design our attack based on two key in-
sights. First, different from CNN models, the self-attention
mechanism of transformers enables the model to learn depen-
dencies between hand joints and give more importance to the
joints responsible for performing a specific task, e.g., pressing
a key on the keyboard. As such, transformers can be highly
effective in extracting key patterns from noisy handpose data
and greatly boost attack robustness in noisy data settings.

Second, despite the common belief that transformers re-
quire vast amounts of training data, our work demonstrates
their suitability for our attack, even with limited data. This is
attributed to two design decisions. The first is that we exclu-

sively train transformers on the current attack data, “forcing”
them to concentrate solely on learning crucial features from
this specific dataset. Next, we break down the main task into
three sub-tasks or components, and train transformers sepa-
rately for each component. This empowers each transformer
to focus on its designated learning task. By adopting these de-
sign choices, we effectively leverage transformers to execute
our attack, even when faced with limited training data.

5.2 Attack Overview
Based on the above insights, we propose a new attack design,
which applies a set of three sequential components to infer
typed characters from noisy telemetry data. Our design tackles
the challenging issue of noisy telemetry data through a two-
step self-supervised learning approach, which is applied to
each of the three components separately. By applying this self-
learning method to each individual component, we design the
attack to progressively extract and learn important keystroke
information from the noisy input, while effectively reducing
the spread of error in the end-to-end attack pipeline.
The three components. We break down the main task into
three components: detecting keystroking telemetry frames,
identifying pressing fingertips, and recognizing typed keys.
The first component focuses on detecting telemetry frames1

that represent keystroking events. The next component takes
as input the detected keystroking frames and identifies the
specific finger that touches the keyboard. The third component
leverages the detected finger information to locate the pressing
location on the keyboard and analyzes the pressing locations
of all the keystroking frames to estimate the sequence of keys
that the target user has entered.
Training per-component transformers. For each compo-
nent, we first self-curate labels for its input telemetry data
by performing statistical and motion analysis on the data.

1Here each telemetry frame refers to the telemetry data collected on the
target user at a specific time t.

USENIX Association 33rd USENIX Security Symposium 2731

Here the statistical analysis focuses on a subset of hand joints
closer to the keyboard and leverages general understandings
of human typing behavior. After creating the initial labels
for the telemetry data, we use them to train a deep neural
network (DNN) model dedicated for this component. Note
that this DNN model learns the detailed relationship between
keystrokes and telemetry data from 3D coordinates of all hand
joints (i.e., the full telemetry). To minimize the impact of the
noise present in both the self-generated labels and the teleme-
try data, we employ multiple noise-aware training strategies
during DNN model training.

Here we choose transformers as the DNN architecture for
the first two components, but CNN for the last component
due to the issue of class imbalance (details in §6).
End-to-end attack pipeline. Figure 5 plots the attack
pipeline, which takes as input a sequence of 3D telemetry
frames (Horg) captured during the target’s typing session, and
applies the three sequential components to analyze the data
and train DNN models. This pipeline produces three DNN
models, one per component: (i) a transformer based keystroke
detector D , which identifies the set of telemetry frames where
the target enters a key, (ii) a transformer based finger identifi-
cation F , which determines the finger used to press the key,
and (iii) a CNN-based keystroke classifier C , which predicts
the key entered for each keystroking telemetry frame. The
final inference process only employs D and C , since F is
only used to produce cleaner labels for the last component
and train a more effective C .
Supporting observed telemetry and rendered handpose
attacks. To enable these attacks (i.e., using T3d or T2d), we
deploy a pre-processing module that transforms T3d or T2d
into a coordinate system equivalent to that of Horg. This is the
“coordinate transformation” module in Figure 5.

6 Detailed Attack Design
We now present in detail each of the three sequential com-
ponents of the attack pipeline, the pre-processing module,
followed by the end-to-end attack implementation.

6.1 Detecting Keystroking Frames
The first component studies the input sequence of 3D teleme-
try frames to identify keystroking events and their associated
telemetry frames. This is done in two steps, first applying sta-
tistical and motion analysis to self-label the frames, then using
these labeled data to train a transformer-based DNN model,
leveraging noise-aware model training techniques. Note that
our discussion assumes the telemetry frame is from Horg.
Step 1: Self-curating labels via motion analysis. When
typing on a keyboard, each keystroking action is a characteris-
tic movement of the finger, which starts from reaching the key,
then a brief moment of zero acceleration as the finger hits the
key, followed by a return to the starting position. This move-
ment creates a distinctive pattern, represented as a positive

peak in the plot of the second derivative of the keystroking
finger’s depth coordinate (or the y value of the fingertip in the
telemetry data).

This general pattern only stands when the fingertip depth
(y) values are measured at a very high accuracy (i.e., sub-
mm precision). Today’s VR hand tracking is far from that.
The noise in the telemetry data, in combination with hesitant
typing behavior, produces many “fake” positive peaks. On the
other hand, these fake peaks often display a smaller amplitude
than the real ones. Thus, we model the overall peak series
as a mixture of two Gaussian distributions [58] and compute
a decision threshold to produce an equal error rate between
admitting a fake keystroke and missing an actual keystroke.
Step 2: Training a transformer-based keystroke detector.
In Step 1, we analyze the unique feature of fingertip accelera-
tion in the y axis to identify keystroke events, resulting in a set
of “rough” labels for all telemetry frames. Using these labeled
data, we train a transformer-based [51] keystroke detection
model in Step 2. The choice of the transformer architecture
deserves some explanation. The telemetry data consists of 3D
positions of 42 hand joints in each frame, which have natural
correlations in their movements and configurations across
time and space. Furthermore, these joint configurations have
spatial constraints due to the hinge nature of hand joints. To
effectively learn and accurately predict finger activity, it is
essential to have a model that understands these correlations
and constraints. Along this line, the self-attention mechanism
used by transformers [7] is well-suited for our learning task as
it allows the model to learn dependencies between hand joints
and give more importance to the joints relevant for performing
a particular task (i.e., keystroke).

To model the spatial-temporal relationship among hand
joints, we choose the DSTA-Net architecture proposed by
Shi et al. [46] for skeleton-based gesture recognition. This
architecture calculates spatial attention to create a combined
spatial representation of joints and then utilizes it to compute
the temporal attention of joints across time. The pre-trained
model provided by [46] and its training data only cover a
single hand. Thus, we adapt the model architecture to support
both hands and train the detection model from scratch to run
a binary classification task (keystroke or non-keystroke). The
input to the transformer-based classifier is a collection of 16
telemetry frames to capture the spatial-temporal movement of
the hands. Specifically, we first identify each telemetry frame
labeled as “keystroke” in Step 1, then take 7 telemetry frames
before it and 8 telemetry frames after it to form a telemetry
segment of 16 frames, and label it as “keystroke.” We also
build non-keystroke segments by grouping 16 non-keystroke
telemetry frames between two detected keystroke events.
Noise-aware model training. Since both the telemetry
data and the labels we self-curate (during Step 1) contain
errors, we apply two noise-aware training techniques when
training the transformer model. First, we apply mixup data
augmentation [60] to prevent the model from overfitting into

2732 33rd USENIX Security Symposium USENIX Association

the training data and label. This is done by generating new
training samples via blending two existing training samples
using convex combinations, teaching the model to make linear
predictions on those new data. The presence of noise in both
the data and labels impedes the model’s ability to learn these
linear relationships and naturally prevents overfitting.

Second, we use bootstrapping for refurbishing labels which
relies on the idea that as training progresses, the model learns
to predict the correct class with higher confidence. Therefore,
for a sample with a noisy label, the model’s own prediction is
a better source of the ground truth label and should be used
as such during training whereas correctly labeled samples
should be trained in the regular way. To identify the noisy
labels, Arazo et al. [6] leverage the idea that noisy labels are
learned in the later stages of training. Therefore, the difference
in the loss can be used to identify the noisy labels which can
then be trained using the model’s predictions. In practice,
convex combinations of the noisy and model-predicted labels
are used. For samples that are noisy with high probability, the
model-predicted labels are weighted higher in the refurbished
label and vice versa.

6.2 Detecting the Pressing Fingertip
Self-curating labels using finger displacement. After de-
tecting keystroke events, it is important to identify the finger
used to generate each keystroke in order to estimate the loca-
tion of the keystroke. For this, we adopt the idea from [58]
that given any position of the hand, the finger used to press
the key needs to move the most in comparison to the non-
pressing fingers. Therefore, we compute the displacement of
each fingertip, at the moment of a keystroke, from its mean
position across the entire typing session. We label the finger-
tip with the maximum displacement as the pressing finger.
However, due to subtle typing behaviors and sensor noise,
finger identification with this method is prone to errors thus
some pressing fingertips are often incorrectly labeled.
Training a transformer for fingertip identification. Using
the labeled fingertips, we train another transformer model to
leverage features in the raw telemetry data. Again, this model
is trained in a noise-aware manner from scratch on a set of 16
raw frames for each detected keystroke and predicts which
finger was used to press a key. After training, this model
is evaluated on the same data used for training in order to
correctly predict the noisy labels. However, noisy training
has its limits. If the proportion of noisy labels in the training
set is beyond a certain threshold, noisy training techniques
are unable to produce a reliable model due to overfitting.
We identify these cases by observing the clustering output
(§6.3) and avoid using the transformer in this component if it
produces a worse clustering result.

6.3 Recognizing Typed Keys
Self-curating labels using clustering & HMM. After
obtaining fingertip labels (from the fingertip transformer),

we use the 3D coordinates of each identified fingertip, at the
precise moment of the keystroke, to estimate a touchpoint map
which corresponds to the layout of the keyboard. Since keys
are separated and have fixed locations on a keyboard, this form
factor naturally clusters keystrokes generated from the same
key and allows us to run unsupervised inference to reconstruct
the typed content. We use K-Means clustering with K=38
to cluster the keystrokes and label these clusters arbitrarily.
This labeling gives us a sequence of cluster IDs where each
element in the sequence corresponds to a keystroke in the
order that it occurred. The final task is to map each of these
elements to one of 29 keys (period, comma, space key, and
the 26 letters of the English alphabet). This is the kind of
task Hidden Markov Models are well-suited to solve. We
explain the detailed HMM implementation in Appendix 9.2.
The output of the HMM gives us another set of labels which
we use to train a DNN model for keystroke classification.

Due to the accumulated errors in our pipeline, there are
errors in the HMM’s prediction of the typed content. There-
fore, we use the consistency checks between the clustering
and the HMM’s output introduced by [58] to identify the in-
correctly recognized typed keys. As a result, instead of solely
relying on noisy training, we can remove noisy labels from
the self-curated labels to create a cleaner training dataset for
the DNN-based keystroke classifier. The details of these con-
sistency checks along with the explanation of other clustering
related components are explained in Appendix 9.1.
Training a CNN for recognizing keys. The natural choice
for training the keystroke classifier would be the transformer
architecture used previously. However, after filtering, the train-
ing dataset (of 29 classes) is much smaller compared to those
used to train the previous transformer models. This dataset is
also severely class imbalanced due to the uneven distribution
of the alphabet frequency in the English language. Due to
these factors, a transformer-based keystroke classifier does
not perform well.

Thus, we opt for a 3D-CNN model (ResNext-101 [55])
for keystroke classification. This model is pretrained on the
Jester [38] dataset which contains videos of humans perform-
ing different gestures and can therefore be fine-tuned with
limited data. However, our data is in the form of 3D hand
coordinates whereas the 3D-CNN is trained on images. Fol-
lowing common practice [21, 45], we convert our hand joint
data to images by using the (x,z) coordinates as the pixel
locations and the (x,y,z) coordinate as the pixel value. Like
before, such a sample in the training dataset consists of 16
consecutive raw telemetry frames corresponding to a detected
keystroke and its label obtained from the HMM.

6.4 Coordinate Transformation
The adversary with access to original telemetry data (Horg)
poses the strongest threat, as they have the “cleanest” data
among all three attacks. For the other two attacks, T3d(PoV)
is a lossy, transformed version of Horg, while T2d(PoV) is

USENIX Association 33rd USENIX Security Symposium 2733

a projected version of T3d(PoV) with the depth dimension
removed. Since the above described pipeline is designed using
the 3D coordinate system of Horg, we execute the other two
attacks by first applying a coordinate transformation, which
converts their attack data into an equivalent version of Horg.
Converting T3d(PoV) to Horg. T3d(PoV) is the telemetry
observed from A’s point of view. It is generated from Horg by
first applying 3D transformation defined by PoV , including
translation, scaling, and rotation [32]. This is followed by
perspective projection [13, 32] where the telemetry joints are
projected onto a 2D viewing window (like a camera frame)
based on A’s PoV . Together, this transformation and projec-
tion create misalignments and distortions that interfere with
the motion analysis used by our attack pipeline.

To execute the observed telemetry attack, we apply a 3D
rotation to T3d(PoV) by calculating the dot product of each
telemetry joint’s coordinates2 with standard rotation matri-
ces [32]. This allows us to convert T3d(PoV) into an Horg
approximation, which can be input to our pipeline.
Multi-camera rendered handpose attack. T2d(PoV) is a
2D version of T3d(PoV) without the z (i.e., the depth infor-
mation). Given the hefty information loss, the attack becomes
ineffective if the adversary A has only a single T2d(PoV 1).
However, A can easily compensate for the information loss
by adding another hidden camera at a different PoV 2 and col-
lect T2d(PoV 2), and use them to recover the lost depth values
based on stereo epipolar geometry [24]. Setting up multiple,
simultaneous, hidden cameras by a single VR user is a func-
tionality supported by VR systems and developments. For
instance, A could register multiple sybil accounts and place
their avatars in the same VR environment with U to capture
T2d from different angles.

6.5 Putting It All Together

Once the DNN models are trained, we run inference using
the DNN-based keystroke detector D and classifier C . The
keystroke detector identifies the telemetry frames which con-
tain keystrokes and these are passed to the classifier to infer
the key used for that keystroke. The finger identifying DNN
becomes redundant in the inference stage as its purpose is
to obtain a cleaner clustering that improves the labels in the
training set of the keystroke classifier. The keystroke classifier
sidesteps the issue of finger identification by directly inferring
the keystroke labels using patterns in raw telemetry frames.

After reconstructing the typed content, we further improve
it using spell check. We find that conventional spell check-
ing tools operate at a word level whereas spell checking can
benefit from context. Thus, we use the spelling and grammar
checking tool available in Google Docs, which makes use of
the context using machine learning techniques [27], to im-
prove the recovered text. We build an automated version of

2Since z is in a different unit than x and y, normalizing them into the same
scale is needed before applying the 3D rotation.

the Google checker using the Selenium [44] library.

7 Evaluation
We assess the effectiveness of the proposed attack through
user studies approved by our Institutional Review Board
(IRB21-1396). We evaluate five key aspects of the attack:

• Effectiveness of original telemetry, observed telemetry,
and rendered handpose attacks (§7.2), which utilize three
types of telemetry data;

• Performance under different VR configurations (§7.3),
where we vary the distance between the avatars, the keyboard
device, and the content type;

• Attack effectiveness on 15 users of varying typing styles
(§7.4);

• Comparison to other solutions (§7.5), including the base-
line solutions (attack by transferability and unsupervised
inference) discussed in §4.2 and the attack design of [58];

• Attack complexity (§7.6) in terms of computation time on
a standard server and a breakdown across components.

7.1 Experimental Setup
User (or target) configuration. By default, each of our
study participants wears a Meta Quest Pro VR headset and sits
in front of a table (on a wheeled chair). A physical keyboard
(Logitech K375s) is placed on top of the table and connects to
the headset via Bluetooth. Before each typing experiment, we
leave sufficient time so that our participants can freely adjust
their headset, the chair, and the keyboard. On average, each
typing session lasts about 25 minutes.

While wearing the VR headset, each participant types on
the keyboard. Through the headset, the participant can see a
rendered (virtual) display showing the text they have entered
and those to be typed. They can also see their virtual hands,
rendered locally using the tracked telemetry Horg. By default,
we ask each participant to type, on average, 26 email sentences
randomly selected from a popular corporate email dataset [17],
and to correct their typing mistakes using the backspace key.
To simulate actual working conditions, each participant is
allowed (and encouraged) to take breaks during the typing
session, including pausing, leaving, and returning to their seat.
Both the table and the keyboard remain stationary during a
typing session.
Attacker configuration. We consider an attacker who is
able to acquire the telemetry data of the target. The teleme-
try data is in one of the three forms: original telemetry
Horg, observed telemetry T3d(PoV), and rendered handpose
T2d(PoV). The sampling rate of telemetry is around 60Hz, a
standard setting used by both Quest 2 and Pro VR headsets.
The latter two attacks depend on the attacker parameter PoV ,
i.e., the virtual camera placement configured by the attacker.
Figure 6 illustrates the PoV configuration. PoV =(0,0) means
the attacker places a frontal virtual camera at the same height

2734 33rd USENIX Security Symposium USENIX Association

(0, 0)
(75, 0)

(15, 0)(45, 0)

15°45°

75°

90° 60°

30°

(0, 90)

(0, 60)

(0, 30)

Target

Frontal
Camera

Top-down
Camera

Figure 6: A graphical illustration of virtual camera PoV s. (0,0)
means a frontal camera at the same height as the keyboard
pointing towards the target’s typing hands. (x,y) means the
camera is horizontally, vertically deviates by x,y degrees from
(0,0), e.g., (0,90) represents a top-down camera. Credit: The
target avatar is created using the built-in avatar tool on a Meta
Quest Pro headset.

as the keyboard, which points toward the target’s typing hands.
PoV = (x,y) means the virtual camera deviates vertically and
horizontally from (0,0) by x,y degrees, respectively. For all
PoV configurations, the virtual camera always points toward
the target’s typing hands.
Dataset. We build a Unity program to collect telemetry
data used by our attack and ground truth typing input for our
evaluation. For each user, we collect their telemetry data over
a typing session (≈500 words). Each session’s data, i.e., a
set of telemetry frames, is used to implement the attack for
the current user and the current session. Specifically, we first
self-curate binary labels (i.e., keystroking or non-keystroking)
for a subset of the telemetry frames, and use them to train
a keystroke detector D. We feed the entire session’s data
to D to identify the set of keystroking frames. Next, for
all keystroking frames, we curate finger-specific labels to
train a finger identifier F and apply F on all keystroking
frames to help curate the key-specific labels, followed by a
consistency check filter to construct the labels for a subset
of keystroking frames. The resulting labeled data is used to
train the keystroke classifier C , which is then applied to all
keystroking frames to produce the attack output.

Here we note that the quantity of training data used to train
the three DNNs (D, F , C) differs across users and sessions.
As reference, Table 8 in the Appendix displays, for each of
the 15 users, the quantity of telemetry frames used to train
these DNNs and the quantity of inference data being fed into
the trained DNNs.
Evaluation metrics. Following an existing work [58], we
evaluate each attack attempt by comparing the typed and
inferred content at the character, word, and semantic levels.

• Character error rate (CER): It measures errors at the charac-
ter level by computing the ratio of the number of errors and
the length of the actual typed content. The number of errors

is measured by the minimum edit distance, comprising in-
sertions, deletions, and substitutions, required to convert the
inferred content to the typed content. The lower the CER,
the higher the accuracy of the inferred content.

• Word error rate (WER): The WER is computed using the
same ratio as the CER with the difference that the edit dis-
tance is computed at the word level. It is worth mentioning
that while WER penalizes words that are not exact matches,
they may be comprehendible by a human reader. We use
the WER function available within the Hugging Face [22]
library as it uses dynamic string alignment to best match
word indices for comparison.

• Content similarity using plagiarism detection: Plagiarism
detectors are used to compute similarity between documents
and are thus a natural fit for evaluating the recovered content.
We use the plagiarism detector offered by CopyLeaks [18]
which provides a similarity score in the range of 0-100% for
the actual and inferred content. With moderate errors in the
inferred content, the similarity score operates as a hybrid
between character and word level similarity. However, with
higher levels of errors, the similarity score usually collapses
and is much lower than the word recovery rate (1 - WER).
We refer to the obtained similarity score as the similarity.

7.2 Attack Effectiveness vs. Telemetry Data

We begin by examining the attack performance on original
telemetry, observed telemetry, and rendered handpose data.
It is intuitive to assume that the original telemetry attack is
the strongest as the adversary has access to Horg, the “clean-
est” data among the three. As explained earlier in §6.5, the
observed telemetry data (T3d(PoV)) is produced from Horg
using a lossy, non-linear perspective projection, while the
rendered handpose data (T2d(PoV)) suffers even more infor-
mation loss from the 3D-to-2D projection.

In Table 1, we compare the performance of the three attacks,
by varying the attacker’s virtual camera PoV . For consistency,
we invited a single participant as the attack target for all the
experiments. We also include the result for the two-camera
rendered handpose attack, where the attacker sets up two
virtual cameras to collect two T2d at different PoV s.
Effectiveness of original telemetry attack. Our results
show that the Original telemetry attack (using Horg) is highly
successful – the attacker effectively recovers 85.8% of the
words in the typed text. The recovered text has a semantic
similarity of 87.4% to the original.
Observed telemetry attack with different PoV s. In the ob-
served telemetry attack using T3d(PoV), the attacker needs to
set up a virtual camera at an observation point PoV to collect
T3d(PoV). We experiment with 7 different PoV values and
find that the attack is consistently effective – the attackers can
recover around 78% of the typed words. The performance is
slightly less than that of the original telemetry attack because

USENIX Association 33rd USENIX Security Symposium 2735

Attack Attack Attacker’s CER WER Sim.
Type Data PoV (%) (%) (%)
Original
Telemetry Horg – 4.7 14.2 87.4

Observed
Telemetry T3d(PoV)

(0,0) 6.6 21.6 80.4
(0,30) 6.2 21.4 83.7
(0,60) 6.5 21.4 81.5
(0,90) 7.2 23.8 74.6
(15,0) 5.8 18.0 86.1
(45,0) 6.2 19.4 84.2
(75,0) 7.6 21.0 77.6

Single camera
Rendered
Handpose

T2d(PoV)
(0,0) 29.3 78.0 0.0
(0,45) 23.7 58.6 2.9
(15,0) 28.5 66.8 0.0

Two-camera
Rendered
Handpose

T2d(0,0)
&

T2d(PoV)

(0,15) 6.9 20.8 85.3
(0,45) 6.3 20.6 81.7
(0,75) 6.5 20.0 80.5
(15,0) 7.6 21.2 79.0
(30,0) 5.0 17.4 84.1

Table 1: Performance of original telemetry, observed teleme-
try and rendered handpose attacks, using Horg, T3d , and T2d
handposes, respectively. We also include an extended rendered
handpose attack using two T2d at different camera PoV s.

the inverse transformation of T3d(PoV) produces a noisy ver-
sion of Horg. We observe the same performance trend from
other participants (see Table 7 in Appendix).

Two-camera rendered handpose attack. Using a sin-
gle virtual camera, the rendered handpose attack (using
T2d(PoV)) is ineffective because T2d(PoV) is a noisy 2D
projection of Horg, making it hard to estimate the 3D teleme-
try. Yet we can overcome this challenge by setting up another
virtual camera at a sufficiently different PoV . With two dif-
ferent T2d observations, we can estimate the 3D telemetry
Horg based on the stereo epipolar geometry [24]. In our ex-
periments, we complement a frontal-view camera T2d(0,0)
with either a side-view or a vertical-view camera. Results
in Table 1 show that the two-camera rendered handpose at-
tack performs comparably to the observed telemetry attack.
Again, these observations are confirmed across other users
(see Table 7 in Appendix).

Real-world implications. The above results demonstrate
the effectiveness of the three attacks. The success of the two-
camera rendered handpose attack is particularly alarming due
to two reasons. First, the attack is simple and stealthy. To col-
lect T2d(PoV), the attacker A does not need to hack any server
or VR headset, but just acts as a benign user in the same VR
environment with U and performs screen recordings of their
VR screen on the headset. After applying video-based hand
tracking3 on the recorded video of the VR view, U obtains
T2d(PoV). Second, A can register multiple sybil accounts
in VR and record U’s typing from many PoV s. With more
versions of T2d , A can potentially obtain better estimates of
the original telemetry Horg and improve attack effectiveness.

3Open source hand tracking tools are commonly available online, e.g.,
MediaPipe [11] and OpenPose [48].

7.3 Effectiveness under Different VR Settings
To test the generalizability of our attack, we conduct multiple
experiments by varying factors involved in our end-to-end
attack pipeline. These include changing the (virtual) distance
between the adversary’s virtual camera to the target’s avatar,
the physical keyboard type, the typed content, and the amount
of data available to launch the attack. To maintain consistency,
a single participant in our user study was the target in all these
attack scenarios.
Varying avatar distance. To assess the impact of avatar
distance in the virtual world, we conducted an experiment in
which four adversaries were positioned at increasing distances
(0.6m, 1.2m, 1.8m, and 2.4m) from the target avatar during a
single typing session. The adversaries recorded four separate
sequences of transformed 3D telemetry (T3d(0,0)) using their
virtual cameras. The results are summarized in Table 2, where
we consider 0.6m attack as the baseline with CER = 3.8%
and report the CER difference between the 1.2m/1.8m/2.4m
attack and the baseline. The results confirm that the virtual
distance between the target and the adversary avatars does
not impact the attack performance.

Avatar distance (m) 1.2 1.8 2.4
CER − CER0.6 (%) −0.17 −0.06 +0.03

Table 2: Attack performance when the virtual distance between
the target and the adversary avatars varies. The default attack is
conducted with the avatar distance = 0.6m. We report the CER
difference from that of the default attack (CER = 3.8%).
Varying keyboard type and size. People can use different
keyboards of various sizes. To evaluate our attack under such
conditions, we ask our participant to type on three different
keyboards: Logitech K375s, Logitech MX Keys Mini, and
Apple Magic keyboard. The results for these experiments,
displayed in Table 3, show that our attack is successful against
all three physical keyboards.

Keyboard Dimension CER WER Similarity
(cm) (%) (%) (%)

Logitech K375 42.7 × 13.0 4.7 14.2 87.4
Logitech MX 29.3 × 12.8 6.2 19.6 86.4
Apple Magic 28.0 × 11.5 6.6 17.9 82.4

Table 3: Attack performance when the target types on three
different physical keyboards.

Varying content type and length. We investigated the per-
formance of our attack with different types and lengths of text
content. In addition to corporate emails, a participant typed
approximately 500 words of text from scientific papers and
medical patents, which contain technical terms and uncom-
mon words. To evaluate the effect of limited typing data, we
also conducted the attack when the participant typed only
around 250 words. The results, presented in Table 4, indicate
that our attack is effective with various content types and
lengths tested.
Impact of numbers in text. The Enron [17] dataset in-
cludes sentences that contain numbers, which account for

2736 33rd USENIX Security Symposium USENIX Association

Word CER WER Similarity
Count (%) (%) (%)

Abstract 509 5.2 18.1 83.3
Patent 501 4.6 20.8 80.6

Emails 501 4.7 14.2 87.4
262 5.4 17.6 84.5

w. numbers 488 5.5 18.7 81.9

Table 4: Attack performance when the target types content of
different kinds and lengths.

1.2% of keystrokes. Using these sentences, we evaluate our
attack to study the impact of number keys. Intuitively, the
presence of numbers in the typed content would affect the
HMM-based labeling process because HMM (trained on text)
is unable to recognize numbers and will label them as letter
keys. However, because these number keys are physically sep-
arated from letter keys on the keyboard, they will be filtered
out by our consistency checks and will not appear in the train-
ing data for the keystroke classifier. As such, the moderate
presence of numbers has minimum impact on our attack. Our
results in Table 4 (last row) also confirm this hypothesis.

7.4 Performance across Users
To assess the effect of individual typing styles on the proposed
attack, we recruited 15 participants to our user study (age:
21-53, 7 males and 8 females). In Table 5, we report the
performance of our original telemetry (Horg) attack against
each participant. Overall, the attack is highly effective – for 13
out of 15 participants, our attack accurately recognizes 86%-
98% of typed keys, and the recovered text retains 50%-98%
of the original content’s meaning.
The successful cases (P1-P13). After closely observing
these users, we identified two distinct typing patterns that
increase users’ vulnerability to our attack. First, they type
with prominent motion, so the hand tracking sensors on the
VR headset can capture sufficient amounts of finger move-
ments. The hand tracking accuracy is hardware dependent
and does vary across users. Second, their body posture and
hand orientation minimize self-occlusion across their fingers,
meaning the joints are not blocking each other from the view
of the hand tracker (located on their VR headset). When a
joint is obscured, the joint’s coordinates are often inaccurately
estimated, leading to random tracking noise.
The unsuccessful case (P14 and P15). Our attack is less
effective on P14 and P15, due to high hand tracking noise. For
P14, the VR hand tracker is unable to track the pressing finger-
tip location (i.e., the x and z values) accurately. To illustrate
this, Figure 7 compares P14’s keystroke pressing locations
reported by the VR tracker to those of P1. We see that P14
has many more overlapping keystrokes than P1, making it
hard to create reliable labels.

For P15, the major issue is the height data (y) collected
by the VR hand tracker. This is because, rather than having
the keystroking finger much closer to the keyboard than the
other fingers, P15’s fingers stay at roughly the same height

level when pressing keys. As a result, the tracking data is
particularly noisy on the y axis, making it hard to reliably
detect keystroke events and the pressing finger.

7.5 Comparison to Other Solutions
We compare our attack design to baseline solutions discussed
in §4.2 and related work [58] discussed in §5.1. Overall, our
attack design significantly outperforms these solutions.
Our attack design vs. baselines. We compare our approach
with two baseline approaches discussed in §4.2. The first base-
line is unsupervised inference via statistical analysis, which
takes three sequential steps of detecting keystrokes, identify-
ing pressing fingertips, and recognizing keys. These are the
same three steps used by our attack design to generate initial
labels but this baseline does not involve any DNN models.
The second baseline is attack by transferability, where for
each target, we use ground truth labels on all 14, non-target
participants to train a DNN keystroke classifier, and hope it
can also recognize the target’s keystrokes. Note that in this
implementation of transferability-based attacks, we assume
perfect keystroke detection on the target user. Thus, the result
represents the best case of transferability-based attacks.

The results in Table 5 show that our attack design sig-
nificantly outperforms the two baselines. Compared to the
unsupervised inference via statistical analysis, our approach
curates labeled training data for training transformer-based
DNN models, which can better capture the intrinsic features
of the noisy training samples. The second baseline attack by
transferability failed largely because human typing behaviors
are highly user-specific and do not transfer to others [58]. Our
approach overcomes this challenge by utilizing the target’s
own data to learn their specific typing behaviors.
Our attack design vs. [58]. We obtain the source code from
the authors of [58] and follow the training method described
in [58]. To train and test the CNN classifiers used in [58], we
convert the telemetry frames to images. For a fair comparison,
we apply the same conversion method used by our approach
(see §6.3).

The results in Table 5 show that our attack design signif-
icantly outperforms that of [58]. As discussed in §5.1, the
amount of noise in our attack data is significantly higher
than that of [58], rendering the method of [58] ineffective.
Our design addresses this challenge by deploying multiple
task-specific transformers where the self-attention mechanism
allows these models to extract key patterns from noisy data.

7.6 Attack Complexity
We measure attack complexity by the amount of time required
to produce the recovered text after the typing session stops.
We run our end-to-end attack pipeline on a standard server
with an AMD EPYC 7313P 16-Core processor, and train all
the models on a single NVIDIA A40 GPU. The overall run-
time of our attack is 423 minutes for a 500-word, 19-minute
typing session. The majority of time was spent on the training

USENIX Association 33rd USENIX Security Symposium 2737

P1 P2 P3 P4 P5 P6 P7
Approach CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim.

(%) (%)
Our Attack 1.2 4.8 97.6 4.7 11.9 93.5 4.7 14.2 87.4 4.8 13.8 88.1 5.0 15.6 83.6 7.1 18.2 81.9 7.3 18.8 84.2
Stats. Analysis 6.7 22.0 82.0 20.0 51.0 25.1 18.3 51.8 6.2 22.4 52.5 7.4 19.3 51.4 19.1 17.9 46.3 6.9 13.2 34.2 56.8
Transferability 77.8 99.6 0.0 57.8 100.0 0.0 53.4 100.0 0.0 47.4 86.2 0.0 61.8 96.1 0.0 31.9 87.2 0.0 49.9 92.8 0.0
Attack in [58] 17.6 56.5 8.3 33.1 82.1 0.0 8.0 26.4 65.8 16.8 52.9 22.7 17.5 48.1 14.7 44.4 97.6 0.0 48.0 100.0 0.0

P8 P9 P10 P11 P12 P13 P14 P15
CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim. CER WER Sim.
(%) (%)
8.4 21.7 80.5 8.8 25.8 77.7 9.5 25.8 77.7 12.5 34.5 63.9 13.3 33.9 50.7 13.3 34.1 51.1 14.2 44.6 34.4 15.9 44.4 19.7

28.1 62.8 0.0 27.6 57.7 0.0 24.0 61.4 4.1 29.1 70.1 0.0 31.7 70.3 0.0 45.0 91.6 0.0 38.6 83.4 0.0 54.5 96.8 0.0
44.3 100.0 0.0 47.7 90.6 0.0 47.7 85.7 0.0 54.3 94.3 0.0 20.1 51.0 25.3 91.0 100.0 0.0 14.3 33.9 59.3 47.9 94.0 0.0
32.7 78.9 0.0 30.5 64.3 0.0 14.9 37.2 50.6 16.2 41.9 36.7 26.6 67.5 0.0 20.0 53.6 5.5 31.6 91.0 0.0 62.4 99.2 0.0

Table 5: Attack performance for all 15 participants (P1-15).

of transformer-based keystroke detector (79 mins), the finger
identifier (64 mins), and the CNN-based keystroke classifier
(259 mins). The other components only take 21 minutes in
total. Specifically, clustering & HMM take 3 minutes and
spell checking takes 11 minutes.

8 Defenses

Our study shows that by either intercepting the telemetry data
used to render a target’s avatar or simply observing rendered
hand movements of their avatar, an attacker in the same vir-
tual environment can successfully recover the text physically
typed by the VR user. Untreated, these attacks can cause sig-
nificant damage to users. Given this threat, it is important for
VR platform and app developers to exercise caution and im-
plement adequate safeguards during the development process.
We discuss several defense options below and their impact on
the attacks and the VR experience.
Defense 1: limiting access to telemetry (hand tracking)
data. The first type of defense seeks to minimize the chance
of leaking sensitive handpose data (Horg and T3d) to attackers.
After detecting the user is typing, the VR system can either
ban access to its hand tracking API by any application, put a
significant limit on the query frequency, or largely reduce the
sampling rate of the hand tracking module. For example, by
reducing the sampling rate from the default 60fps to 15fps,
the defense can increase attack WER from 14.2% to 38%.
When further reduced to 6fps, the attack becomes ineffective.
Defense 2: adding noise to telemetry data. Another type
of defense is to add noise to the 3D hand tracking data cap-
tured by the wearer’s headset (i.e., Horg). In particular, by
perturbing the depth (y) value of Horg, one can effectively
confuse the attacker at the stages of keystroke detection and
finger identification, preventing them from identifying the
keystroke events and/or the pressing finger. In our design, we
choose to add zero-mean Gaussian noise to the y value. This
is because our empirical measurements show that the noise
naturally present in the hand tracking data follows a Gaussian
distribution. Adding zero-mean Gaussian noise on top makes
it hard for the attacker to denoise the data.

Table 6 summarizes the attack performance on the original
telemetry data (Horg) before and after applying this defense.
We consider two noise levels: moderate, where we add zero-
mean Gaussian noise with an STD of 0.3 × key width, and
high, where the STD rises to 0.5 × key width. We see that
adding a moderate level of noise can already disrupt the at-
tack, raising CER from 4.7% to 20.1%, WER from 14.2%
to 55.4%, and dropping semantic similarity to 14%. Under a
high level of noise, WER further rises to 71.4% and semantic
similarity drops to 0%. We also visually inspect the target’s
avatar under both noise levels. The avatar still displays normal
typing behavior under moderate noise, while the typing speed
appears to be considerably accelerated under high noise.

Noise Level CER WER Similarity
(STD) (%) (%) (%)
No noise 4.7 14.2 87.4
Moderate noise: 0.3 × Key Width 20.1 55.4 14.1
High noise: 0.5 × Key Width 26.6 71.4 0.0

Table 6: Attack performance after perturbing the depth axis of
Horg using zero-mean Gaussian noise.

Impact on VR immersiveness. As expected, both defenses
could impact the VR experience, because the user’s physical
hand motion is no longer synchronized with their avatar. Here
the user can choose to run the defense directly on telemetry
data collected by the VR headset, or only when the collected
telemetry data leaves the VR headset. The first option pro-
vides a more thorough protection but affects how the target
interacts with the VR environment. In particular, the target
user may not see their correct typing movements inside the
VR. The second option only affects the avatar observed by
other VR users, but cannot resist attacks that can access the
headset’s telemetry data. Clearly, this represents an inherent
tradeoff between usability and security.

9 Conclusion
Our study is the first to explore the possibility of keystroke in-
ference attacks in a shared virtual reality environment. In this
scenario, an adversary VR user can reconstruct text typed by
another user by observing their avatar. Unlike prior work, our
attack does not require physical observation of the target, only

2738 33rd USENIX Security Symposium USENIX Association

a noisy VR representation of their avatar’s hand movements.
This avatar-based attack highlights the tension between im-
mersive experiences and personal/information security in VR.
While adding noise or reducing tracking frequency can reduce
the attack’s effectiveness, it also impacts the immersive expe-
rience to varying degrees. This raises the important question
of how to design VR systems that balance the user’s desire for
immersive and engaging experiences with the need to protect
their personal and information security.
Limitations and Future Work. The major limitation of our
attack pipeline is that we ultimately choose a 3D-CNN model
for our keystroke recognizer because the self-labeled training
data for this component is very limited and imbalanced. The
3D-CNN works adequately with limited training data as it
has already been pretrained on a large gesture recognition
dataset [38]. We were not able to find pretrained transformer
models or large datasets with telemetry data for both hands.
Nevertheless, as transformers are being successfully applied
to non-NLP domains, it is reasonable to expect that pretrained
models in the future would make our attack more effective.

Acknowledgements
We thank our anonymous reviewers and shepherd for their
insightful feedback. This work is supported in part by NSF
grants CNS-1949650, CNS-1923778, CNS-2241303, and the
DARPA GARD program. Opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of any
funding agencies.

References

[1] The Logitech K830 keyboard and typing in VR.
https://medium.com/xrlo-extended-reality-
lowdown/the-logitech-k830-keyboard-and-
typing-in-vr-556e2740c48d.

[2] Type in VR with Logitech’s keyboard for HTC
Vive. https://vrscout.com/news/type-in-vr-
logitech-keyboard-kit-for-vive/.

[3] Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto,
Emilie Devijver, and Yury Maximov. Self-training: A
survey. arXiv, 2022.

[4] Apple. Vision Pro. https://www.apple.com/apple-
vision-pro/.

[5] Abdullah Al Arafat, Zhishan Guo, and Amro Awad. VR-
Spy: A side-channel attack on virtual key-logging in vr
headsets. In Proc. of IEEE VR, 2021.

[6] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,
and Kevin McGuinness. Unsupervised label noise mod-
eling and loss correction. In Proc. of ICML, 2019.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv, 2014.

[8] Davide Balzarotti, Marco Cova, and Giovanni Vigna.
Clearshot: Eavesdropping on keyboard input from video.
In Proc. of IEEE S&P, 2008.

[9] Salil P. Banerjee and Damon L. Woodard. Biometric
authentication and identification using keystroke dynam-
ics: A survey. Journal of Pattern Recognition Research,
7(1), 2012.

[10] Leonard E Baum. An inequality and associated max-
imization technique in statistical estimation for prob-
abilistic functions of markov processes. Inequalities,
3(1):1–8, 1972.

[11] Valentin Bazarevsky and Fan Zhang. On-
device, real-time hand tracking with MediaPipe.
https://ai.googleblog.com/2019/08/on-device-
real-time-hand-tracking-with.html, 2021.

[12] Doug A. Bowman. Embracing physical keyboards for
virtual reality. Computer, 53(09):9–10, 2020.

[13] Wayne Brown. Perspective projections. http:
//learnwebgl.brown37.net/08_projections/
projections_perspective.html.

[14] Daniel Buschek, Alexander De Luca, and Florian
Alt. Improving accuracy, applicability and usability
of keystroke biometrics on mobile touchscreen devices.
In Proc. of CHI, 2015.

[15] Yunfang Chen, Yihong Zhu, Hao Zhou, Wei Chen, and
Wei Zhang. Enhanced keystroke recognition based on
moving distance of keystrokes through WiFi. In Proc.
of NSS, 2018.

[16] Hang Chu, Shugao Ma, Fernando De la Torre, Sanja
Fidler, and Yaser Sheikh. Expressive telepresence via
modular codec avatars. In Proc. of ECCV, 2020.

[17] William W. Cohen. Enron email dataset. https://
www.cs.cmu.edu/~enron/, 2015.

[18] CopyLeaks. Plagiarism checker api - integrate ai pow-
ered api, copyleaks. https://api.copyleaks.com/.

[19] Karl Moritz Hermann et al. Teaching machines to read
and comprehend. Advances in neural information pro-
cessing systems, 2015.

[20] Shangchen Han et al. MEgATrack: Monochrome ego-
centric articulated hand-tracking for virtual reality. ACM
Transactions on Graphics, 39, 2020.

USENIX Association 33rd USENIX Security Symposium 2739

https://medium.com/xrlo-extended-reality-lowdown/the-logitech-k830-keyboard-and-typing-in-vr-556e2740c48d
https://medium.com/xrlo-extended-reality-lowdown/the-logitech-k830-keyboard-and-typing-in-vr-556e2740c48d
https://medium.com/xrlo-extended-reality-lowdown/the-logitech-k830-keyboard-and-typing-in-vr-556e2740c48d
https://vrscout.com/news/type-in-vr-logitech-keyboard-kit-for-vive/
https://vrscout.com/news/type-in-vr-logitech-keyboard-kit-for-vive/
https://www.apple.com/apple-vision-pro/
https://www.apple.com/apple-vision-pro/
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
http://learnwebgl.brown37.net/08_projections/projections_perspective.html
http://learnwebgl.brown37.net/08_projections/projections_perspective.html
http://learnwebgl.brown37.net/08_projections/projections_perspective.html
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
https://api.copyleaks.com/

[21] Yitan Zhu et al. Converting tabular data into images
for deep learning with convolutional neural networks.
Scientific Reports, 2021.

[22] Hugging Face. WER - a hugging face space by
evaluate-metric. https://huggingface.co/spaces/
evaluate-metric/wer.

[23] Anna Maria Feit, Daryl Weir, and Antti Oulasvirta. How
We Type: Movement strategies and performance in ev-
eryday typing. In Proc. of CHI, 2016.

[24] Sanja Fidler. Stereo epipolar geometry for gen-
eral cameras. http://www.cs.toronto.edu/~fidler/
slides/2021Winter/CSC420/lecture13.pdf, 2021.

[25] Gonzalo Munilla Garrido, Vivek Nair, and Dawn Song.
SoK: Data privacy in virtual reality. arXiv, 2023.

[26] Alberto Giaretta. Security and privacy in virtual reality
– a literature survey. arXiv, 2022.

[27] Jayakumar Hoskere. Everyday AI: Beyond spell
check, how google docs is smart enough to
correct grammar | google cloud blog. https:
//cloud.google.com/blog/products/g-suite/
everyday-ai-beyond-spell-check-how-google-
docs-is-smart-enough-to-correct-grammar.

[28] Mike Howard. Avatars: The art and science of social
presence. https://www.meta.com/blog/quest/
avatars-the-art-and-science-of-social-
presence/.

[29] immersed. Empower work with spatial computing.
https://immersed.com.

[30] Wolfgang Jank. The EM algorithm, its randomized im-
plementation and global optimization: Some challenges
and opportunities for operations research. Perspectives
in operations research, 2006.

[31] Wenqiang Jin, Srinivasan Murali, Huadi Zhu, and Ming
Li. Periscope: A keystroke inference attack using human
coupled electromagnetic emanations. In Proc. of ACM
CCS, 2021.

[32] Coding Labs. World, view and projection trans-
formation matrices. http://www.codinglabs.net/
article_world_view_projection_matrix.aspx.

[33] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xi-
aohui Liang, Yao Liu, and Na Ruan. When CSI meets
public WiFi: Inferring your mobile phone password via
WiFi signals. In Proc. of ACM CCS, 2016.

[34] John Lim, True Price, Fabian Monrose, and Jan-Michael
Frahm. Revisiting the threat space for vision-based
keystroke inference attacks. In Proc. of ECCV, 2020.

[35] Kang Ling, Yuntang Liu, Ke Sun, Wei Wang, Lei Xie,
and Qing Gu. SpiderMon: Towards using cell towers as
illuminating sources for keystroke monitoring. In Proc.
of IEEE INFOCOM, 2020.

[36] Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei Yu,
and Xinwen Fu. I know what you enter on Gear VR. In
Proc. of CNS, 2019.

[37] Shiqing Luo, Xinyu Hu, and Zhisheng Yan. HoloLog-
ger: Keystroke inference on mixed reality head mounted
displays. In Proc. of IEEE VR, 2022.

[38] Joanna Materzynska, Guillaume Berger, Ingo Bax, and
Roland Memisevic. The jester dataset: A large-scale
video dataset of human gestures. In Proc. of ICCV
Workshops, 2019.

[39] Manuel Meier, Paul Streli, Andreas Fender, and Chris-
tian Holz. TapID: Rapid touch interaction in virtual
reality using wearable sensing. In Proc. of IEEE VR,
2021.

[40] Jeanne C. Meister. How companies are using VR to de-
velop employees’ soft skills. Harvard Business Review,
2021.

[41] Meta. Meta Horizon Workrooms. https://
forwork.meta.com/horizon-workrooms.

[42] PwC. PwC 2022 us metaverse survey.
https://www.pwc.com/us/en/tech-effect/
emerging-tech/metaverse-survey.html, 2022.

[43] Rahul Raguram, Andrew M. White, Dibyendusekhar
Goswami, Fabian Monrose, and Jan-Michael Frahm.
ISpy: Automatic reconstruction of typed input from com-
promising reflections. In Proc. of ACM CCS, 2011.

[44] SeleniumHQ. SeleniumHQ/selenium: A browser
automation framework and ecosystem. https://
github.com/SeleniumHQ/selenium.

[45] Alok Sharma, Edwin Vans, Daichi Shigemizu, Keith A.
Boroevich, and Tatsuhiko Tsunoda. DeepInsight: A
methodology to transform a non-image data to an image
for convolution neural network architecture. Scientific
Reports, 2019.

[46] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. De-
coupled spatial-temporal attention network for skeleton-
based action-gesture recognition. In Proc. of ACCV,
2020.

[47] Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and
Vir V. Phoha. Beware, your hands reveal your secrets!
In Proc. of ACM CCS, 2014.

2740 33rd USENIX Security Symposium USENIX Association

https://huggingface.co/spaces/evaluate-metric/wer
https://huggingface.co/spaces/evaluate-metric/wer
http://www.cs.toronto.edu/~fidler/slides/2021Winter/CSC420/lecture13.pdf
http://www.cs.toronto.edu/~fidler/slides/2021Winter/CSC420/lecture13.pdf
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how-google-docs-is-smart-enough-to-correct-grammar
https://cloud.google.com/blog/products/g-suite/everyday-ai-beyond-spell-check-how-google-docs-is-smart-enough-to-correct-grammar
https://www.meta.com/blog/quest/avatars-the-art-and-science-of-social-presence/
https://www.meta.com/blog/quest/avatars-the-art-and-science-of-social-presence/
https://www.meta.com/blog/quest/avatars-the-art-and-science-of-social-presence/
https://immersed.com
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
https://forwork.meta.com/horizon-workrooms
https://forwork.meta.com/horizon-workrooms
https://www.pwc.com/us/en/tech-effect/emerging-tech/metaverse-survey.html
https://www.pwc.com/us/en/tech-effect/emerging-tech/metaverse-survey.html
https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium

[48] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using
multiview bootstrapping. In Proc. of CVPR, 2017.

[49] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on
SSH. In Proc. of USENIX Security Symposium, 2001.

[50] Ülkü Meteriz-Yildiran, Necip Fazil Yildiran, Amro
Awad, and David Mohaisen. A keylogging inference
attack on air-tapping keyboards in virtual environments.
In Proc. of IEEE VR, 2022.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Proc. of
NeurIPS, 2017.

[52] Jan-Niklas Voigt-Antons, Tanja Kojic, Danish Ali, and
Sebastian Möller. Influence of hand tracking as a way
of interaction in virtual reality on user experience. In
Proc. of QoMEX, 2020.

[53] Oculus VR. Stereo-based calibration apparatus. https:
//patents.justia.com/patent/9805512.

[54] vSpatial. The workspace of the future is here. https:
//www.vspatial.com/xr.

[55] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proc. of CVPR, 2017.

[56] Yi Xu, Jared Heinly, Andrew M. White, Fabian Monrose,
and Jan-Michael Frahm. Seeing double: Reconstruct-
ing obscured typed input from repeated compromising
reflections. In Proc. of ACM CCS, 2013.

[57] Edwin Yang, Song Fang, IanMarkwood, Yao Liu,
Shangqing Zhao, Zhuo Lu, and Haojin Zhu. Wireless
training-free keystroke inference attack and defense.
IEEE/ACM Transactions on Networking, 30(4):1733–
1748, 2022.

[58] Zhuolin Yang, Yuxin Chen, Zain Sarwar, Hadleigh
Schwartz, Ben Y. Zhao, and Haitao Zheng. Towards
a general video-based keystroke inference attack. In
Proc. of USENIX Security Symposium, 2023.

[59] Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu,
Kui Ren, and Wei Zhao. Blind recognition of touched
keys on mobile devices. In Proc. of ACM CCS, 2014.

[60] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin,
and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv, 2017.

[61] Xiaojin Zhu. Semi-supervised learning literature survey.
University of Wisconsin – Madison, 2008.

[62] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acous-
tic emanations revisited. In Proc. of ACM CCS, 2005.

Appendix

9.1 Clustering

Detecting and clustering thumb generated keystrokes.
We observe that most users have very subtle motions with re-
gards to typing keys with their thumbs (usually the space key).
Therefore, our motion and displacement based techniques do
not work well for thumb tip data. However, we are still able to
detect thumb-based keystrokes via the movement of the other
four fingers, because they have a distinct movement pattern
when the thumb is used to press a key. Specifically, the four
fingers move in tandem much more as compared to when a
non-thumb finger is used for a keystroke. So if the fingers
move together, the variance in their relative displacement is
low and we use this signal to mark detected keystrokes as
being thumb-generated.

However, this process is not very accurate and we follow
the approach laid out by [58] to deal with thumb generated
keystrokes. Despite having some confidence that a keystroke
was thumb-generated, we treat it as if it was a non-thumb
keystroke i.e., we proceed by including it in the clustering
process by using the coordinates of the non-thumb key identi-
fied as having generated that keystroke. The only difference is
that we do not let these keystrokes be clustered in the regular
non-thumb key clusters. Rather, we let these keys form their
own clusters and let the HMM decide which of these clusters
correspond to thumb keystrokes, i.e., space keys and which
are non-thumb keystrokes.
Labeling consistency within each cluster. If the clustering
was perfectly clean, we would expect each cluster to con-
tain touchpoints of the same key and the HMM would most
often label the clusters as such. However, given the errors
in our clustering, the HMM often assigns different labels to
keystrokes within the same cluster as it is not bound to assign
a one-to-one mapping between a cluster’s ID and its associ-
ated label. Rather, it relies on its learned parameters to decide
the most likely labels at each time step. While the HMM
can often assign the correct label to an incorrectly clustered
keystroke, we find that minority labels within a cluster are
unreliable. Therefore, we only select labels from the most
dominant class in each cluster.
Cross-cluster label compatibility. By inspecting the ma-
jority label assigned by the HMM to the keystrokes in each
cluster, we are further able to identify errors by previous mod-
ules in our pipeline. Specifically, we can identify errors in
finger identification and the presence of non-keystroke events
in our pipeline by doing a cross-cluster label consistency
check. Intuitively, if two clusters have the same majority la-
bel, they should be close together in the clustering space since
the clustering is spatial and each key has a fixed location on

USENIX Association 33rd USENIX Security Symposium 2741

https://patents.justia.com/patent/9805512
https://patents.justia.com/patent/9805512
https://www.vspatial.com/xr
https://www.vspatial.com/xr

the keyboard. Therefore, if two clusters are far apart and have
been assigned the same majority label, one of them cannot be
legitimate. Following this observation, we sort such clusters
by size and remove all but the largest one from our training
set for the keystroke classifier.
Detecting backspaces For accurate keystroke inference, it
is imperative that we detect backspaces with high precision
as failure to do so leads to high rates of error accumulation.
We use two heuristics to identify backspaces among the set
of detected keystrokes. We assume that the backspace is one
of the edge keys on the keyboard and secondly, it is often
pressed multiple times together to fix typos. As a result, we
label the corner cluster on our touchpoint map with the highest
ratio of consecutive keystrokes associated with it. For every
keystroke in the backspace cluster, we remove the previous
non-backspace detected keystroke for it. After this step, the
backspace cluster is not used anymore in the attack pipeline.

9.2 Hidden Markov Models (HMM)
The output of the clustering module gives us a sequence of
cluster IDs where each element in the sequence corresponds
to a keystroke in the order that it occurred. We want to map
each element in the sequence to 29 keys (period, comma,
space key, and the 26 letters of the English alphabet) and a
sequence tagging algorithm such as the HMM can perform
this mapping. We are interested in obtaining the actual keys
being typed by the victim but are unable to directly observe
them. However, we have obtained a sequence of cluster IDs
that are causally related to the actual keys being typed. HMMs
can model this causal relationship between the observed and
unobserved events and then infer the unobserved events.

Formally, HMMs are characterized by two sets of parame-
ters A and called the Transition and Emission matrices respec-
tively. Matrix A models the probability of moving from one
hidden state to another whereas the matrix B models the prob-
abilities of hidden states producing the observed states. In our
case, A models the actual N=29 keys and is a N X N matrix
whereas B models the M < 50 cluster IDs being produced
by the alphabets and is therefore a N X M matrix. Probabili-
ties in both matrices satisfy the Markov assumption. Inspired
by [58], we compute A by empirically estimating the tran-
sition probabilities in the English language by using 40,000
sentences from the CNN/DailyMail dataset [19]. Matrix B
is learned using a variant of the Expectation-Maximization
(E-M) [10] algorithm given A and the cluster sequence. Given
A, B, and the cluster sequence, the HMM infers the most
probable hidden state sequence, i.e., the typed keys.

However, since the E-M algorithm performs local opti-
mization [30] it often converges to local minimas. To deal
with this, we run multiple iterations of the HMM and select
the model that produces the most number of high-confidence
predicted labels using the consistency checks explained in
Appendix 9.1.

Attack
Data

Attacker’s
PoV

P1 P2
CER WER Sim. CER WER Sim.

(%) (%) (%) (%) (%) (%)
Horg – 1.2 4.8 97.6 9.5 25.8 77.7

T3d(PoV)
(0,0) 2.1 7.2 95.6 10.3 29.1 75.5
(0,45) 1.7 5.0 97.8 9.9 27.9 67.3
(45,0) 1.6 6.6 95.8 9.4 25.0 70.3

T2d(PoV)
(0,0) 56.9 96.8 0.0 32.5 77.9 0.0
(0,45) 10.2 26.1 74.4 41.7 93.8 0.0

T2d(0,0) &
T2d(PoV)

(0,45) 1.9 7.4 96.4 10.0 26.9 69.9
(15,0) 1.6 5.2 96.8 9.3 25.4 72.7

Table 7: Attack performance on two other participants’ teleme-
try data. We include Horg, T3d , T2d , and an extended rendered
handpose attack using two T2d at different camera PoV s.

Keystroke Detector D Keystroke Classifier C
Training Inference Training Inference

keystroking frames all frames keystroking frames
P1 2925 181394 1647 2868
P2 2677 184139 1540 2849
P3 3070 50716 1475 2903
P4 3009 77494 1576 2950
P5 3096 70017 1351 3027
P6 3034 215462 1248 2916
P7 3235 184145 1676 2894
P8 3381 126165 1405 2887
P9 3023 121333 1257 2839
P10 3108 76549 1338 3026
P11 3078 79432 1341 2866
P12 3200 65410 1412 2950
P13 3194 37902 1233 2858
P14 3078 47422 1369 3042
P15 3274 36733 1333 2896

Table 8: For each of the 15 participants, the amount of training
data, in terms of number of telemetry frames, used to train the
DNNs (i.e., the keystroke detector D and the keystroke classifier
C), and the amount of inference data being fed into the trained
models. When training D, we set the self-labeled keystroking
frames as positive samples in the training dataset, and extract the
same amount of non-keystroking frames as the negative samples
in the training dataset.

P1

P14

Figure 7: P1 and P14’s keystroke pressing locations tracked
by the VR headset. The locations are based on ground truth
keystroke timestamps and pressing fingertips.

2742 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and Related Work
	Existing Keystroke Inference Attacks
	Creating Immersive Experiences in VR
	Privacy Threats and Defenses in VR

	Keystroke Inference Attacks in a Shared Virtual Environment
	Motivation and Real-World Implications
	Threat Model

	Design Challenges and Baseline Solutions
	A Closer Look at the Telemetry Data
	Exploring Attack Design Options

	Our Proposed Attack
	Design Insights
	Attack Overview

	Detailed Attack Design
	Detecting Keystroking Frames
	Detecting the Pressing Fingertip
	Recognizing Typed Keys
	Coordinate Transformation
	Putting It All Together

	Evaluation
	Experimental Setup
	Attack Effectiveness vs. Telemetry Data
	Effectiveness under Different VR Settings
	Performance across Users
	black Comparison to Other Solutions
	Attack Complexity

	Defenses
	Conclusion
	Clustering
	Hidden Markov Models (HMM)

