é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Data Coverage for Guided Fuzzing

Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Jingzhou Fu, and
Zhuo Su, Tsinghua University; Qing Liao, Harbin Institute of Technology;
Bin Gu, Beijing Institute of Control Engineering; Bodong Wu,
Huawei Technologies Co., Ltd; Yu Jiang, Tsinghua University

https://www.usenix.org/conference/usenixsecurity24/presentation/wang-mingzhe

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Data Coverage for Guided Fuzzing

Mingzhe Wang!, Jie Liang!, Chijin Zhou!, Zhiyong Wu!, Jingzhou Fu', Zhuo Su!,
Qing Liao?, Bin Gu?, Bodong Wu*, and Yu Jiang'*
YTsinghua University, 2Harbin Institute of Technology,
3Beijing Institute of Control Engineering, *Huawei Technologies Co., Ltd

Abstract

Code coverage is crucial for fuzzing. It helps fuzzers identify
areas of a program that have not been explored, which are
often the most likely to contain bugs. However, code cover-
age only reflects a small part of a program’s structure. Many
crucial program constructs, such as constraints, automata, and
Turing-complete domain-specific languages, are embedded
in a program as constant data. Since this data cannot be effec-
tively reflected by code coverage, it remains a major challenge
for modern fuzzing practices.

To address this challenge, we propose data coverage for
guided fuzzing. The idea is to detect novel constant data refer-
ences and maximize their coverage. However, the widespread
use of constant data can significantly impact fuzzing through-
put if not handled carefully. To overcome this issue, we op-
timize for real-world fuzzing practices by classifying data
access according to semantics and designing customized col-
lection strategies. We also develop novel storage and uti-
lization techniques for improved fuzzing efficiency. Finally,
we enhance libFuzzer with data coverage and submit it to
Google’s FuzzBench for evaluation. Our approach outper-
forms many state-of-the-art fuzzers and achieves the best
coverage score in the experiment. Furthermore, we have dis-
covered 28 previously-unknown bugs on OSS-Fuzz projects
that were well-fuzzed using code coverage.

1 Introduction

Code coverage is an essential part to software testing. In any
case, code must be executed to trigger the underlying bug.
This is particularly important in the case of guided fuzzing,
a type of automated testing that identifies potential bugs and
vulnerabilities by maximizing code coverage with novel test
cases. The use of code coverage in guided fuzzing has been
shown to be highly effective, leading to its widespread adop-
tion in both industry [30,35] and academia [29,34,38]. In fact,

*Corresponding author.

the use of code coverage in guided fuzzing has been respon-
sible for the discovery of over 40,000 bugs in 650 popular
projects [1]. Most academic papers on fuzzing also rely on
code coverage as a key component of their testing strategy.

However, code coverage is not sufficient to fully reflect
a program’s semantics. As Niklaus Wirth [36] pointed out,
“algorithms + data structures = programs.” In other words,
programs are concrete formulations of abstract algorithms
based on particular representations and structures of data [36].
This can also be seen from the perspective of programming
language implementation: when a compiler converts source
code into machine code, the algorithms are transformed into
machine instructions, while the data structures are encoded
as constant data.

In addition to code, constant data plays a crucial role in
program constructs. There are two physical forms of constant
data: immediate values and static values.

o Immediate values are simple, directly embedded in code,
and commonly found in programs. For example, in the C
programming language, the code *ptr = 0x1234abcd
would lower to the x86 machine code ¢7 00 cd ab 34 12,
with the immediate value 0x1234abcd embedded as the
last four bytes of the machine code.

Static values are more complex and expressive. In the C
programming language, string literals, static variables,
and global variables are all examples of static values.
These values can encode complex structures and convey
intricate semantics, including arrays, linked lists, lookup
tables, and even graphs.

Data-intensive program constructs are often difficult to test
with code coverage guided fuzzing. To illustrate this point,
consider the scenario of testing a parser for a highly-structured
input format such as SQL. In this case, the programmer writes
a grammar specification and uses a tool like YACC to automat-
ically generate the parser code. The transition rules derived
from the grammar are encoded as large arrays, while a small

USENIX Association

33rd USENIX Security Symposium 2511

piece of template code is used to drive the transition. There-
fore, code coverage only reflects the superficial logic of “how
to run any automata,” while data coverage reflects the real
logic of “how this SQL automata runs.” This is why data
coverage is so important for fuzzing: it allows fuzzers to fully
test data-intensive program constructs.

According to the definition of constant data symbols, data
coverage can have varying granularities, such as variable,
array, field, or bit coverage, similar to code coverage’s func-
tion, line, and branch coverage. However, a trade-off exists
between the precision of the data coverage measurement and
the overhead it introduces. For instance, achieving perfect
data coverage would require symbolizing the program’s ad-
dress space into a bit vector and collecting the constant data
symbols that contribute to the program’s output. While this
would provide highly precise measurements, it also signif-
icantly slow down the program’s execution and reduce the
overall fuzzing throughput.

We optimize data coverage for real-world fuzzing practices.
Our techniques aim to retain accuracy while maintaining high
performance. They consist of three stages:

1. Before fuzzing begins, we perform static analysis and
instrument potential data accesses. To remove unnec-
essary instrumentation, we divide data accesses into 6
categories and instrument them differently.

2. During fuzzing, when a data access is intercepted, the
runtime library translates the different kinds of data ac-
cesses into tuples of (address, length). We store the novel
ones in a novel set for further inspection.

3. After the execution of a test case, the fuzzer checks the
novel data coverage set. Code and data features are used
to jointly adjust the fuzzer’s exploration direction.

To demonstrate the effectiveness of data coverage, we im-
plemented a reference fuzzer based on libFuzzer and con-
ducted third-party evaluation on Google’s FuzzBench. Our
evaluation incorporates many classic fuzzers and fully repli-
cates the original FuzzBench paper’s setup [23]. The results
indicate that data coverage significantly boosts libFuzzer’s
normalized coverage score from 87.65 to 98.31, resulting
in an improved rank for the fuzzer from 9th place to 1st
place among the 12 fuzzers tested. Interestingly, we found
that the introduction of data coverage alone outperforms the
combination of many advanced fuzzing strategies, including
AFL++ [9], the default fuzzer for Google’s continuous fuzzing
service OSS-Fuzz.

Moreover, when we applied data coverage to real-world pro-
grams on OSS-Fuzz, we discovered 28 previously-unknown
bugs despite continuous fuzzing by thousands of machines
in Google’s cluster. These findings indicate that data cover-
age can uncover novel program states and bugs even when a
program is continuously fuzzed with code coverage guidance.

In summary, this paper makes the following contributions:

* We propose a data coverage approach for guided fuzzing.
It helps to solve the limitations of code coverage when
applied to data-intensive program constructs.

* We present optimization techniques for using data cov-
erage in fuzzing, including novel methods for coverage
maintenance, representation, and utilization.

* We implement a reference fuzzer based on data coverage
and evaluate its effectiveness. Experiments show that it
achieves the highest coverage and stability among all the
evaluated fuzzers. It also found 28 previously-unknown
bugs on well-fuzzed OSS-Fuzz projects.

For open, reproducible research, we publish the source
code!, the raw experiment data’, and the detailed evalua-
tion report on FuzzBench®.

2 Towards Data Coverage

2.1 Limitations of Code Coverage

Although code coverage is a valuable tool for fuzzing, it has
limitations when it comes to exploring data-intensive program
constructs. One such construct involves immediate values
used in predicates, which determine the truth value of a propo-
sition. A common example of this type of construct can be
found in the widely-used color management engine, LCMS,
which accepts ICC color profiles as input data. As illustrated
in Figure 1, LCMS performs a sanity check on the ICC file
by verifying the magic number. While the predicate magic
= 0x61637370 is relatively simple to understand and reason
about, using code coverage to explore it can be challenging.

#define cmsMagicNumber ©x61637376 // 'acsp'

// Validate file as an ICC profile

if (_cmsAdjustEndianess32(Header.magic) != cmsMagicNumber) {
cmsSignalError(... "not an ICC profile, invalid signature");
return FALSE;

}

Figure 1: Predicate in LCMS testing for magic numbers.

In the code snippet provided, code coverage can only de-
termine whether the check passes or fails. However, when the
check fails, the code coverage remains the same regardless of
how close the guessed value is to the correct value. Without
effective guidance, the fuzzer must “guess” the values blindly,
which means that the likelihood of a successful guess is 2732,
In other words, to achieve a success rate of 50%, the fuzzer

IThe source code is available at https://github.com/
THU-WingTecher/wingfuzz.
2The experiment data is available at https://console.cloud.google.
com/storage/browser/fuzzbench-data/2022-10-08-wingfuzz.
3The evaluation report is available at https://www.fuzzbench.com/

reports/experimental/2022-10-08-wingfuzz.

2512 33rd USENIX Security Symposium

USENIX Association

https://github.com/THU-WingTecher/wingfuzz
https://github.com/THU-WingTecher/wingfuzz
https://console.cloud.google.com/storage/browser/fuzzbench-data/2022-10-08-wingfuzz
https://console.cloud.google.com/storage/browser/fuzzbench-data/2022-10-08-wingfuzz
https://www.fuzzbench.com/reports/experimental/2022-10-08-wingfuzz
https://www.fuzzbench.com/reports/experimental/2022-10-08-wingfuzz

would need to try 3 x 10° times, which would take over a
month assuming 1,000 executions per second.

2.2 Limitations of Constraint Solving

Constraint solving is an effective way to solve simple
branches. Two popular solving approaches are concolic exe-
cution [7,27,33] and intelligent branch solving [3, 19,20, 28].

Concolic execution represents the constraint as symbolic ex-
pressions, enabling solvers such as SMT solvers to solve them.
We can represent the input bytes as a sequence of 8-bit vectors,
with each byte declared as SMT-LIB clause (declare-fun
inputX () (_ BitVec 8)). As the program executes, we
gradually update the symbolic representations of all values
based on the inputX variables. To solve the failed predicate,
we add an assertion that mandates all bytes to be equal to the
expected values: (assert (and (= input(O #x61) ...)).
By querying this assertion, we request the SMT solver to
provide concrete input values satisfying the constraints.

Intelligent branch solving identifies which input bytes are
used by the constraint and employs a tailored mutation strat-
egy on these bytes [3,26]. For instance, to solve the branch in
Figure 1, we can record the operands of the failed predicates
and match them against the input data. In this example, we
find that the first 4 bytes of the input impact the branch and
are expected to be 0x61637370. Therefore, we can simply
replace the bytes with the expected value to solve the branch.

However, there are limitations for data-intensive program
constructs, particularly for static values with rich semantics.
For static values, it is inefficient for solvers to resolve one
constraint. Moreover, the fuzzer may fail when the semantics
of static values are not constraints.

2.2.1 Inefficiency in Constraint Solving

Even simple string comparisons can be challenging for
constraint solvers. For example, LCMS implements case-
insensitive string comparison on its own for portability, as
shown in Figure 1. Neither concolic execution nor intelligent
branch solving can effectively solve this constraint.

int cmsstrcasecmp(const char* s1, const char* s2) {

/L]
while (toupper(*us1) == toupper(*us2++))
if (Fusl++ == '\@")
return 8;

Figure 2: Manual string comparison in LCMS.

Concolic execution can solve this constraint by enumerat-
ing paths in the program systematically, but it fails to distin-
guish useful differences among paths from superficial ones.
For instance, in this case, the toupper function may contain
several branches to handle the non-ASCII, lower-cased, or
upper-cased scenarios. Thus, there could be 8 paths to handle

in one iteration, assuming two cases for the first t oupper, two
cases for the next toupper, and two cases for the equality
comparison. If the loop runs for m iterations, there would be
8™ paths to solve! Even with modern optimizations that merge
similar paths, it can still incur high overhead in symbolization
and solver invocations.

Table 1: Hard-Coded Buffer Comparison Routines in AFL++

Program Count

Example

C++ 4 operator==(string&, char*)
C 10 strcmp

apache 3 ap_cstr_casecmp

busybox 1 memcmpct

curl 5 Curl_safe_strcasecompare
glib 9 g_strcasecmp

Iecms 1 cmsstrcasecmp

libxml 7 xmlStrcasecmp

openssl 4 OPENSSL_memcmp

samba 1 strcsequal

Total 45

Intelligent branch solving cannot solve this constraint with-
out human intervention. Because the comparison of a single
character is easy to succeed, the while branch is quickly
marked as solved and not inspected further. Consequently,
the constraint for the remaining characters is never passed
to the solver. As a remedy, state-of-the-art fuzzers tend to
work around this issue with per-program optimizations. For
instance, AFL++ implements “CmpLog” instrumentation to
record the operands of failed comparison routines to solve
them with heuristics. Rather than instrumenting individual
branches in a program-agnostic manner, it hard-codes a cu-
rated list of comparison routines and treats each invocation
as an abstract branch. As shown in Table 1, more than two-
thirds of the optimizations are focused on individual programs.
Obviously, this approach does not scale.

In conclusion, constraint solvers cannot effectively solve
static value-based branches. Although it is technically pos-
sible to solve this branch with concolic execution, it is inef-
ficient in fuzzing practices. Intelligent branch solving also
requires manual optimizations for individual programs.

2.2.2 Challenges in Non-Constraints

Complex structures, such as lookup tables, binary trees, and
directed graphs, can be represented as static data. However,
their semantics are not simple constraints, which makes them
unsuitable for constraint solvers [2]. For example, libpcap
supports customized packet filtering with user-provided ex-
pressions, which is implemented using a flex-based lexer and
a bison-based parser. As Figure 3 shows, the lexer encodes
the complex transition table in constant arrays and drives the
machine using simple logic [18].

USENIX Association

33rd USENIX Security Symposium 2513

Data: Transition Table (42 KiB, 17% of binary size)

static uint8_t yy_ec[256], yy_meta[53];
static int16_t yy_accept[1780], yy_base[2248], yy_nxt[7789], yy_chk[7789];

Code: State Transition Code: Action Execution
do {
// Read the input byte.
uint8_t yy_c = yy_ec[*yy_cpl;
// Drive the state machine.
while (yy_chk[yy_base[yy_state] + yy_c]
= yy_state) { >
yy_state = (int)yy_def[yy_statel;
if (yy_state>=1788) yy_c=yy_metal[yy_c];

yy-state = yyg->
yy_last_accepting_state;

yy_act = yy_accept[yy_state];

switch (yy_act) {

case 1: return DST;

case 2: return SRC;

case 3: return LINK;

// Many cases. ..

case 186: return LEX_ERROR;

case 187: ECHO;

default: YY_FATAL_ERROR();

yy_state=yy_nxt[yy_base[yy_state]+yy_c];
++yy_cp; // Bump to the next byte.
} while (yy_state != 1779); }

Figure 3: Finite-state machine implementation of libpcap.
Based on the predefined transition table (shown in top), the
transition logic (shown in the left) alters the machine’s state
according to input. When a final state is entered, the execution
logic (shown in the right) performs user-defined actions. Data
references in code are highlighted in yellow.

To explore the libpcap program, the fuzzer needs to trigger
novel state transfers within the automaton, reach new accepted
states, and execute new program logic in the end. However,
the simplicity of the machine’s logic results in saturated code
coverage on the left and coverage plateau on the right. Since
the fuzzer’s coverage is stranded in the switch statement on
the right, the fuzzer seeks help from the constraint solver.
Concolic execution fails to symbolize indirect memory ac-
cesses, falling back to a concrete version of yy_act, which
is unsolvable. Intelligent branch solving also fails since the
predefined mutation strategy is inapplicable, as the value of
yy_act is not directly related to input data. Therefore, none
of the solvers can efficiently explore the state machine and
trigger novel actions.

2.3 Benefits of Data Coverage
2.3.1 Benefits for Static Values

Static values are objects with static storage duration and pre-
defined values. In the C programming language, string literals,
static variables, and global variables are all examples of
static values. A common implementation of these values is to
convert the data to a binary form and store it in data segments.
At runtime, these segments can be efficiently mapped to the
process’s address space.

The complexity of static values provides rich semantics.
Complex structures, such as lookup tables, binary trees, and
directed graphs, can be represented as static data. As demon-
strated in the automaton example of Figure 3, the semantics
of static values can be much more complex than constraints,
where existing techniques such as constraint solving simply
do not work. In this case, data coverage can be a crucial
complement to code coverage. By tracking constant data us-

ages, the fuzzer can distinguish 1,780 intermediate states and
gradually explore them, executing novel actions as it does so.

2.3.2 Benefits for Imnmediate Values

Immediate values are simple values that are embedded di-
rectly inside instructions. For example, in the statement *ptr
= 0x1234abcd, the value 0x1234abcd is an immediate value.
When this statement is compiled to x86 machine code, the
instruction will be represented as c¢7 00 cd ab 34 12 (or mov1l
$0x1234abcd, (%eax) in assembly). The immediate value
is encoded as the last four bytes of the movl instruction. Im-
mediate values can take up a significant amount of space in
machine code. For example, in the above movl instruction,
67% of the machine representation is pure data.

Similar to constraint solving techniques, data coverage can
be a crucial complement to code coverage. We can under-
stand how data coverage helps to solve this scenario by the
“short-circuiting” nature of predicates. Essentially, a predicate
divides the input domain into two equivalence classes. Since
the returned value is only one bit, not all bits of information
are required to compute the result. In Figure 1’s example,
the least significant bit of immediate value 0x61637370 is 0.
When the processor performs the comparison, it can immedi-
ately terminate the comparison and return “true” for any odd
value (i.e., any value with a least significant bit of 1) because
of the mismatch. This means that only one bit of the 32-bit
immediate value is effectively used in the comparison.

To detect these subtle changes in integer predicates, we
can use data coverage at bit-level precision. Specifically, we
can guide fuzzing by maximizing the effectively used bits
in predicates. When all 32 bits of the immediate value are
effectively used, the predicate will flip and new code will
emerge automatically.

3 Data Coverage in a Nutshell

Figure 4 illustrates how we guide fuzzing with data coverage.
Before fuzzing starts, we instrument the program for various
kinds of data access primitives. During fuzzing:

1. The fuzz engine generates a test case and executes the
target program with it.

2. During the test case execution, the instrumented fuzz target
records data coverage. In this case, the instrumentation
code intercepts a 16-bit switch at 0x404alc and passes its
condition and case values to the runtime library.

3. The runtime abstracts the switch according to its semantics,
treating it as two integer accesses. The first one (omitted
in the figure) reads 4 bits from 0x404a19, while the next
one (shown in the figure) reads 15 bits from 0x404a20.

4. With the access tuple, we detect novel coverage by com-
paring it to the known coverage database. In this case, the

2514 33rd USENIX Security Symposium

USENIX Association

Fuzz Target
. @ Trace Switch:
trace_load16(y, yptr); Cond=14

Coverage Maintenance

Access Abstraction

Coverage Representation

Known Coverage

tre.lce_sw1tch16(y, CASES);m
switch (y) { ... } PC=Bx484alc

[I Pl T 11]oxee6000

r Address Predicate
& ’iﬁ]:a‘zi—‘ff_ﬂpii(x, ¥, xptr, yptr); Estimation Simulation ST G T T T T T T 0x404a20
a - e ' 2 ..
i P— ; Bx404a20 y, vi5bits | & LI T T T T T T exfffffe
Coverage Utilization ® Code Features ® —
\ 2 Novelty Detection <--L-" @ Update 9
Fuzz |_® Update Corpus || | L0000 @ Femgeomie---- > {0x0002, Bx04a20}
EngiE B Corpus Saver ‘k () Data Features H

Figure 4: Fuzzing with data coverage. The fuzz target is instrumented during compilation. During program execution, the
coverage maintenance component intercepts the program’s data accesses and updates the coverage representation. After the test
case execution completes, the coverage utilization component adjusts the fuzzing directions based on the novel coverage.

access to 0x404a20 improves the previously known cover-
age length to 15 bits. We add its address to the set of novel
coverage and continue the program’s normal execution.
5. After the test case execution is completed, we collect the
complete code coverage and the set of novel data features.
6. The corpus saver analyzes both code and data features. In
this case only novel data coverage is detected, thus the
saver replaces an existing seed with the current test case.

3.1 Coverage Maintenance

We model each data access as a region, represented as a tuple
of (address, length). The address is based on byte granularity,
whereas the length is measured in bits. We intercept and
convert all the program’s data accesses to such tuples. There
are several special cases worth mentioning.

3.1.1 Load Filtering

Static values must be used by loading their values to registers.
Therefore, we instrument load instructions to intercept static
value usages. However, not all load operations are based on
static values: the address can also be derived from the stack
or the heap.

To filter load addresses, we analyze the runtime memory
layout. The layout is obtained from the operating system’s
dynamic linker, which is responsible for loading a binary’s
segments to the program’s address space and managing shared
objects. For example, the dynamic linker of GNU libc pro-
vides the d1_iterate_phdr function to iterate through all
the program headers (d1_phdr_info) of loaded objects. With
this information, we can construct the runtime memory lay-
out of the current process at the segment level, including the
segment’s type, address, and length. We use the layout to de-
termine whether an address belongs to the program’s binary.
To improve efficiency, we pre-compute the valid memory
range when the program starts. This design only requires two
integer comparisons for each check.

3.1.2 Program Counter for Address Estimation

Immediate values are designed to be embedded in instruc-
tions. Typically, their addresses are implementation-defined
and cannot be directly accessed. For example, the ARM64
architecture has a fixed 4-byte instruction encoding, which
means that a 32-bit integer is spread across two instructions.
Tracking the precise address of immediate values is costly
and does not provide any benefits for fuzzing.

To estimate the address of immediate values, we use the pro-
gram counter. Specifically, when instrumentation is needed,
we insert a call to the runtime library before the parent in-
struction of the immediate value. When the program calls the
runtime library, it saves the program counter in the manner
specified by the application binary interface (ABI). Because
the saved program counter is adjacent to the parent instruc-
tion and the contained immediate value, we read the value
following the platform ABI and use it as an approximation of
the immediate value’s address.

3.1.3 Predicate Emulation

Over approximation may occur if we directly treat the data’s
storage bits as the access length. As discussed in §2.3.2, pred-
icates compress the input domain into a boolean value. There-
fore, not every bit of information is used in the decision pro-
cess. For example, when testing x == 0, the processor may
terminate the comparison as soon as a non-zero bit is found.
To determine the number of effectively used bits of infor-
mation in predicates, we emulate predicates based on the
following observation: predicates require more information
to complete as the operands become more similar to each
other. For example, when testing 0b0001 == 0b1110, we
can easily return “false” if any of the four bits is selected;
however, when testing 0b1110 == 0b1110, every bit must
be compared to draw a conclusion. Therefore, we define the
“effectively-used bit” of equivalence relations as the number of
equal bits in the corresponding positions for both operands.

USENIX Association

33rd USENIX Security Symposium 2515

However, this measurement cannot be applied to partial
order relations. Unlike equivalence relations, which treat all
bits equally, the predicates of partial order relations scan from
the most significant bit to the least significant bit. For example,
when testing 000001 > 0b1110, the result can be obtained
by looking at the most significant bits alone. As a solution, we
add a constraint to the original measurement, requiring that the
measurement starts from the most significant bit. Therefore,
we define the “effectively-used bit” of partial order relations
as the number of consecutive equal bits of both operands
starting from the most significant bit.

Since the measurement of effectively used bits is used fre-
quently, we accelerate the operation with bit manipulation.
Suppose that we are measuring the actually used bits between
% and y, we first compute the different bits diff = x xor y.
A bitin diff would be 0 if the corresponding bits in x and y
are equal. Therefore, the final measurement would be the num-
ber of zeros in diff for equivalence relations and the number
of leading zeros of diff partial order relations. We compute
the results with the compiler intrinsic __builtin_popcount
and __builtin_clz for potential hardware acceleration.

3.2 Coverage Representation

We represent the known coverage as an 8-bit integer array.
For each access tuple, the lowest 24 bits of the address are
used as the array index, and the length is stored directly as
the element’s value. For example, as shown in Figure 4, if the
program reads 15 bits at 0x404a20, then the array’s 0x404a20-
th element is accessed to obtain the known access length. If
the known length is less than 15, we update the value to 15
and mark the access as novel.

The design of known coverage reduces the overhead of
instrumentation. First, most memory access primitives (e.g.,
load instructions and memcpy) touch multiple adjacent bytes.
This design merges all accesses into one byte, reducing the
extra memory accesses issued by instrumentation. Second,
unnecessary predicate emulations are reduced.

Predicate emulation improves the tracking precision to the
bit level, but slow bit manipulations are involved. We use
0xff as a saturation mark to represent whether the maximum
possible length has been reached. In this way, we can directly
skip predicate simulation if the saturation mark is found.

We represent the novel coverage as a set, which contains the
base addresses of novel access tuples. To minimize the impact
on program execution, we implement the set as a dynamic-
sized array. As the instrumentation logic identifies a novel
access tuple during execution, the address is immediately
appended to the array. Following each execution, we convert
the array to a set through sorting and de-duplication processes.

The design of the novel coverage set removes the expen-
sive post-execution coverage scan. Existing code coverage
pipelines typically scan the coverage array after each exe-
cution to detect new coverage. If we reuse this pipeline to

handle data coverage, then it would take too many cycles:
to prevent collisions and the accompanying inaccuracy, we
store the known coverage in a large 16 MiB array. Our new
design solves this problem by delegating the maintenance of
novel coverage to the instrumentation logic during program
execution. Therefore, the post-execution coverage discovery
is essentially an O(1) access to the array’s length.

3.3 Coverage Utilization

When a test case finishes execution, we determine the fuzzing
exploration direction with both code and data features. Al-
gorithm | presents the potential actions. The most common
case in fuzzing is a boring trial where no novel data or code
features are found. In this case, we directly ignore this test
case and proceed to the next trial. Next, we refine an existing
seed if the trial discovers novel data features but no novel
code features. The overall idea is to reduce the number of
saved seeds, since the space of data coverage is much larger
than code coverage. For example, for the same static value, if
the new data access reads 8 bits while the old one reads 7 bits,
we directly replace the 7-bit seed with the new one. Finally, if
the refinement fails to proceed, we save the current test case
as a new seed and update the data-seed mapping.

Algorithm 1: Refinement-based Corpus Update

Input: novel code coverage C

Input: novel data coverage D

Input: code feature summaries S

Input: testcase ¢ and code feature summary s

Data: M: maps a data feature to the saved seed

if C=0AD =0 then // No discovery.
L return;

if C = 0 then
// Data discovery only: try refinement.
for f € D do
if SMf = s then
REPLACESEED(M, 1);
for ' € D do
[My My;

return;

// Refinement is not possible: save a new seed.
n < SAVESEED(?,s);
for f € Ddo

L Mf < n;

We maintain two extra data structures for efficient seed
refinement. M maps a feature to the last seed saved in the
corpus that demonstrates that feature. With this mapping, we
can quickly enumerate the seeds for an access with the maxi-
mal access length. S maps a seed to the summary of its code
features. It is used to prevent discarding already-discovered
code features because of refinement. We ensure that the new

2516 33rd USENIX Security Symposium

USENIX Association

and old input shares the same code feature summary before
performing the replacement.

4 Data Access Interception

We classify a program’s data accesses into six categories
according to their semantics. Table 2 lists an example code
snippet for each category. Based on the classification, we
design customized instrumentation and collection strategies
to balance precision and overhead.

4.1 Integer Comparison

Integer comparisons are simple predicates. We insert a run-
time library call for each integer comparison. The runtime
estimates the address using the program counter. The runtime
also determines the length via predicate emulation following
the scheme presented in §3.1.3.

4.2 Switch Statement

Switch statements are predicates that directly determine the
control flow. They are usually implemented as jump tables for
efficiency [4]. Despite this, their semantics are equivalent to a
series of if-then-goto statements using immediate values.

We emulate the semantics of switch statements accordingly.
At compile time, for each switch statement we collect the case
values, sort them, and store them inside a static array. We
also insert a runtime library call before the switch statement,
passing the condition value together with the case value array.
Specifically, the function converts the switch statement into
two or three integer comparisons.

If the condition value v is too large or small, we try to guide
the value back to the case value range. We expand the switch
as if the original code tests for v == min and v == max. In
this case, a switch expands to two predicates targeted at differ-
ent case values. To provide unique data coverage storage for
each case, we slightly modify the program counter estimation
technique when determining the address of immediate values.
Specifically, for a switch executed at p, we assume the i-th
case’s immediate value is stored at p 1.

When the condition value v falls inside the range of a switch
statement, we try to locate the case i such that v € [¢;,cit1).
Because the original case value array is sorted at compile time,
we perform binary search to locate the index. If the condition
value v matches the i-th case exactly, we emulate v 2 ¢; to
reflect that the data of ¢; has been completely covered. In
addition to that, we also guide fuzzing towards adjacent cases,
emulating v £ ¢;_; and v £ ¢;4 if possible. If the condition
value v falls between ¢; and ¢; 1, then we emulate v 2 ¢; and
v 2 ¢4 to guide the condition to both cases.

For example, the switch statement in Figure 4 is located in
0x404alc and the condition value is 14. The condition value
fits between the 3rd case 4 and the 4th case 15. Therefore,
we simulate 14 £ 4 at 0x404alc + 3, yielding an access tuple
of (0x404alf, 8). We also simulate 14 2 15 at 0x404alc + 4,
yielding an access tuple of (0x404a20, 15).

4.3 Trivial Value

Instead of instrumenting the immediate values, we rely on
the existing code coverage pipeline to measure their coverage.
This is because immediate values are directly embedded in
instructions, and covering an immediate value implies that
the parent instruction has been executed, which further im-
plies that the basic block of the instruction has been covered.
Therefore, using the existing code coverage pipeline allows
us to assess the coverage of these values without introducing
additional implementation complexity or execution overhead,
while still maintaining completeness.

4.4 Load-Based Comparison

Load-based comparisons are a type of integer comparison,
whose operator is loaded from a static value. These compar-
isons have the same value semantics as plain integer compar-
isons (see §4.1), but they have different data access semantics.
To determine the access address of a load-based comparison,
we must find the origin of the comparison operand.

To estimate the origin address of a value, we use intra-
procedural analysis. The basic idea is to decompose the value
into its dependent values recursively until we reach a load
instruction. The specific rules for decomposition are shown

Table 2: Data Access Semantics and Their Address-Length Estimations

Data Access Semantics Example Address Estimation Length Estimation
Immediate Integer Comparison X == Program Counter Predicate Emulation
Value Switch Statement switch (x) case 1: PC + Case Index Switch Emulation
Trivial Value y=x+2 Not Available (Represented by Code Coverage)
. Load-Based Comparison plx *y] - 1>z Static Analysis Predicate Emulation
Static
Value Region Comparison memcmp (p, g, 5) Base Pointer Region Emulation
Simple Load *p Pointer Data Size

USENIX Association

33rd USENIX Security Symposium 2517

in Figure 5. During the decomposition, we remove unrelated
numeric operations, such as casting ((long) short_value),
intrinsic functions (__builtin_bswap), and binary operators
(x + Tandx | 1).Once we have decomposed the value, we
treat the load target address as the origin.

origin0f (Load ptr)
origin0f (Cast value)
origin0f (Intrinsic value operation)
| operation is numeric = originOf value
| otherwise =0
origin0f (BinaryOperator lhs rhs) =
case (originOf lhs, originOf rhs) of
(Iptr,) -> lptr
(O, rptr) -> rptr

ptr
originOf value

(1ptr, rptr) -> lptr
origin0f (Argument _) = ()
origin0f (Constant _) = ()
origin0f (Instruction _) =0

Figure 5: Rules for deriving the origin of a value.

To instrument load-based comparisons, we use the above
origin analysis to assist us. For each non-immediate compari-
son in the form of 1hs CMP rhs, we insert a runtime call
trace_cmp (T lhs, T rhs, T* lptr, T* rptr), where
lptr and rptr are the origin analysis results for lhs
and rhs, respectively. For example, when instrumentation
the comparison p[x * y] > z, we insert the runtime call
trace_cmp(p[x * y] - 1, z, p + x * y, NULL). The
runtime function filters out non-static addresses according
to the design described in §3.1.1. With the addresses filtered
and the length computed through predicate emulation, we can
update the data coverage at the end.

4.5 Region Comparison

Algorithm 2: Maintenance for Region Comparisons

Input: base pointer x and y, length /
Data: coverage database K
Data: novel set N
Output: comparison result
r <~ ORIGINALCOMPARISON(x,y,1) ;
p < ESTIMATEADDRESS(x,y) ;
if K, = MAX then
L return r;

if r is saturated then
L n<+ MAX,;

else
m < PREFIXBYTES(x,y,]) ;
L n 4 8m+ USEDBITS (X 2 yim);
if n > K, then
Kp<n;
L N+ NU{p};

return r;

Region comparisons, such as memcmp, are a specialized
type of load-based comparison. Because data accesses in

these comparisons occur in the operating system’s C lan-
guage runtime library, they cannot be directly intercepted by
instrumenting the program’s load instructions. To ensure that
these data accesses are not missed, we use libFuzzer’s weak
hook infrastructure to reimplement these utility functions.

Specifically, C runtime libraries provide default implemen-
tations of utility functions that are marked as weak symbols.
Since regular symbols take precedence over weak symbols
according to linkage semantics, we provide our own versions
of these functions as regular symbols, replacing the default
implementations in the C runtime library. The specific logic
of the interception function is shown in Algorithm 2.

First, we invoke the original C runtime library’s function to
compute the return value quickly. Next, we try to locate the
access address and remove non-static-data accesses. Based
on the comparison semantics, we mark the current compar-
ison as saturated and skip the slow emulation if possible. If
not, we compute the length in two steps: the common prefix
m determines the size of the equal region at the byte level
quickly, while the predicate emulation determines the number
of effectively used bits for the first unequal byte precisely. We
combine these results to obtain the total number of effectively
used bits n and update the coverage accordingly.

4.6 Simple Load

To improve the precision of coverage tracking, we try to pro-
mote individual loads to load-based comparisons when instru-
menting the program. If the promotion fails, we instrument the
load as-is to ensure completeness. In such cases, we simply
treat the bit width of the load instruction as the access length.
However, most load instructions are not based on constant
data and thus do not provide any benefits when instrumented.
To avoid these cases, we use static analysis to prune them:
before instrumenting a load instruction, we first locate the
base memory object of the address and only proceed if the
pointer is based on a static value.

5 Implementation

To assess the effectiveness of our data coverage approach, we
developed a new fuzzer named WingFuzz. The fuzzer is built
on top of libFuzzer from LLVM 14. We added runtime support
and corpus saving logic for data coverage, and implemented
instrumentation and static analysis using a compiler plugin
based on the LLVM infrastructure [16].

Despite the invitation for integrating data coverage into
AFL++ [11], we decided to use libFuzzer for fast prototyping
when writing the paper. AFL++ is a complex fuzzer that
incorporates numerous incremental research efforts. A simple
integration of data coverage would potentially jeopardizing
the validity of AFL++’s parameters derived from over 150
fine-tune experiments conducted on FuzzBench.

2518 33rd USENIX Security Symposium

USENIX Association

6 Evaluation

We used the classic code coverage approach and submitted
WingFuzz to FuzzBench [23], the evaluation service devel-
oped by Google. FuzzBench follows the golden standard of
fuzzing evaluation and publishes the results for open and
reproducible science. With more than 400 experiments involv-
ing 100 fuzzers and their variants on a variety of real-world
programs, it has become the de facto standard for evaluating
fuzzing performance in both academia and industry.

Our evaluation follows the default setup of FuzzBench.
It uses 19 target programs, runs for 23 hours, and repeats
each trial for 20 times. Each trial runs on a single-core in-
stance on Google Compute Engine with 3.75GB of memory
available [23]. The baseline fuzzers used in the evaluation
fully replicates the original FuzzBench paper’s configuration,
which includes classic works from academia and the default
fuzz engines from OSS-Fuzz [1].

Through our empirical evaluation, we aim to answer the
following research questions:

RQ1: Can data coverage improve fuzzing performance?
RQ2: Is data coverage orthogonal to prior techniques?
RQ3: How does individual component contribute?
RQ4: What is the runtime overhead of data coverage?
RQS5: Will the extra guidance cause state explosion?

6.1 Overall Fuzzing Performance

The evaluation summary from FuzzBench is presented in
Table 3. The median branch coverage of all the 20 trials
is used to calculate the metrics, where the fuzzer with the
highest number of explored branches receives 100 points. The
“average score” column represents the average score across
all benchmarks, while the “average rank” column indicates
the average of a fuzzer’s relative rankings of scores.

Table 3: FuzzBench Evaluation Summary

Fuzzer Average Score Average Rank
WingFuzz 98.31 3.08
AFL++ [9] 96.91 3.06
Honggfuzz [31] 96.26 4.12
Entropic [5] 94.71 4.03
MOFPT [21] 93.10 5.79
Eclipser [8] 92.86 6.31
AFLSmart [25] 92.84 5.28
AFL [37] 92.30 5.16
AFLFast [6] 88.77 7.70
libFuzzer [32] 87.65 7.09
LAFIntel [15] 86.47 8.17
FairFuzz [17] 84.67 7.44

* WingFuzz is based on libFuzzer.
e The full report can be found at https://www.fuzzbench.com/
reports/experimental/2022-10-08-wingfuzz.

Our results demonstrate that the use of data coverage signifi-
cantly enhances the average score, increasing it from 87.65 for
libFuzzer to 98.31 for WingFuzz, thereby improving its rank
by 9 places (12 in total). Furthermore, WingFuzz achieved
the 2nd-lowest average rank (3.08), just 0.02 points behind
AFL++, a sophisticated fuzzer that combines multiple incre-
mental optimizations from the research community. An analy-
sis of the individual benchmark ranks indicates that WingFuzz
is resilient against various program types, with the minimum
worst ranking of 8, while AFL++’s worst ranking was 10. Ad-
ditionally, WingFuzz consistently delivers impressive results
and had the lowest standard deviation (3.17) among all the
fuzzers we evaluated.

To understand how data coverage assists code coverage
guided fuzzer on individual programs, we compare the raw
coverage improvements of individual programs between
WingFuzz and its baseline version, libFuzzer. We present
the raw data in Table 4, where the rows are sorted according
to the gains in data coverage.

Table 4: Performance of WingFuzz Compared to libFuzzer

Benchmark libFuzzer ~WingFuzz WingFuzz’s Hours to

23h Cov. 23h Cov. Cov. Gains 23h Cov.
sqlite3 11449.5 18142.0 +58.45% 0.25
freetype2 8173.5 12019.5 +47.05% 1.00
libxslt 8526.0 11446.0 +34.25% 0.25
woff2 987.0 1155.0 +17.02% 0.25
openthread 2247.0 2585.0 +15.04% 7.75
curl 8185.5 9046.5 +10.52% 0.25
libjpeg 1865.5 2046.5 +9.70% 1.00
libxml2 7885.0 8548.5 +8.41% 2.25
harfbuzz 7206.5 7760.0 +7.68% 1.00
mbedtls 2367.5 2527.5 +6.76% 0.50
php 15880.5 16785.5 +5.70% 0.25
proj4 4360.0 4512.0 +3.49% 4.00
bloaty 5723.0 5766.5 +0.76% 19.75
jsoncpp 519.0 518.0 -0.19% /
re2 2566.0 2555.0 -0.43% /
zlib 463.0 461.0 -0.43% /
Average +13.99% 2.96

‘We observe that data coverage significantly improves the
coverage of a majority of programs by an average of 14%.
In addition to improving code coverage, data coverage also
accelerates fuzzing and reduces the time cost. On average,
WingFuzz only requires 2.96 hours to achieve the same level
of coverage as libFuzzer, which takes 23 hours.

In particular, data coverage performs exceptionally well
on programs with large chunks of static data. For example,
SQLite3 uses a static value-based table to encode parsing
rules, freetype2 contains a complicated string processors for
Typel fonts, and libxslt consists of XML parsing logic. Take
libxslt for a closer look. The semantics of input data are de-
termined by predefined keys such as <?xml, version, and

USENIX Association

33rd USENIX Security Symposium 2519

https://www.fuzzbench.com/reports/experimental/2022-10-08-wingfuzz
https://www.fuzzbench.com/reports/experimental/2022-10-08-wingfuzz

encoding, providing more opportunities for our data cover-
age techniques to enhance fuzzing efficiency. However, we
also observe minor regressions (-0.35% on average) on small,
algorithm-oriented programs like zlib. For zlib, despite its
complex in-memory operations, it uses straightforward con-
stants such as 0 and 1 to maintain efficiency in its compression
algorithms, which limits the effectiveness of advanced data
coverage strategies.

Data coverage significantly improves the overall fuzzing
performance. It improved the code coverage of libFuzzer
by 14%, lifting it to the 1st place in coverage score and
2nd place in average rankings. It also consistently delivers
good results and has the lowest standard deviation.

6.2 Orthogonality to Prior Techniques

One valid concern about data coverage is that it could be simi-
lar to existing data-sensitive fuzzing techniques. For example,
AFL++ [9] is a state-of-the-art fuzzer which constantly deliv-
ers superb performance on FuzzBench because it combines
dozens of incremental research efforts including intelligent
branch solving. In this section, we use AFL++ to showcase
how data coverage differs from data-sensitive techniques.

First, we discovered that WingFuzz and AFL++ covered
different sets of the same program in fuzzing. We assessed
the raw coverage data from FuzzBench, comparing the dif-
ferential “extra coverage” offered by both WingFuzz and
AFL++ against the “baseline coverage” of libFuzzer across
all programs. As Figure 6 shows, of all the additionally cov-
ered branches, 3,171 were detected by both, whereas 1,636
branches were exclusively uncovered by WingFuzz and 484
by AFL++. This indicates that over 34% of the additional cov-
erage achieved by WingFuzz is unique and not replicated by
AFL++, showcasing its distinctive advantage in tracking data
coverage. In comparison, WingFuzz’s data coverage method-
ology captures about 77% of the advancements AFL++ has
over libFuzzer, leaving AFL++’s complex optimizations ac-
counting for the remaining 23%.

484 3171 1636

AFL++
WingFuzz

Figure 6: Extra coverage of WingFuzz and AFL++ over the
baseline libFuzzer.

For a better understanding of the orthogonality between
WingFuzz and AFL++, we conducted an ensemble fuzzing ex-

periment, using the 20-hour corpus snapshot from FuzzBench
for AFL++. We compared the performance of WingFuzz and
AFL++ on three large benchmarks: freetype2, php, and libxslt,
since these benchmarks are among the largest programs in
FuzzBench, with more than 10,000 branches each. They allow
for a meaningful comparison of the tools’ ability to explore
new code paths. We conducted fuzzing sessions for both tools
on each benchmark, running for a duration of 3 hours and mea-
sured the number of unique branches discovered by each tool.
The results show that WingFuzz significantly outperformed
AFL++, discovering an average of 133 additional branches
per benchmark compared to AFL++’s 16 (specifically, 35 v.s.
69 for freetype2, 8 v.s. 172 for php, and 6 v.s. 159 for libxslt)
In other words, WingFuzz is 7x more efficient than AFL++
when fuzzing a saturated program.

Second, we found that WingFuzz can discover previously-
unknown bugs in well-fuzzed programs, including AFL++.
For instance, we identified two new bugs (issue #373 and
#374) in the Little-CMS color management library. It’s worth
noting that Little CMS is a well-used package, which is inte-
grated into widely-used software like Chromium, Firefox, and
OpenJDK. These bugs eluded detection for an astonishing
14 years, even with Google OSS-Fuzz’s continuous fuzzing
with AFL++ and a variety of other fuzzers since 2016 and a
manual audit in 2018 (refer to Issue #171). As demonstrated
in Figure 7, the bug in Little-CMS pertain to its handling of
ANSI/CGATS.17, a highly-structured color specification lan-
guage that employs key-value pairs extensively. We adhered
to established responsible disclosure guidelines: after assess-
ing the impact of vulnerabilities, we notified the stakeholders
and collaborated on mitigation to avoid misuse.

// BUG happens here.
nSamples = satoi(cmsIT8GetProperty(it8, "NUMBER_OF_FIELDS"));

const char* cmsIT8GetProperty(cmsHANDLE hIT8, const char* Key) {
IsAvailableOnList(GetTable(it8)->HeaderList, Key, ...)
}

bool IsAvailableOnList(KEYVALUE* p, const char* Key, ...) {
// Enumerates the input data by walking a linked list.
for (; p != NULL; p = p—>Next) {
// String camparison, see Figure 2.
if (cmsstrcasecmp(Key, p->Keyword) == 8) break;
}
}

(a) Buggy code: linked list walk using static data.

IRGB
END_DATA_FORMAT

I

NUMBER_OF _FIELDS 8

(b) Bug-triggering input with multiple key-value records.

NUMBER_OF _FIELDS 4
S
BEGIN_DATA_FORMAT

Figure 7: Case study: previously-unknown bug of Little-CMS.

The library’s parsing code heavily relies on data structures,
featuring a linked-list walk and manually-implemented string
comparison. This very characteristic facilitated the unearthing

2520 33rd USENIX Security Symposium

USENIX Association

of these bugs using our proposed data coverage approach. On
the contrast, conventional fuzzers usually get lost in the same
branch for different constant data references.

To further analyze how data coverage works on a variety
of program types, we performed fuzzing on Serenity OS, a
popular project on GitHub with over 24,500 stars. Google’s
OSS-Fuzz cluster continuously fuzzed it for more than two
years [14], and more than 140 bugs have been discovered
by code coverage-based fuzzers [24]. We conducted a bug-
finding experiment on it, ensuring consistent compiler settings
(02, fsanitize=address), using default initial seeds from
OSS-Fuzz, and setting an equal duration of 23 hours. The
results underscore the efficacy of data coverage: WingFuzz
successfully discovered 26 bugs in 17 components in the
newest version of the OS (commit 4£496e97 on 2023-03-20),
as depicted in Table 5. In contrast, AFL++ and libFuzzer
detected 4 and 0 bugs, respectively.

Table 5: New Bugs in Serenity OS Detected by WingFuzz
Kind | Issue ID

17936, 17938, 17939, 18303, 18305
18307, 18310, 18316-18321
Resource exhaustion | 17937, 18309, 18312—-18315

Memory safety 18036, 18044, 18302, 18304, 18324-25

Total ‘ 26 bugs

Assertion failure

Data coverage is different from state-of-the-art techniques
optimized for solving branches. For example, over 34% of
the additional coverage achieved by WingFuzz is unique
and not replicated by AFL++. It also found 28 previously-
unknown bugs on programs well-tested by OSS Fuzz.

6.3 Contribution of Data Guidance Types

To further understand the impact of each guidance type,
we conducted a controlled study using WingFuzz variants

mm \WingFuzz-Imm mmm WingFuzz-Static

100%

mmm \WingFuzz-Data-

with varying levels of instrumentation. As Table 6 lists, we
start with a minimal level of guidance (WingFuzz-Imm and
WingFuzz-Static), and gradually restore the removed guid-
ance until it matches the full version of WingFuzz.

Table 6: Fuzzing Guidance of WingFuzz Variants

Variant Data Guidance Code Guidance Coverage
Static Immediate Spatial ~ Temporal &

WingFuzz-Imm Partial 60.78
WingFuzz-Static v 7191
WingFuzz-Data™ v Partial 79.25
WingFuzz-Data™ v v v 93.73
WingFuzz v v v v 94.48

One issue we encountered is related to trivial immediate
values. As stated in §4.3, we use code coverage as a proxy
of data coverage on trivial immediate values. However, this
approach introduces code coverage, which may not be desired.
Therefore, for strict control of variables, we partially collect
the immediate values for WingFuzz-Imm, removing the de-
pendency of code coverage. Similarly, we design two ver-
sions of WingFuzz-Data: WingFuzz-Data™ is free from code
coverage but may result in reduced data coverage of trivial
values; WingFuzz-Data™ is collects complete data coverage,
but uses code coverage. Additionally, we disable temporal
code coverage for WingFuzz-Data™ to minimize the amount
of information used.

We followed the evaluation best practices [13] and ran mul-
tiple 24-hour trials for 10+ benchmark programs. For unified
measurement throughout this paper, we used the median value
of all trials as the basis and computed the normalized coverage
of each variant and presented the data in Figure 8.

WingFuzz-Imm and WingFuzz-Static only use immediate
or static values for fuzzing guidance. WingFuzz-Imm only dis-
covered an average of 61% of the maximal known coverage
among all trials (14% — 84%, std = 20%). WingFuzz-Static dis-
covered 72% coverage (39% — 92%, std = 18%), which is 11%
more than WingFuzz-Imm. In fact, among all the 14 evaluated
benchmarks, WingFuzz-Static outperforms WingFuzz-Imm

mmm \WingFuzz-Data+ mmm \WingFuzz

80%

60%

40%

- il
o 1

proj4 freetype2 openthread Icms libxmlI2 libpcap harfbuzz

libpng vorbis systemd woff2 sqlite3 bloaty

Figure 8: Normalized coverage of WingFuzz variants (see Table 6). Higher bars indicate better performance. The baseline fuzzer
WingFuzz-{Static,Imm} only has static/immediate value as fuzzing guidance. The remaining fuzzers gradually enable immediate
value (partial) and spacial/temporal feature of code coverage, respectively. The X axis is sorted by WingFuzz-Data™.

USENIX Association

33rd USENIX Security Symposium 2521

on 11 benchmarks. This indicates that static values have rich
semantics and can reflect a program’s code behavior to some
extent. For instance, SQLite3 is an embedded SQL engine
that parses SQL using static-value-based automatons. It has
1,958 entries in the yy_action table. With pure static value
coverage, we successfully explored 1,728 entries. With a high
coverage of 88% for the action table, we obtained a high score
of 92% for the overall program coverage.

WingFuzz-Data™ offers a more complete view of data cov-
erage, enabling partial immediate value guidance. Unlike
static values, immediate values only carry simple semantics
and are mostly trivial values. However, this scheme lacks
the accounting for trivial values, which leads to a modest im-
provement of the coverage score to 79% (46% — 94%, std =
15%). Despite this limitation, the gains are consistent across
all programs, with improvements ranging from 1% to 18%.

WingFuzz-Data™ is the complete data coverage. Compared
to WingFuzz-Data™, it also detects trivial value usages, but
introduces code coverage as a side effect. It further improves
the score from 79% to 94% (79% — 100%, std = 6%). From
the perspective of data coverage, the improvement can be ex-
plained by the characteristics of trivial values. Trivial values
are the most common among all the three types of immediate
values. For example, proj4 is a library for geodetic coordinate
conversions. The computation involves a large number of triv-
ial immediate values, such as the diameter of the Earth. When
accounting for trivial values, the coverage score increased
from 46% to 99%.

Surprisingly, WingFuzz-Data™ outperforms the original
WingFuzz on five programs, including sqlite3, freetype2,
proj4, bloaty, and re2 (as shown in Figure 8). Unlike the
original WingFuzz, which uses edge frequency as a guid-
ance signal, WingFuzz-Data™ leverages data coverage as a
fuzzing signal, resulting in a superior signal-to-noise ratio.
This approach provides strong and intuitive semantics, guid-
ing the fuzzer to explore novel data references. In contrast,
edge frequency may create noise by saving too many seeds
and reducing overall efficiency.

Data coverage is effective with or without code coverage.
The use of code coverage along with data coverage can
result in an additional 14% coverage, while using only
static data coverage can achieve 72% of the maximum
coverage observed. The number can be further increased
to 94% if full data coverage is collected.

6.4 Memory and Execution Overhead

One potential drawback of using data coverage in fuzzing is
the instrumentation overhead. In our implementation, we do
incur a one-time memory overhead of 80 MiB. This allocation
includes 16 million (224) slots for data coverage, since we
limit the pointers to the last 24 bits. For each slot, we use 1
byte to store the data coverage information and an additional 4

bytes for the seed map. It is important to note that the 80 MiB
allocation is performed once at program startup rather than for
each seed. Instead of storing the raw coverage for each seed,
we utilize a global storage mechanism to detect new cover-
age. This approach helps us reduce memory consumption by
avoiding redundant storage of coverage information for each
individual seed, enabling us to evaluate using FuzzBench,
which limits the memory usage to 3.75GB.

Besides memory overhead, the collection of data coverage
can also slow down fuzzing, which creates a negative impact
particularly for shorter trials. To measure the actual impact of
fuzzing, we extracted and analyzed the FuzzBench 15-minute
snapshot, which is the earliest possible snapshot provided by
FuzzBench. According to the 15-minute data, we found that
WingFuzz achieved the best coverage score of 97.0 and the
best average rank of 2.5. For the second-best fuzzer AFL++, is
had the coverage score of 96.0 and an average rank of 2.7. As
for the baseline libFuzzer, it only had 87.7 points of coverage
score and had an average rank of 7.2. Therefore, data coverage
is highly effective in discovering new program states, making
the benefits of data coverage outweigh the overhead.

To further understand the overhead introduced by instru-
mentation, we measure the execution time of several differ-
ently instrumented target programs. To reduce the randomness
of fuzzing, we collect the seeds of a fuzz campaign and use the
same set of seeds on all programs. Figure 9 decomposes the
execution duration of our instrumentation scheme, normalized
to the baseline, non-instrumented program.

The blue bars of Figure 9 show the overhead introduced
by code coverage instrumentation. Across the 14 programs
we evaluated, the median overhead was 6% (0% — 33%, std =
8%). The red bars represent the overhead of our WingFuzz
instrumentation, which includes both code and data coverage.
We observed a median overhead of 61% (9% — 125%, std =
75%) for this instrumentation. This means that the introduc-
tion of data coverage reduces the fuzzing throughput by 34%
compared to convention code coverage-guided fuzzing. The
overhead mainly comes from the instrumentation of imme-
diate and static values. Specifically, using immediate value
tracking alone (orange bars) introduces a median overhead
of 15% (-5% — 70%, std = 20%), while using static value
tracking alone (green bars) introduces a median overhead of
26% (0% — 130%, std = 42%).

The overhead of data coverage does not affect end-to-end
fuzzing performance, even for short trials. In fact, data
coverage yielded the highest coverage score in the shortest
15-minute evaluation. However, it did result in a reduction
of throughput by 34%. This decrease is primarily due to the
added overhead of collecting static values, which increases
the execution duration by 26%.

2522 33rd USENIX Security Symposium

USENIX Association

N Code
350%

300%
250%
200%

B Immediate Value

m Static Value B Code + Data

150%
100% II | -_II =0 _I_I III| — ll‘ IIII - -un _ ull _ II

bloaty freetype2 harfbouzz Icms libpcap libpng libxml2 openthread proj4 re2

sqlite3 systemd vorbis woff2

Figure 9: Normalized execution duration of programs in different instrumentation modes. Lower bars indicate better performance.
For example, a value of “200%” indicates that the program executes at half the speed of the baseline version.

6.5 Queue Size and State Explosion

Fuzzers may tend to retain overly similar test cases when
given very fine-grained data coverage feedback, which can
hinder their ability to effectively explore and exploit the pro-
gram state space within a bounded time frame. To address this
issue, we employed a seed refinement strategy in WingFuzz
and conducted an investigation using hourly corpus snapshots
from the original FuzzBench experiment. For each duration,
we normalized the queue size to the baseline of libFuzzer for
each benchmark and plotted the mean value along with the
error band of 95% confidence interval in Figure 10.

400%

300%

200%

100%

00/0
0 5 10 15 20
Duration (hour)

Figure 10: Temporal trend of normalized queue sizes using
mean estimator with error band of 95% CI. The red horizontal
line (100%) marks the queue size of libFuzzer.

Inside Figure 10, although we observed an increase in the
queue size due to enhanced data coverage, it did not lead to
unmanageable queue expansion. Among all trials from the
FuzzBench experiment, WingFuzz discovered 139%, 150%,
159%, and 173% more seeds than libFuzzer at 1h, 6h, 12h, and
23h, respectively. This indicates a sustainable linear growth
pattern rather than exponential explosion, suggesting that
WingFuzz effectively balances between depth and breadth
of state exploration. This analysis demonstrates the capabil-
ity of WingFuzz to maintain a manageable queue size while
achieving significant seed discovery rates compared to the
baseline libFuzzer.

7 Related Work

Dataflow Guided Fuzzing While data coverage and
dataflow-guided fuzzing share similar terminology, they rep-
resent distinct methodologies. Data coverage pertains to the
analysis of a program’s constant data utilization, whereas
dataflow-guided approaches focus on capturing the data de-
pendencies within code through def-use pairs.

For instance, in the context of the automaton depicted in
Figure 3, where transitions are expressed as constant data,
efficient exploration can be achieved through data cover-
age. However, distinguishing transitions becomes challenging
for dataflow-guided techniques such as DDFuzz [22] and
datAFLow [12]. These approaches primarily detect def-use
pairs of code locations representing value definitions and us-
ages. When the actual value is obscured behind a constant
array instead of being directly associated with a code location,
the differentiation of transitions becomes impractical.

Furthermore, the variance in design choices results in no-
table performance discrepancies. Our approach focuses solely
on constant data, thereby minimizing the overhead in cov-
erage collection to approximately 51%. In contrast, exist-
ing dataflow-guided techniques necessitate extensive instru-
mentation, leading to overheads as high as 10 times, as re-
ported in datAfLow. Similarly, DDFuzz, when integrated with
AFL++, exhibits decreased performance, as indicated in the
FuzzBench evaluation *

Value Profile Introduced by libFuzzer in 2016, the “Value
Profile” feature converts each comparison operation into a
feature, leveraging the instruction and hamming distance be-
tween operands. Like our approach, which aims to maximize
code coverage, libFuzzer endeavors to cover more value fea-
tures. This technique bears some resemblance to our predicate
emulation technique (see §3.1.3). However, our data coverage
approach differs from Value Profile in two significant ways.

4The evaluation of DDFuzz and AFL++ on FuzzBench is avail-
able at https://www.fuzzbench.com/reports/experimental/
2021-09-02-datadependency.

USENIX Association

33rd USENIX Security Symposium 2523

https://www.fuzzbench.com/reports/experimental/2021-09-02-datadependency
https://www.fuzzbench.com/reports/experimental/2021-09-02-datadependency

Firstly, while Value Profile diversifies discovered value fea-
tures for code branches, our approach focuses on maximizing
coverage for constant data. With our method, if a later exe-
cution covers more bits in a constant data operand used in
the same comparison instruction, the prior seed is discarded
since the newly discovered seed strictly covers more con-
stant data than the previous one. In contrast, the Value Profile
approach retains both seeds, potentially leading to seed explo-
sion. Secondly, our data coverage approach targets constant
data coverage more broadly, rather than focusing solely on
immediate values used in branches. As shown in Figure 8, tar-
geting overall static data coverage alone achieves a coverage
score of 72 points, whereas the immediate-value-only variant
(similar to Value Profile) only reaches 61 points.

The key distinction is that our approach aims to maximize
coverage of all constant data, rather than solely solving indi-
vidual branches. Interestingly, while our data coverage tech-
nique improves fuzzing performance, Value Profile actually
reduces the coverage score of the original algorithm by 4
points, as reported in the original libAFL paper [10]. Indeed,
among all evaluated techniques targeting fuzzing roadblocks,
Value Profile performs the poorest. This broader perspective
on constant data operands, rather than solely immediate values
in branches, proves to be a more effective fuzzing strategy.

8 Discussion

Integration with Other Fuzzing Guidance In this paper,
we delve into the concept of data coverage, presenting a
novel coverage collection mechanism and scheduling strategy.
While our enhancements to libFuzzer have yielded signifi-
cant performance gains, the integration with other fuzzers and
mechanisms is an area ripe for exploration.

Firstly, the concept of data coverage naturally aligns with
more advanced code coverage forms such as context-sensitive
edge coverage and branch n-grams. These approaches aug-
ment conventional code coverage by providing deeper guid-
ance to the fuzzer. However, beyond simply introducing new
guidance, it is crucial to adapt the scheduler to mitigate po-
tential challenges, such as the seed explosion problem. For
instance, when mutating a pathological input, numerous new
coverage points may be generated in data coverage or n-gram
code coverage. Yet, if these mutated inputs predominantly
exhibit similar or identical program behaviors, blindly saving
them as seeds would inundate the corpus with pathological
cases, diverting resources from other potentially fruitful av-
enues.

Secondly, our seed replacement mechanism presents a
promising solution to this challenge. Initially developed to
address the seed explosion stemming from the extensive state
transition table of SQLite’s embedded state machine, this
mechanism proved effective in curbing the proliferation of
seeds, preventing out-of-memory errors caused by excessive
seed generation. It remains to be seen whether this approach

can be extrapolated to enhance the performance of fuzzers uti-
lizing advanced code coverage feedback in diverse scenarios.
By replacing seeds strategically, we can potentially mitigate
the impact of seed explosion, enabling fuzzers to explore a
broader spectrum of program behaviors efficiently.

Design of Data-Access Categories In this paper, we
present an efficient coverage collection mechanism which
categories the data access into six categories. While the cate-
gorization may appear detailed, it is crucial for striking the
right balance between precision and practical applicability in
real-world scenarios.

Our design, as outlined in Table 2, revolves around the core
idea of differentiating these categories based on semantic dis-
tinctions to optimize data handling in terms of both address
and length estimation. For example, if code coverage already
reflects the coverage to an immediate value, we bypass instru-
mentation. However, for comparisons where individual bits
might remain unused during execution, we employ sophis-
ticated compile-time analysis and runtime instrumentation.
This strategy minimizes operational overhead to 51%, com-
pared to the typical 10x overhead seen in prior techniques
such as datAFLow.

It is important to note that the optimal trade-off between
precision and efficiency remains an ongoing exploration. The
six-category design presented here is one of several possible
approaches that have proven effective in practice. However,
it may not be exhaustive, reflecting the design trade-offs we
made between precision and efficiency. While this approach
has shown efficacy within our system’s context, we remain
open to exploring additional data collection techniques to
further enhance understanding and application.

9 Conclusion

In this paper, we explored how can data coverage assist guided
fuzzing. We found that constant data encodes complex seman-
tics that cannot be reflect by code coverage, neither can the
challenge be resolved with constraint solvers. To enhance
fuzzing with the guidance from constant data usages with rea-
sonable fuzzing throughput, we designed an instrumentation
based data coverage collection scheme. It also outperformed
many advanced fuzzing strategies and achieved the best cov-
erage score in the FuzzBench evaluation. We investigated
the properties of data coverage with experiments. The major
improvement comes from the static data, a sophisticated form
of constant data with rich semantics.

Acknowledgments

This research is sponsored in part by the National Key Re-
search and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62302256, 92167101, 62021002). We

2524 33rd USENIX Security Symposium

USENIX Association

sincerely thank the anonymous reviewers for their invaluable
insights and constructive feedback. Additionally, we express
our appreciation to the anonymous shepherd who meticu-
lously guided us through the refinement process, ensuring the
polish and coherence of our work.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7

[

(8

—_—

(9]

Mike Aizatsky, Kostya Serebryany, Oliver Chang, Ab-
hishek Arya, and Meredith Whittaker. google/oss-fuzz:
Oss-fuzz - continuous fuzzing for open source software.,
2022. https://github.com/google/oss-fuzz/.

Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. [jon: Exploring deep state spaces via
fuzzing. In IEEE Symposium on Security and Privacy
(SP), pages 1597-1612, 2020.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
fuzzing with input-to-state correspondence. In 26th
Annual Network and Distributed System Security Sym-
posium, 2019.

Robert L. Bernstein. Producing good code for the
case statement. Software: Practice and Experience,
15(10):1021-1024, 1985.

Marcel Bohme, Valentin J. M. Manes, and Sang Kil
Cha. Boosting fuzzer efficiency: An information theo-
retic perspective. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2020, page 678-689, New York,
NY, USA, 2020.

Marcel Béhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032—
1043, 2016.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design and
Implementation, pages 209-224, 2008.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and
Sang Kil Cha. Grey-box concolic testing on binary code.
In Proceedings of the 41st International Conference on
Software Engineering, pages 736747, 2019.

Andrea Fioraldi, Dominik Maier, Heiko Eifeldt, and
Marc Heuse. AFL++ : Combining incremental steps
of fuzzing research. In /4th USENIX Workshop on
Offensive Technologies (WOOT), 2020.

[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

Andrea Fioraldi, Dominik Christian Maier, Dongjia
Zhang, and Davide Balzarotti. Libafl: A framework
to build modular and reusable fuzzers. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 1051-1065,
New York, NY, USA, 2022. Association for Computing
Machinery.

Van Hauser. libfuzzer is deprecated, how about porting
this to afl++7? - issue #1 - wingtecherthu/wingfuzz, 2023.
https://github.com/WingTecherTHU/wingfuzz/
issues/1.

Adrian Herrera, Mathias Payer, and Antony L. Hosk-
ing. Dataflow: Toward a data-flow-guided fuzzer.
ACM Trans. Softw. Eng. Methodol., 32(5):132:1-132:31,
2023.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, page 21232138, 2018.

David Korczynski. [serenity] initial integration by
davidkorczynski - pull request #4696 - google/oss-fuzz,

2020. https://github.com/google/oss-fuzz/
pull/4696.
lafintel. Circumventing fuzzing roadblocks with

compiler transformations, 2016. https://lafintel.
wordpress.com.

Chris Lattner and Vikram S. Adve. LLVM: A compila-
tion framework for lifelong program analysis & transfor-
mation. In 2nd IEEE / ACM International Symposium
on Code Generation and Optimization, pages 75-88.
IEEE Computer Society, 2004.

Caroline Lemieux and Koushik Sen. Fairfuzz: a tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475-485, 2018.

Michael E Lesk and Eric Schmidt. Lex: a lexical ana-
lyzer generator. Bell Laboratories, Murray Hill, New
Jersey, 1975.

Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu,
Yu Jiang, Jianzhong Liu, Zhe Liu, and Jiaguang Sun.
PATA: Fuzzing with path aware taint analysis. In 2022
IEEE Symposium on Security and Privacy (SP), pages
1-17, 2022.

Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun
Jiao, and Jiaguang Sun. Polar: Function code aware fuzz
testing of ICS protocol. ACM Trans. Embed. Comput.
Syst., 18(5s):93:1-93:22, 2019.

USENIX Association

33rd USENIX Security Symposium 2525

https://github.com/google/oss-fuzz/
https://github.com/WingTecherTHU/wingfuzz/issues/1
https://github.com/WingTecherTHU/wingfuzz/issues/1
https://github.com/google/oss-fuzz/pull/4696
https://github.com/google/oss-fuzz/pull/4696
https://lafintel.wordpress.com
https://lafintel.wordpress.com

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium, pages 1949-1966, 2019.

Alessandro Mantovani, Andrea Fioraldi, and Davide
Balzarotti. Fuzzing with data dependency informa-
tion. In 7th IEEE European Symposium on Security
and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10,
2022, pages 286-302. IEEE, 2022.

Jonathan Metzman, Laszlé Szekeres, Laurent Simon,
Read Sprabery, and Abhishek Arya. Fuzzbench: an open
fuzzer benchmarking platform and service. In 29th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pages 1393-1403, 2021.

OSS-Fuzz. Issues - oss-fuzz, 2023. https:
//bugs.chromium.org/p/oss-fuzz/issues/
list?g=label%3AClusterFuzz+serenity.

V. Pham, M. Béhme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, 2019.

Sanjay Rawat, Vivek Jain, Ashis h Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2017.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for C. In Proceedings of the
10th European Software Engineering Conference held
Jjointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages
263-272. ACM, 2005.

Kostya Serebryany. [libfuzzer] add -
trace_cmp=1 (guiding mutations based on the
observed cmp instructions), 2016. https:

//github.com/11lvm/1llvm-project/commit/
abf94fb6c9ch447ebf32bef848d81lac867£d1ch3.

Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen
Xu, Aiguo Cui, Heyuan Shi, and Yu Jiang. Tardis:
Coverage-guided embedded operating system fuzzing.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
41(11):4563-4574, 2022.

Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang,
Xiaohai Shi, Xun Jiao, Houbing Song, Yu Jiang, and
Jiaguang Sun. Industry practice of coverage-guided en-
terprise linux kernel fuzzing. In Marlon Dumas, Dietmar
Pfahl, Sven Apel, and Alessandra Russo, editors, Pro-
ceedings of the ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages
986-995. ACM, 2019.

Robert Swiecki. Honggfuzz: Security oriented soft-
ware fuzzer. supports evolutionary, feedback-driven
fuzzing based on code coverage (sw and hw based),
2022. https://lafintel.wordpress.com.

The LLVM Authors. libfuzzer — a library for coverage-
guided fuzz testing., 2022. https://1lvm.org/docs/
LibFuzzer.html.

Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang,
Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun.
SAFL: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing. In Proceedings
of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, pages 61-64. ACM,
2018.

Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui
Wang, Chengnian Sun, and Jiaguang Sun. RIFF: reduced
instruction footprint for coverage-guided fuzzing. In
Irina Calciu and Geoff Kuenning, editors, 2021 USENIX
Annual Technical Conference, USENIX ATC 2021, July
14-16, 2021, pages 147-159. USENIX Association,
2021.

Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chi-
jin Zhou, Huafeng Zhang, and Yu Jiang. Industry prac-
tice of coverage-guided enterprise-level DBMS fuzzing.
In 43rd IEEE/ACM International Conference on Soft-
ware Engineering: Software Engineering in Practice,
ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021,
pages 328-337. IEEE, 2021.

Niklaus Wirth. Algorithms + Data Structures = Pro-
grams. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

Michal Zalewski. American fuzzy lop, 2014. http:
//lcamtuf.coredump.cx/afl/.

Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and
Yu Jiang. Zeror: Speed up fuzzing with coverage-
sensitive tracing and scheduling. In 35th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE 2020, Melbourne, Australia, September
21-25, 2020, pages 858-870. IEEE, 2020.

2526 33rd USENIX Security Symposium

USENIX Association

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz+serenity
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz+serenity
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=label%3AClusterFuzz+serenity
https://github.com/llvm/llvm-project/commit/a5f94fb6c9cb447ebf32bef848d81ac867fd1c63
https://github.com/llvm/llvm-project/commit/a5f94fb6c9cb447ebf32bef848d81ac867fd1c63
https://github.com/llvm/llvm-project/commit/a5f94fb6c9cb447ebf32bef848d81ac867fd1c63
https://lafintel.wordpress.com
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Towards Data Coverage
	Limitations of Code Coverage
	Limitations of Constraint Solving
	Inefficiency in Constraint Solving
	Challenges in Non-Constraints

	Benefits of Data Coverage
	Benefits for Static Values
	Benefits for Immediate Values

	Data Coverage in a Nutshell
	Coverage Maintenance
	Load Filtering
	Program Counter for Address Estimation
	Predicate Emulation

	Coverage Representation
	Coverage Utilization

	Data Access Interception
	Integer Comparison
	Switch Statement
	Trivial Value
	Load-Based Comparison
	Region Comparison
	Simple Load

	Implementation
	Evaluation
	Overall Fuzzing Performance
	Orthogonality to Prior Techniques
	Contribution of Data Guidance Types
	Memory and Execution Overhead
	Queue Size and State Explosion

	Related Work
	Discussion
	Conclusion

