é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Spider-Scents: Grey-box Database-aware
Web Scanning for Stored XSS

Eric Olsson and Benjamin Eriksson, Chalmers University of Technology;
Adam Doupé, Arizona State University; Andrei Sabelfeld,
Chalmers University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/olsson

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Spider-Scents: Grey-box Database-aware Web Scanning for Stored XSS

Eric Olsson
Chalmers University of Technology

Adam Doupé
Arizona State University

Abstract

As web applications play an ever more important role in so-
ciety, so does ensuring their security. A large threat to web
application security is XSS vulnerabilities, and in particular,
stored XSS. Due to the complexity of web applications and
the difficulty of properly injecting XSS payloads into a web
application, many of these vulnerabilities still evade current
state-of-the-art scanners. We approach this problem from a
new direction—by injecting XSS payloads directly into the
database we can completely bypass the difficulty of inject-
ing XSS payloads into a web application. We thus propose
Spider-Scents, a novel method for grey-box database-aware
scanning for stored XSS, that maps database values to the
web application and automatically finds unprotected outputs.
Spider-Scents reveals code smells that expose stored XSS
vulnerabilities. We evaluate our approach on a set of 12 web
applications and compare with three state-of-the-art black-box
scanners. We demonstrate improvement of database cover-
age, ranging from 79% to 100% database coverage across
the applications compared to the range of 2% to 60% for
the other scanners. We systematize the relationship between
unprotected outputs, vulnerabilities, and exploits in the con-
text of stored XSS. We manually analyze unprotected outputs
reported by Spider-Scents to determine their vulnerability
and exploitability. In total, this method finds 85 stored XSS
vulnerabilities, outperforming the union of state-of-the-art’s
32.

1 Introduction

The web is a key enabler for today’s ever-more digital world.
Our society increasingly relies on web applications to support
the financial, governmental, and military infrastructure. The
dynamic functionality of web applications, coupled with the
myriad of implementation technologies, makes developing
a bug-free application challenging. Furthermore, these bugs
can often manifest as security vulnerabilities. The complexity
of modern systems and ever-powerful adversaries make se-
curing web applications a grand challenge. Even the biggest
web players such as Google and Meta still release vulnerable

Benjamin Eriksson
Chalmers University of Technology

Andrei Sabelfeld
Chalmers University of Technology

applications and services, which reflects in $12 and $2 million
in bug bounties in 2022 respectively [15,26].

Challenge of XSS. A particularly common class of web
application security vulnerability is Cross-Site Scripting
(XSS) [28], allowing attackers to inject JavaScript code into
web pages. Astonishingly, XSS has persisted in the OWASP
Top 10’s list of most critical security risks to web appli-
cations for the past 20 years [48]. This remarkable persis-
tence is reflected in bug bounties, with HackerOne reported
paying over $4.7 million for XSS vulnerabilities in 2022
alone [17]. Securing web applications against XSS is diffi-
cult because there is no single general solution that prevents
all XSS vulnerabilities [20]. Indeed, XSS vulnerabilities are
context-dependent [42,44], requiring that the correct output
sanitization be used depending on the output context.

Stored XSS. Stored XSS, where the injection is stored and
only later executed [28], is particularly challenging due to
the disconnect that storage brings between the source flow,
where the payload is input and stored, and the sink flow, where
the retrieved payload is executed. Current vulnerability detec-
tion approaches [14,32] have fundamental difficulties finding
stored XSS.

Insufficiency of +-box approaches. The difficulty of secur-
ing a web application against XSS motivates the development
of vulnerability detection tools [2,7,11,33,49,54]. Web appli-
cation vulnerability detection approaches can be classified as
white-box, black-box, or grey-box based on what information
is available (cf. Section 4):

White-box approach: White-box approaches [12,19,22,24]
usually statically analyze source code artifacts. Such static
analysis is necessarily specific to the structure of the ana-
lyzed artifact, such as the server-side language or framework.
Unfortunately, white-box vulnerability detection is fundamen-
tally limited in its applicability to web applications because
it is hard for white-box static analysis to precisely model
the combined interplay of increasingly complex and dynamic
client-side, database, and server-side behavior [43]. In addi-
tion, white-box analyses depend on the availability of artifacts,

USENIX Association

33rd USENIX Security Symposium 6741

further limiting their usage.

Black-box approach: More advantageously from a usability
perspective, black-box vulnerability detection for web appli-
cations does not typically require access to source code and
instead analyzes a running web application from the perspec-
tive of a user. Black-box scanners have been developed with
various methods to better cover the increased attack surface
of modern web applications [8], such as modeling server-side
state [7], tracking data flows and fuzzing payloads [9, 10],
modeling client-side state [25,33], and combining multiple
approaches [11]. However, while coverage of the attack sur-
face has improved for some XSS, black-box scanners are
often still unable to find even simpler stored XSS [32].

Grey-box approach: A common solution [1,14,18,49,50]
is to combine black-box dynamic interactions of a running ap-
plication, with white-box access. How these two information
sources are combined varies. Sometimes, artifacts or non-
standard interfaces only available with white-box access can
be used to guide the otherwise black-box scan of a web appli-
cation [47] . More commonly, a fully white-box static analysis
of the application source code is combined with a black-box
scan for dynamic runtime information [1, 14]. Combining
these sources of information can mitigate some challenges
inherent to otherwise using one approach in isolation. How-
ever, this combination still has a white-box component, from
which its usability suffers.

While the previously described approaches constitute an
exciting and active area of research, we identify a key con-
sideration in the design space of *-box approaches. A core
problem with finding stored XSS is that a black-box scanner
must find both the source and sink flows, and also understand
the relationship between the two, without any access to the
web application’s source code.

Approach. Inspired by recent work in improving binary
fuzzing [34], our insight is to make stored XSS easier to
find by relaxing the requirement that the scanner must find
the source of a stored XSS. To do so, we supplement an
otherwise black-box scanner with access to the database and
allow the scanner to inject payloads directly into the database
while scanning the running web application for sensitive sinks
that output the inserted payload. This yields the benefit that
a scanner no longer needs to find both source and sink nor
understand their relation. The elegance of our approach is
that it requires no knowledge of the web application source,
only the database. Figure | illustrates the unique point our
approach occupies in the design space of *-box approaches.

This unique position represents a paradigm shift from the
domain of application input to that of application state, rep-
resented in the database. Challenges (presented in Section 3)
stemming from fundamental problems with *-box approaches
do not have to be solved by our method.

Based on these insights, we develop Spider-Scents, an ap-
proach to grey-box database-aware web scanning for stored

Frontend Backend

Client Code Network @
e ———

e @ e Code
e Database

Infrastructure

o

Figure 1: Access to components involved in a web applica-
tion that different approaches need. Black-box approaches (B)
have access to the front-end, and sometimes (B*) need infras-
tructure access to perform resets in the face of irreversible
state changes. White-box approaches (W) have access to both
front- and back-end code. Our approach, shaded in grey, ac-
cesses the front-end and database.

XSS. Spider-Scents injects payloads directly into the database
and reports where database content is used in the HTML out-
put without proper sanitization, flagging what we call unpro-
tected outputs. This does not mean that all reports are stored
XSS vulnerabilities, as the web application might be sanitiz-
ing the data on input. However, relying on input sanitization is
against best practices for XSS prevention, as it is impossible
to sanitize user input for every possible HTML output context.
Indeed, the OWASP guidelines [31] postulate: “Apply Input
Validation (using "allow list" approach) combined with Out-
put Sanitizing+Escaping on user input/output,” confirming
that input validation alone is not enough. We term this result
a code smell, an indication that something is wrong deeper
within the application [13]. Even in the best case, where there
is neither bug nor vulnerability, the application is fragile. Any
new functionality added, such as creating a REST API, risks
failing to properly sanitize user input. Therefore, even the
unprotected outputs that are not currently exploitable stored
XSS should be addressed by the web developer. Light manual
analysis is required to verify a complete stored XSS vulnera-
bility (see Section 6.7)

Non-vulnerable unprotected outputs constitute what we
call a dormant XSS—they would be vulnerable, except that
the current web application does not allow an exploit payload.
The web application’s evolution risks elevating a dormant
XSS to a complete XSS vulnerability, even for security-wary
applications. Our empirical study indeed confirms a dormant
XSS vulnerability on WordPress, elevated to a complete vul-
nerability by a real published plugin (see Section 4.2).

Evaluation. We evaluate our approach across 12 web ap-
plications and compare our results with three state-of-the-art

6742 33rd USENIX Security Symposium

USENIX Association

black-box scanners. The applications range from reference
applications used in prior work to latest versions of modern
applications. Our results show that we cover (measured as
how much of the database the scanner can change, described
in Section 5.2.1) between 79% to 100% across all applica-
tions. In comparison, the other scanners cover 2% to 60% on
average. We also find vulnerabilities that the other scanners
are unable to detect. In total, we find 85 XSS vulnerabilities
compared to 32 unique XSS for the other scanners. To fur-
ther classify the impact of our findings we manually analyze
the input protections and permission models of the Spider-
Scents discovered vulnerabilities and determine that 59 are
exploitable (and not self-XSS).

Contributions. We offer the following contributions:

* We present a novel approach for finding stored XSS vulnera-
bilities by injecting XSS payloads directly into the database,
thus simplifying the detection of stored XSS. We present
this in Section 4.

* We implement our approach into a prototype Spider-Scents,

a semi-automated grey-box database-aware stored XSS

scanner.

We evaluate Spider-Scents and three state-of-the-art black-

box scanners on 12 web applications. We present the results

in Section 5 and analyze these in Section 6. Spider-Scents
finds 85 XSS vulnerabilities across 7 applications.

* We systematize the relationship between unprotected out-
puts, stored XSS vulnerabilities, and exploits based on in-
put protections and permissions models. Following this
systematization, we manually analyze unprotected outputs
reported by Spider-Scents to determine their vulnerability
and exploitability. We also present this in Section 6.

¢ For the benefit of future research in this area, we share the
source code of Spider-Scents'.

Ethical considerations and coordinated disclosure. By
actively scanning only our local clones of web applications in
a controlled environment, we strictly avoid any harm caused
by scanners on the web. We handle the discovered security
vulnerabilities in accordance with the best practices of ethics
in security [41]. We are in the process of reporting our find-
ings to the affected vendors, following coordinated vulnera-
bility disclosure for all discovered vulnerabilities. We report
responses from vendors in Section 6.9.

2 Terminology

Here we attempt to systematize the terminology around XSS
vulnerability analysis. Spider-Scents finds places in the web
application where database content is used in the HTML out-
put without proper sanitization. We term these unprotected
outputs—output sinks where the output is not protected suf-
ficiently against XSS. In contrast, there are also protected
outputs: output sinks that are properly sanitized against XSS.

'Our implementation is available online at https://
www.cse.chalmers.se/research/group/security/spider-scents/

We call a complete XSS vulnerability where user input flows
to the unprotected output. Furthermore, that input must itself
be an unprotected input—an input source lacking sufficient
XSS protection. In contrast, there are also protected inputs:
inputs protected with some combination of sanitization such
as validation, stripping, or escaping. An unprotected output
can also fail to be a complete XSS due to having no input.

If an unprotected input flows to an unprotected output,
the web application has an XSS vulnerability. However, an
XSS vulnerability is not necessarily exploitable, as this de-
pends on the access control policy of the web application.
The core question is if the user (or role) that injects the XSS
payload can get the output on either another user or a role
with greater permissions. We call XSS vulnerabilities that are
not exploitable self-XSS, which have significantly less severity
than exploitable XSS vulnerabilities.

3 Roadblocks for current XSS scanners

Automatically finding vulnerabilities in web applications re-
mains a challenge despite active research in improving vul-
nerability detection. Stored XSS is especially difficult to find,
as this type of vulnerability involves correctly injecting input
into the application, where it will be stored by the database,
and subsequently used in the web application’s output incor-
rectly sanitized.

Black-box approaches can explore entire web applications
without access or reliance on the underlying web application
source code. It is possible for black-box scanners to track an
entire stored XSS vulnerability from initial payload injection
to vulnerable output. However, finding all such vulnerabilities
for a black-box scanner is difficult, due to several challenges
inherent to stored XSS that they must solve:

Vulnerable input validation. Web applications perform input
validation (in client-side JavaScript and also server-side code)
to ensure that the input data conforms to certain requirements.
Web applications can check vulnerable inputs for validation
that the scanner must pass and also inject an XSS payload
into. As most black-box scanners use a pre-configured list of
XSS payloads, it is difficult for them to create a custom XSS
payload that also bypasses the vulnerable input validation.

Interdependent vulnerable input validation. Web applications
validate all types of inputs. Often, a web application requires
the user to fill out a set of inputs together. Consider a user reg-
istration form that might require the desired username, email
address, zip code, and biography. All forms are required, the
server-side input validation requires that the username be
unique, the email address has a specific form, the zip code
is five digits, and the biography has no validation and is vul-
nerable to stored XSS. Due to the interdependence of the
four inputs, to find the stored XSS a black-box scanner must
be able to provide a unique username (which is difficult for
repeated injection attempts), correctly-formatted email ad-
dress and zip code. As the number of inputs interdependent
to vulnerable input increases, and as the input validation is

USENIX Association

33rd USENIX Security Symposium 6743

https://www.cse.chalmers.se/research/group/security/spider-scents/
https://www.cse.chalmers.se/research/group/security/spider-scents/

application-specific, it is more difficult for black-box scanners
to generate the proper interdependent input to inject stored
XSS payloads.

Vulnerable input modification. Web applications can also es-
cape or modify user input. Consider a blog that accepts blog
posts in markdown format that is transformed to HTML be-
fore storing them in the database. Because the black-box
scanner has no knowledge of the server-side source code, it
cannot know about this modification. If a vulnerable input is
modified before being stored into the database, it is difficult
for a scanner to create a custom XSS payload that can survive
the modification, and, therefore, it is difficult to detect.

Multi-step vulnerable input. Web applications are stateful
applications that can require a multi-step process before per-
sisting user data. A classic example of this is the multi-step
stored XSS in WackoPicko [8], where commenting on a pic-
ture requires first previewing the comment (which is output
with sanitization) and then approving the comment (where
it is output without sanitization). To our knowledge, the first
black-box scanner that was able to automatically detect this
vulnerability was Black Widow [11], published 11 years af-
ter WackoPicko was released. Therefore, vulnerable inputs
that require multi-step interactions are difficult for black-box
scanners to detect.

Vulnerable input identification. The core of stored XSS is that
the XSS payload is stored in the database before being used
as output. Even if a black-box scanner can correctly inject
an XSS payload, it must be able to find where that input is
output—otherwise, it will never detect the XSS.

4 Approach

Our goal is to overcome the challenges black-box scanners
face (mentioned in Section 3) in detecting stored XSS vulner-
abilities. Rather than take a completely black-box approach,
we use a novel grey-box approach that includes knowledge
of the database to help an otherwise black-box scanner find
stored XSS vulnerabilities. Our idea is that by injecting the
XSS payload directly into the database, and then scanning
the web application for the payload’s output, we can com-
pletely bypass several of the roadblocks black-box scanners
face in detecting stored XSS: vulnerable input validation, in-
terdependent vulnerable input validation, vulnerable input
modification, and multi-step vulnerable input.

‘Grey-box’. In web security, black-box has been synony-
mous with dynamic testing, as white-box is to static analysis.
With this view, grey-box can appear to be defined as the com-
bination of these two: dynamic testing and static analysis.
Recent papers [14,49] in grey-box web testing have supplied
two definitions: the previous, based on method, or based on ac-
cess or visibility to the application. Our approach is grey-box
only by the second definition: we do not use static analysis,
but we have access to the database.

Besides the application data contained, metadata such as

Spider-Scents

|
I I
| Database
| Module :@ @ Database
| . J |
! s N |
| Breakage | @ Y
1 Checker Web
b g : Application
b ~ I PP
I Reflection 1 @
| Scanner |
I . J |

Figure 2: Overview of Spider-Scents’ different components
and their interactions with both the database and web applica-
tion.

table structure and associated relations are also assumed to be
available, through the same database connection. In practical
terms, SQL databases provide programmatic access to such
metadata in the INFORMATION_SCHEMA tables [30].

4.1 Overview

In contrast to existing state-of-the-art scanners, our database-
aware method requires a paradigm shift from application input
to state. Instead of solving problems associated with the input
domain (such as crawling, modelling, or payload selection),
we address new challenges of preparing the application state,
selecting which part to modify, and analyzing its impact on
the application.

Spider-Scents is our implementation of our novel grey-box
scanning approach. Figure 2 shows a diagram of our approach.
First (1), we prepare the web application for scanning. Next
(2), we choose a database cell to modify, and @ insert an XSS
payload into the cell. We then validate (4) that the modified
database did not break the application. Finally (5), we crawl
the web application looking for reflections of the injected pay-
load. This approach iterates as long as there remain untested
database cells to modify.

4.1.1 Reports

Due to Spider-Scents injecting XSS payloads directly into the
database, what it reports is not XSS vulnerabilities, but rather
unprotected outputs (defined in Section 2). Therefore, the
final step is to manually analyze the results of Spider-Scents.
As our evaluation in Section 5 shows, many unprotected out-
puts are also XSS vulnerabilities—Spider-Scents finds 133
unprotected outputs in evaluated applications and 85 XSS
vulnerabilities.

An interesting side-effect of finding so many vulnerabili-
ties with Spider-Scents is that we realized that the impact of
the discovered XSS vulnerabilities is critically important to
contextualize the results. Specifically, we found that some of
the XSS vulnerabilities were self-XSS, defined in Section 2

6744 33rd USENIX Security Symposium

USENIX Association

wherein the privilege required to store the XSS payload is
the same as the user that views it. Of the 85 XSS vulnerabil-
ities found by Spider-Scents, 26 are self-XSS while 59 are
fully-exploitable.

4.2 Motivating Examples

Spider-Scents’ database-aware scanning is particularly well
suited to finding stored XSS vulnerabilities due to circum-
venting common challenges for black-box scanners. Here, we
present examples of the types of issues that Spider-Scents is
better at finding than previous work:

1. Fully-exploitable stored XSS that other scanners do not
find.

2. Dormant vulnerabilities that become exploitable.

3. Self-XSS that other scanners do not find.

Fully-exploitable stored XSS. Even though they are capa-
ble of finding a fully-exploitable stored XSS vulnerability,
other scanners often fail due to their inability to extensively
explore the input surface of the web application, including sat-
isfying vulnerable input and interdependent input validation.
In Section 5, we further analyze the precise reasons why other
scanners miss fully-exploitable stored XSS that Spider-Scents
finds.

In addition, beyond needing a full XSS from input to out-
put, the XSS vulnerability also must be exploitable. Deter-
mining the exploitability of an XSS currently requires manual
analysis, as the exploitability of a vulnerability depends on
application context such as the levels of user permissions
within the application. Other presentations of scanners have
generally not provided such analysis of their XSS results.

An example of a fully-exploitable stored XSS that other
scanners fail to find is in the CMS Made Simple bookmarks
functionality, which is shown in Figure 3. In this case, it
is harder to find the input form, but easy to find the output
from the database. Armed with this vulnerability, a user can
perform XSS on an admin of CMSMS. Spider-Scents reports
this as an unprotected output, and we manually confirm its
exploitability.

Dormant XSS. Spider-Scents reports what it finds as un-
protected outputs rather than stored XSS vulnerabilities, as
it only finds the second half of a complete XSS workflow in
unprotected outputs. Unprotected outputs do not always have
an unprotected input flowing to them. However, we believe
there is significant value in reporting unprotected outputs
because they are a code smell—the web application has not
followed the best practice of “always escape late” emphasized
by both WordPress and WordPress VIP [51,52]. While not a
bug or vulnerability, an unprotected output is something that
a developer should look at and fix.

In fact, we believe that an unprotected output in isolation
can be considered a dormant XSS—it would be vulnerable,
except that the current inputs for the web application do not

echo "<td><a_href=\"editbookmark.php".Surlext."&
bookmark_id=".S$onemark ->bookmark_id."\">",Sonemark ->
title."</td>\n";

echo "<td>".S$on rk-=>url."</td>\n";

echo "<td><a_href=\"editbookmark.php".Surlext."&
bookmark_id=".S$onemark->bookmark_id."\">";

echo S$themeObject->DisplayImage (’icons/system/edit.gif’,
lang ("edit’),’’,’", " systemicon’);

echo "</td>\n";

echo "<td><a_href=\"deletebookmark.php".$urlext."&
bookmark_id=".$onemark->bookmark_id."\" _onclick=\"
return_confirm(’".cms_html_entity_decode (lang(’
deleteconfirm’, Sonemark->title))."7);\">"

echo S$themeObject->DisplayImage (’icons/system/delete.gif’
, lang(’delete’),’’,'’,"systemicon’);

echo "</td>\n"

Figure 3: CMS Made Simple bookmarks functionality. A
bookmark contains a title and a URL. Both the title and URL
are correctly escaped in their respective first two cells in this
snippet from CMSMS code, but the title is not protected in
its inclusion in the delete button.

allow an exploit payload due to either escaping, stripping,
validation, no input possible, or some combination of these.
The web application’s evolution, either through future devel-
opment or integration with other code (plugins, for example),
can elevate a dormant XSS to a full XSS.

For example, Spider-Scents found that WordPress has un-
protected output of both display_name and user_nicename
from the users table. In the base WordPress application, there
are no unprotected inputs to these columns—in fact, these are
not modifiable after the creation of a user. However, both are
exposed in a vulnerable version of the username-changer
plugin [5] (code shown in Listing 4), and, therefore, when
this vulnerable plugin is installed this unprotected output be-
comes a fully-exploitable XSS. * If WordPress followed their
own best practices of “always escape late”, this dormant XSS
would not be possible (and Spider-Scents would not report it
as an unprotected output).

It is also possible that some inputs to the database are kept
constant. For example, in Hostel Management System, an
application we evaluate in Section 5, a list of US states is hard-
coded in the database. Spider-Scents finds unprotected outputs
in this list. While not directly exploitable, these unprotected
outputs could become a problem through extension of code,
either in future versions of the application or with plugins. In
our manual analysis, we quantify how many reports fall into
this category and present them in the NI column in Table 2.

Self-XSS. Finally, an XSS vulnerability is not necessarily
exploitable. An XSS can be unexploitable due to user permis-
sions, such that the admin can only perform an XSS on them-
self. This self-XSS is the counterpoint to fully-exploitable
XSS. An example of this is templates in MyBB. A template

ZVulnerable version of WordPress username-changer plu-
gin https://github.com/evertiro/Username-Changer/blob/
dd1976b05213d9895886da7£9a91515¢52188344/includes/
functions.php#L84

USENIX Association

33rd USENIX Security Symposium 6745

https://github.com/evertiro/Username-Changer/blob/dd1976b05213d9895886da7f9a91515c52188344/includes/functions.php#L84
https://github.com/evertiro/Username-Changer/blob/dd1976b05213d9895886da7f9a91515c52188344/includes/functions.php#L84
https://github.com/evertiro/Username-Changer/blob/dd1976b05213d9895886da7f9a91515c52188344/includes/functions.php#L84

$gqnn = S$wpdb->prepare("UPDATE_S$wpdb->users_SET_
user_login_, s_AND _,

_username, $new_username,

user_nicename,

user_nicename

Sold_username);
$wpdb->query ($gnn);

$Swpdb->prepare ("UPDATE_S$wpdb->use
/_name,_=_*% WHERE _user_login
ername,

_username,

Figure 4: Username-Changer WordPress plugin vulnerable
code: display_name and user_nicename are not sanitized.

Algorithm 1 Synthesizing data in the database.
rows <3
i1
while i < rows do
row < ||
j<0
while j < columns do
append (row,increment (i))
JjJj+1
end while
insert (row)
error < breakage()
if error then
delete(row)
end if
i—i+1
end while

for the calendar functionality in this application can be modi-
fied to include executable JavaScript. However, only an admin
user has the necessary permissions to add or modify this tem-
plate. Spider-Scents finds this vulnerability, and we manually
confirm that it is a self-XSS.

4.3 Preparing the web application

The initial step in our approach is to prepare the web applica-
tion’s database for scanning, as shown in step (D) in Figure 2.

4.3.1 Database synthesis

Ideally, our method should scan an application with a full
database. Steinhauser and Tima note the importance of this
as well [47]. However, they do not attempt to solve this and
instead rely on somewhat complete configurations provided
by the applications themselves, or other publicly-available
manually-assembled data. For an e-commerce website, this
means that the database already contains products, customers,
and other data. To be able to discover an XSS-vulnerable
workflow that spans multiple tables, data must exist in each
table.

To address cases where data is lacking, more specifically
empty database tables, we insert a constant number of rows

of benign data matching the schema of the empty tables. We
perform this simple algorithm shown in Section 4.3.1 on each
empty table in the database.

columns is the number of columns in the schema for the
empty table and increment (i) modifies a base value by the
increment i. For example, integers have a base value of 0,
dates have ‘1970-01-01 00:00:00°, and strings have a. By
modifying a constant value, we ensure that there are records
correlated between tables by these deterministic values, to
satisfy constraints common in web applications using normal-
ized databases. We always insert 3 initial rows due to differ-
ent auto-increments in the applications’ database setups—we
have observed empirically that these often start at 1, but not
always.

While this naive solution is implemented and works well
for our evaluation, the more general case of database synthe-
sis is orthogonal to this work. Related work in this specific
direction can be found in Section 7.5.

4.3.2 Reverting changes

We also periodically revert modifications done by Spider-
Scents to the database, the rules for which are described in
Appendix A.l. This is to add independence between our pay-
load insertions, and also reduces our reliance on detecting
application breakage, if we automatically revert based on
other rules. Some rules we implement enforce independence
across boundaries in the database; such as tables and columns.
To revert a database edit, from newData to oldData, per-
form:
error < updateRow(oldData)
if error then
removeRow(newData)
insertRow(oldData)
end if

removeRow and updateRow can identify a row based on ei-
ther keys or values. It is necessary to handle reverting changes
in Spider-Scents, as built-in database functionality such as
transactions cannot be open-ended, which is necessary to al-
low the simultaneous manipulation of both Spider-Scents and
the web application backend of the database.

Reverting changes also happens when breakage is detected,
conditions for which are covered in Section 4.6.

4.3.3 Logging in

Finally, we also must make sure that the web application
itself is in a proper state to be scanned. Among other things,
this means making sure that Spider-Scents is logged in. We
automatically grab relevant details such as cookies, user agent,
and the user URL (dashboard) at the start of each scan. Spider-
Scents uses Selenium to interact with a headless Chrome
instance with a custom extension to record this information,
after having been supplied with the necessary credentials
(username, password, and login page). These client details,
which web applications often use to identify users, are then

6746 33rd USENIX Security Symposium

USENIX Association

Algorithm 2 Discovering sensitive rows.
i1
while i < rows do
row <— retrieve(i)
error < delete(i)
if error then
sensitive(row)
end if
crawl()
error < insert(row)
if error then
sensitive(row)
end if
i—i+1
end while

re-used throughout the rest of the scan.

4.4 Choosing a database cell

For each cell in the database, Spider-Scents checks if the cell
is suitable for our XSS payload. We ensure that the schema for
the cell’s column specifies that it is a text field with a length
that can accommodate our payload, described in Section 4.5.

4.4.1 Avoiding sensitive rows

We also must consider if the web application is particularly
sensitive to changing a specific cell’s value. If the application
tries to revert an injected database value, reset a table or row,
or even insert a conflicting row, various problems can occur.
This can either be due to the web application not having
a robust recovery method that can handle Spider-Scents’s
admittedly unexpected meddling in their database tables, or
due to Spider-Scents losing track of the state the database is
in. In either case, we avoid such sensitive cells by first probing
the database for their existence.

For each table in the database, we discover sensitive rows
as shown in Algorithm 2, where rows is the number of rows
in the table, retrieve(i) and delete(i) perform appropriate
actions on the " row in the table, insert (row) inserts the row
into the table, sensitive(row) marks that this row in the table
is sensitive to changes, and crawl() crawls the application to
induce reverts, conflicts, or resets in the database.

4.4.2 Choosing a cell

How a table in a database is used by an application also
matters, and, unfortunately, this usage is not always fully
specified in the database schema.

If a table has uniform types of rows, then it might be suffi-
cient to modify cells in a single row. However, this assumption
only holds if, for instance, the access control policies of the
application specify that all users can see the data in all rows.

This also assumes that each entry in the table is handled
identically by the web application code, which might not be
a correct assumption. Indeed, not all tables have only such

uniformly typed entries; a counterpoint is tables that store key-
value data, where the interpretation of a value cell depends on
a key cell identifying it. Given the existence of such key-value
tables and the fact that reflection code for entries can change
based on the contents of a particular entry, we must iterate
across all rows in a table.

In addition, the order of cell changes does impact which
XSS-vulnerable workflows are discovered. We implement
different traversal orders, primarily based on iterating tables
in alphabetical order. From there, the scanner either chooses
cells (that satisfy payload requirements and are not sensitive)
based on the iteration of rows or columns.

4.5 Payload insertion

In contrast to traditional black-box approaches, Spider-Scents
does not interact with the web application in an attempt to in-
sert data from user input to a particular database cell. Instead,
Spider-Scents inserts the payload directly into a database cell
(step).

Once a suitable cell has been found, Spider-Scents gener-
ates a unique ID to use for the payload. The payload we use
is inspired by payloads used in prior work [11]. This struc-
ture helps reduce false positives with dynamic XSS detection.
We use the following template, where ID is replaced with a
unique generated ID:

"/ ><script>xss (ID)</script>

While other payloads, such as a general-purpose img pay-
load, can be more or less suitable depending on the context of
the reflection, we consider the problem of creating smaller or
context-specific XSS payloads to be orthogonal to this work.
Using this payload can lead to false negatives, for example, if
the reflection happens in a textarea or title tag.

4.5.1 Structured data

This is with the caveat that we do consider the presence of
structured data in a cell. Spider-Scents’ iterative modification
of database cells, and searching for these individual reflec-
tions in the web page, has the implicit assumption that it is
individual data stored in database cells in a one-to-one corre-
spondence from web input to database cell. This might not be
true—data might be split up into multiple cells or combined
within a single cell. A payload would need to be either split
across cells in the first case or multiple payloads combined in
the second. Correlating changes across cells is considered out
of scope for this work.

However, when data is combined within a single cell, we
consider this as structured data. Spider-Scents modifies pay-
loads to fit some common types of structured data. If a known
structure is detected by parsing cell data, the payload will be
delivered to each valid location for it. Currently, Spider-Scents
implements a customized payload for PHP serialized objects
and image paths. The support for these formats is chosen to
demonstrate this approach and can lead to false negatives due
to not handling more widely-used structured data formats,

USENIX Association

33rd USENIX Security Symposium 6747

Algorithm 3 Determining breakage.
i+ 1
broken <0
while i <length(urls) do
current < request (urlsi))
broken_url < request (urls[i])
if broken_url then
broken < broken + 1
end if
i—i+1
end while
if broken/length(urls) > threshold then return broken
end if

such as JSON.

4.6 Application breakage

After inserting a payload, the changing database values can
have catastrophic effects on the web application’s functional-
ity, which we call breakage.

While breakage can happen when using an application
through its standard functionality, it is even more likely when
Spider-Scents directly modifies the database and possibly
inserts values that the application has not defensively coded
against.

From a black-box scanner’s perspective, such internal
application-specification breaking changes are not available.
However, similar behavior, when reachable on standard inter-
faces, is regarded as irrecoverable state changes [7]. While
it may be intended functionality, such an irrecoverable state
change overlaps with our notion of application breakage.

Guarding against breakage is inherently a tradeoff. On the
one hand, changing the website’s domain to an XSS payload
in a CMS such as WordPress will rewrite all links, including
admin ones, making the application unusable. On the other
hand, new vulnerable behavior of the application might have
been discovered instead.

Entirely black-box approaches will not be able to recover
from such a breaking, irrecoverable state change. Some scan-
ners add infrastructure access (shown in Figure 1) to be able
to reset the application when this happens [7, 10]. With our
position in the database, while we are more prone to cause
breakage, we can also identify and fix it, without any addi-
tional access to the application.

Therefore, as noted by step @ in Figure 2, Spider-Scents
will dynamically scan the application looking for signs of
breakage. If any are found we can reset the exact cell we
changed that caused the breakage, even in the case when the
web application is unusable.

Web application breakage across a web application is in-
ferred by Algorithm 3, where urls is a list of URLSs for distinct
web pages in the application, compare(baseline, current)
compares the current status of a web page to a baseline mea-

surement, and threshold is a threshold specified for how many
pages can be acceptably broken in a web application.

compare(baseline,current) can be implemented to com-
pare measurements of a web page response based on HTTP
status codes, linked content, length, or other heuristics. The
approach we take is a combination of status codes and linked
content.

4.7 Reflection scanning

Finally, we dynamically exercise the application with a reflec-
tion scanner (step 3)). This scanner will crawl the application
and report back on all the IDs that it finds. Here we differenti-
ate between reflected JavaScript payloads that are executed,
i.e. unescaped, and cases where we find the IDs in text. We
do not try to find mangled or encoded payloads.
Spider-Scents uses Black Widow [11], the source code of
which is available®, with minor modifications to facilitate
communication between modules, as its reflection scanner.

4.8 Manual analysis

From the Spider-Scents reports we manually analyze the un-
protected outputs to determine if the payloads could be added
from the web application. Once an input element is found we
supply valid data and ensure the database is updated accord-
ingly. Next, we add our payload and record if it is (1) rejected
due to validation, (2) escaped, or (3) sanitized. We then repeat
this for all inputs relating to the column.

5 [Evaluation

We evaluate our approach by analyzing 12 different web appli-
cations and report on the number of stored XSS vulnerabilities
found.

We compare Spider-Scents with a combination of up-to-
date academic and open-source scanners that find stored XSS
in Arachni [2], Black Widow [11], and OWASP ZAP [54].

5.1 Web applications

Similar to previous works [7, 11, 33, 49] we test both old
applications and new modern ones. We divide the target
applications into two sets. The five reference applications
(that have known CVEs) and are used in prior work are:
SCAREF [45], Hospital Management System [35], User Regis-
tration & Login and User Management System [36], Doctor
Appointment Management System [37], and Hostel Manage-
ment System [38].

For modern, complex, applications we use these seven:
CMS Made Simple [46], Joomla [21], MyBB [27], Open-
Cart [29], Piwigo [39], PrestaShop [40], and WordPress [53],
Statistics that describe the applications chosen, their version
numbers, and their usage in evaluation by prior work is pro-
vided in the Appendix Table 4.

3nttps://github.com/Securingieb/Blackiidow

6748 33rd USENIX Security Symposium

USENIX Association

https://github.com/SecuringWeb/BlackWidow

Applications are largely chosen based on those evaluated by
the authors of jik [33], Black Widow [11], and Witcher [49]°,
as these represent the current state-of-the-art in academic
black-box web scanners. We restrict the evaluation to those
that are database-backed.

Note that while we have selected applications based on the
prior criteria, we choose the latest version of each application.
Therefore, the unique vulnerabilities found by Spider-Scents
are also new.

5.2 Experimental setup

In this section, we present the experimental setup used for
the evaluation of Spider-Scents and comparison with other
scanners.

5.2.1 Performance metrics

We focus our evaluation on three metrics: database coverage,
vulnerabilities, and exploitability.

Database coverage. To successfully execute a stored XSS
payload the scanner must first write the payload to the
database ~. By comparing a snapshot of the database before
and after each scan we can approximately measure what effect
each scanner has on the database.

These snapshots allow us to more precisely determine
where the scanner fails in storing a payload, and where Spider-
Scents can benefit from directly adding the payload to the
database. In addition, we also classify the changes as either
benign or XSS payloads. If an XSS payload is added, we
investigate if the scanner can find it.

Vulnerabilities. To evaluate our method’s capability to find
vulnerabilities we also record the number of vulnerabilities
reported by each scanner.

There is no clear method, neither in literature nor suggested
by the scanners’ implementations, of how to differentiate
between two different XSS vulnerabilities. This means that for
a given web application functionality, different scanners can
generate different amounts of reported XSS vulnerabilities.
For example, a vulnerable search bar included on every URL
could generate a reported XSS vulnerability for each URL.
To level the playing field and allow for a fair comparison we
manually inspect each vulnerability and cluster them based
on their related functionality. This clustering is justified as
an application of root cause analysis, a process already well-
established and valued in software bug reports [16].

Furthermore, we only compare stored XSS results from
other scanners. Reports from compared scanners are man-
ually confirmed to either be stored XSS or non-stored XSS
(reflected or DOM). During evaluation, Arachni finds 4, Black

4Witcher only supports detecting SQL Injection and Command Injection,
therefore we do not compare against it.

3 Assuming the payload is stored in the database; see Section 6.3 for an
example of a stored XSS in the filesystem.

Widow finds 2, and ZAP finds 4 © non-stored XSS. Our
method is unable to find these, as it is specific to stored XSS.

Exploitability. Scanners search for XSS vulnerabilities by
injecting data with XSS payloads into the application. After-
wards, they search for this data, either statically, or dynami-
cally. However, due to permissions, this does not guarantee
that an attacker can abuse the discovered XSS. For example,
if only the super user can inject the payload, the vulnerability
is not exploitable.

As modern applications can have complex user and group
permissions with different associated application views, it
is difficult for a scanner to automatically reason about the
exploitability of these possible injections. In this paper, we
manually verify and report on the exploitability of each re-
ported vulnerability. We divide this step into two parts, 1)
input protections and ii) permissions.

For input protection, we ensure that it is possible to add
the XSS payload from the application to the database. If it
is not possible (protected), we further categorize the input
protection for the reported vulnerability.

No Input, when there is no usable input field allowing for
writing to the database. For example, input fields that are only
available during installation or constants, such as US states.

Escaping, when the application changes the user input,
to prevent it from being interpreted in some context, before
adding it to the database. E.g. transforming < to &1t; makes
the symbol safe to be included in HTML context.

Stripping, when some data is removed (“stripped”) from
the input. E.g. removing <script> from the user input.

Validation, when the application refuses to add the user
input to the database if it does not satisfy some format, such
as containing illegal characters.

For permissions, we consider the vulnerability exploitable
if a less privileged user can add a payload that is executed
on a page that a user with more privileges can access. For
example, if a normal user can book an appointment whose
XSS payload is executed in the admin dashboard, then we
would consider this exploitable. However, if only the admin
could add the payload to such an appointment then it would
be equivalent to self-XSS.

5.2.2 Scanner configuration

We configure other scanners to make as fair a comparison as
possible. While we focus on stored XSS, web scanners can
scan for a plethora of other vulnerabilities, including SQL
injection, command injection, and local file inclusion.

For this evaluation, we configure each scanner to only focus
on finding XSS vulnerabilities. Furthermore, to allow scan-
ners a better chance to authenticate and stay authenticated,
we make slight modifications to the web application. First,

®In general, non-stored-XSS found by scanners is the difference between
columns R and S in Table 1. However, due to the false positive reports by
ZAP in the Hospital Management System (see Section 6.2), ZAP only finds
4 non-stored-XSS in the Doctor Apt. and Hostel applications.

USENIX Association

33rd USENIX Security Symposium 6749

we ensure the index page has a link to the admin login. Sec-
ondly, we rewrite the POST parameters server-side to match
the correct user. This will level the playing field, as scanners
prefer different authentication methods. Other scanners are
configured to limit their runtime to 8 hours, similar to prior
work [11,49]

Configuration of parameters specific to Spider-Scents can
be found in Appendix A.1.

5.3 Comparison results

In addition to the most direct comparison statistic—
vulnerabilities found—we also collect a new statistic for this
problem: database coverage. This is motivated by the differ-
ent approach taken by Spider-Scents.

Database coverage. Modifying data in the database is re-
quired to detect stored XSS in database-backed applications.
As such, we record the number of unique columns in the
database each scanner modifies. In the case where an entire
row is added, we give the scanner credit for all columns in
the table. In our analysis in Section 6.4, we look more closely
at the data inserted by the scanners.

In Appendix Table 5, we present the database coverage of
each scanner and compare them to Spider-Scents. We further
visualize this in Figure 5. As is evident, Spider-Scents can
affect a much greater portion of the database compared to the
other scanners. We cover between 79% to 100% while the
other scanners cover between 2% and 60% on average. This
shows that black-box scanners are still limited in how much
they can affect the database, and subsequently, how well they
can detect stored XSS.

There are cases where other scanners affect columns that
Spider-Scents does not modify: For example, on CMSMS,
both Arachni and ZAP affect columns that Spider-Scents does
not. In this particular case, it is the cms_adminlog.username
and the cms_users.username columns. Both these have a
max length of 25 while our payload is 30 characters. We
discuss these cases in more detail in Section 6.1.

Database application mappings. Our approach generates a
mapping from database tables and columns where a payload is
inserted, to the URLs where the payload is found. In Figure 6
we show such a mapping for the application Piwigo, where
the red lines indicate unprotected output and the black lines
indicate protected output.

XSS results. In this section, we compare the reported XSS
vulnerabilities by each scanner. In Table 1, we present reports
by each scanner in column R, manually confirmed stored XSS
in column §, and manually verified and de-duplicated reported
vulnerabilities in column V. Note that anything we find in
column V, all black-box scanners should report as well.
Reports by other scanners are of XSS vulnerabilities. How-
ever, the Spider-Scents scanner reports unprotected reflec-
tions, not XSS vulnerabilities (see Section 4.1.1). Therefore,
column S is inapplicable, and undefined for Spider-Scents.

Table 1: XSS vulnerabilities reported (and manually verified)
by each scanner. R - All XSS or unprotected outputs reported
by the scanner, S - Confirmed stored XSS, V - Verified and
de-duplicated with our unique finds in parentheses.

Scanner Arachni Black Widow ZAP Spider-Scents

R S V|[R S V|R S V| R S v
CMSMS o o0 ofl0O O OO0 O Of 18 - 8(8)
DoctorApt. | 5 2 2| 1 0 0| 4 1 1 g - 4(2)
Hospital S 4 41 4 4 41260 1 1| 33 - 302
Hostel 13 13 13 3 3 3|, 0 0 0| 23 - 19(6)
Joomla o o 0|0 O o0} 1 0 O 9 - 0
MyBB o o0 o0 0O O OO O O 6 6 (6)
OpenCart o o0 o0 0O O OO O O 6 0
Piwigo 0 0 O0f 1 1 110 0 O 5 1(1)
PrestaShop o o0 0] 0 O OO0 O O 3 - 0
SCARF o 0 0|10 9 9|0 0 0] 12 11(2)
User Login o o 0| 0 O 0] 0 O O 3 3(3)
WordPress o o0 O[O0 O OO O O 7 3(3)
Total 23 19 19|19 17 17|31 2 2133 - 85(53)

Overall, our approach finds 85 stored XSS vulnerabilities
that other scanners should be able to find, compared to the
15, on average, that they do find. 53 of these vulnerabilities
found by our approach are unique and new.

With the exception of the Piwigo vulnerability Black
Widow finds, which we discuss in Section 6.3, we find all
stored XSS the other scanners find.

Notably, classic black-box scanners still struggle to find
stored XSS, as indicated by the relatively low numbers in
Table 1. There are some notable outliers, such as ZAP report-
ing 26 XSS on the Hospital Management System. However,
as later clarified by manual analysis, this is a single stored
payload being mislabeled as multiple XSS vulnerabilities.

Exploitability. While scanners report on user input being
executed as JavaScript, they fall short of understanding the
exploitability of the vulnerability. In this section, we break
down the vulnerabilities we find with Spider-Scents into un-
protected output, unprotected inputs, and unprotected permis-
sions, defined in Section 2. We define the unprotected input as
an input field where it is possible to add a payload without it
being escaped, stripped, or subject to validation, as described
in Section 5.2.1.

In Table 2 we present the results from our approach and
exploitability analysis. Interestingly, we note that there is a
diverse mix of input protection methods, even within one
application. For example, in CMS Made Simple, escaping
is used for the user’s first and last name, while stripping is
used for the email, and validation is used for the content alias.
Nevertheless, the application still failed to properly sanitize
its output.

Moreover, complex and dynamic user roles in modern ap-
plications make it difficult to automatically reason about the
impact of XSS. For example, in CMSMS there is a binary

6750 33rd USENIX Security Symposium

USENIX Association

wepF — — = = = — — — — — — — — — — — — — - - - = = = = = = = —

Our Scanner
80% |- — —| Common

Other scanner

oo HH—— 11" -"""-""""+-"-""+H-"""+H+H - — — — 4

wH 14T "14 +---"--"-1--"-" -1 4" " H—HH4+--""-"-"---"-=-— - - — — A

20w H 414 = = - - — = - = — = — = — — — —

o= = = Z S D DN - e s s e e e s R "=

User Login
OpenCart Arachni
OpenCart

Joomla

Joomla Arachni
OpenCart

Joomla
PrestaShop

MyBB Arachni
Doctor Apt.

CMSMS Arachni
PrestaShop
PrestaShop Arachni

CMSMS

MyBB

CMSMS
Doctor Apt.
WordPress Arachni

SCARF Arachni

Piwigo Arachni
Hostel Arachni

Piwigo
SCARF
MyBB
Piwigo
Hostel
Hospital
Hospital B
Doctor Apt. Arachni
WordPress
Hospital Arachni
Hostel
WordPress
User Login Arachni
User Login
SCARF

Figure 5: For every bar we present the fraction of database columns affected. First, on top, the fraction of columns only
Spider-Scents finds, the middle shows the fraction of columns both scanners find, and finally, on the bottom, the fraction of

columns only the other scanner finds.

admin.php?page=site_update
&site=1

admin.php?page=user list

profile.php

sites.galleries_url

languages.name

themes.name

Figure 6: Subset of results from scanning the Piwigo web
application. Black lines indicate protected outputs while red
lines indicate unprotected outputs.

option for permission to modify bookmarks, that can be as-
signed to any user group. Any user with this permission can
abuse an XSS to gain privileges. In contrast, MyBB has a
strict separation of admin configurations and forum modera-
tion configurations. This means that any XSS a scanner finds,
including ours, while authenticated as an admin in MyBB,
could be regarded as self-XSS as only trusted parties control
the input. Similarly in Piwigo, the page title is vulnerable to
XSS, however, only the admin can change it. As we see in
Table 2, while both MyBB and CMSMS fail to escape all out-
puts, MyBB is less exploitable due to its stricter permissions.

In the Doctor Appointment Management System, neither
output protection nor input protection is used. Despite this,

two vulnerabilities are not exploitable because of permissions.
Specifically, while users can change their own email address,
only doctors (super users in this context) can change a doctor’s
name. Still, these are not fully protected, as the application
with its default settings is also vulnerable to CSRF attacks.
These vulnerabilities can be combined to exploit the XSS.
Therefore, we believe it is useful for developers to learn where
unprotected outputs are so that they can be fixed, even if they
are protected by permissions.

6 Analysis

In this section, we investigate our results and highlight limita-
tions of both black-box scanners and our approach.

6.1 Database coverage

While our method generally achieves higher database cover-
age, there are some interesting cases where other scanners
still perform better in this metric.

In our evaluation, the portion of the database we miss and
other scanners can reach is a result of our payload’s length.
Our payload length is always at least 30 characters long,
making it too big for some cells. For example, on Piwigo
Black Widow can affect the oc_customer_ip.country col-
umn, which only holds two characters. ZAP also modifies
mybb_templates.version, with a size of 20 characters.
This could be enough for some XSS payloads.

In theory, we can miss finding possible vulnerabilities if
changing a non-text (numeric or date) value is necessary to
trigger a vulnerability. Foreign key constraints can also cause
problems but are less common in the text fields we focus on.

USENIX Association

33rd USENIX Security Symposium 6751

Table 2: Exploitability of reported vulnerabilities. T - Total
reflections, NI - No Input, VA - Validation, ST - Stripping,
ESC - Escaping, P - Permission, EXP - Exploitable. * A
CSREF vulnerability could be abused to exploit it. ** Poor
authentication validation allows privilege escalation.

| T ||NI| VA |ST|ESC| P | EXP

CMSMS 18| 3 1 3 3 0 8
Doctor Apt. | 8 4 0 0 0 2% 2
Hospital 331 3 0 0 0 6* 24
Hostel 23 || 4 0 0 0 4 15
Joomla 9 5 0 4 0 0 0
MyBB 6 0 0 0 0 6 0
OpenCart 6 0 0 0 6 0 0
Piwigo 5 1 3 0 0 1 0
PrestaShop 3 0 3 0 0 0 0
SCARF 12 || 1 0 0 0 7* 4
User Login | 3 0 0 0 0 0 3
WordPress 7 0 0 1 3 0 3

6.2 False positives

Black-box scanners use a variety of methods to detect injected
XSS payloads, which can result in false positives. ZAP, for
example, incorrectly identified XSS in WordPress. It statically
found the injected token ; alert (1); in a JavaScript context.
However, the token was inside a string, which in this case it
is not possible to break out of.

Confusing multiple payloads is another problem many scan-
ners face. In the Hospital Management System, ZAP can suc-
cessfully inject an XSS payload into the database. However,
it does not detect this as a stored XSS, and is confused when
it later scans for DOM-based XSS with the same payload,
alert (5397), which ZAP does find. This is caused in part
by the number 5397 not being random but a constant, defined
in the code as UNLIKELY_INT. Therefore, for a single stored
XSS vulnerability, ZAP instead reports 26 DOM-based XSS.
In this case, mistaking DOM XSS for stored XSS can impact
developers who are unable to reproduce the results when the
database is reset.

Our approach can avoid many of these problems by using
unique IDs for each cell in the database and dynamically
testing that each payload is executed. As such, similarly to
Black Widow, we have a low rate of this type of false positive.

In contrast to black-box scanners, our approach does not au-
tomatically verify that an unprotected input exists. Therefore,
we might report a database cell that cannot be changed by
the web application. For example, in the Hostel Management
System, the list of US states were not escaped on output, but
were all hard-coded. We argue that when more functionality
is added, either through software updates or third-party code

such as plugins, it can introduce a vulnerability, and as such
these reports are important.

6.3 What we miss

In the complex setting of web applications, there might always
be more unknown vulnerabilities. In the absence of ground
truth, in line with previous work [9-11,33,47,49], our false
negative comparison baseline is the stored XSS results of
other scanners.

In Piwigo our method can find a reflected value, but not
XSS, for a value in the configuration table. However, upon
further manual analysis, we note that the reason we did not
find the XSS vulnerability was because of the payload chosen.
In this case, the value was reflected inside a textarea, meaning
a </textarea> tag was needed to break out and execute
JavaScript.

Black Widow found one XSS on Piwigo that we missed.
While we were able to add the payload and find the correct
URL, the URL was too late in the reflection scanner’s queue
and was therefore never visited. Increasing the reflection scan-
ner’s timeout would solve this, at the cost of runtime perfor-
mance.

We have only implemented a prototype that demonstrates
the utility of our approach. As with all scanners, the choices
taken in that implementation can lead to false negatives. False
negatives can stem from missing SQL analysis that can limit
our interaction with the database, such as foreign keys and
other constraints, and triggers. Better authentication, and re-
authentication, mechanisms would also improve our approach.
Replaceable components to our method, such as the reflection-
crawling and payload-selection modules, are shown to be the
cause for some of the false negatives in this section.

In addition to our evaluated comparison with the other scan-
ners, we also survey vulnerabilities from CVEs and previous
academic papers to construct a dataset of known vulnerabili-
ties in our choice of evaluated web applications. In this dataset,
33 previous reports covered 29 unique stored XSS vulnerabil-
ities, of which we find 26 (details in Table 6). In WordPress,
we miss a vulnerability that relies on an attacker-controlled
server that returns a crafted message to a link embedded in a
post. For all evaluated methods, including ours, this type of
attack is out-of-scope. However, it should be noted that we
do correctly mark the database column as unprotected output.
In CMSMS, we miss a stored XSS vulnerability in the file-
name of uploaded files. Here the payload is not stored in the
database but rather in the filesystem. Extending our method
from databases to other storage mechanisms could be an av-
enue for future work. Finally, in OpenCart, we miss a stored
XSS in the category description because we do not spend
enough time crawling the application after database modifi-
cations, to scan for reflections of the inserted payload. After
extending the reflection scanner’s timeout, Spider-Scents was
able to find this vulnerability as well.

6752 33rd USENIX Security Symposium

USENIX Association

6.4 What others miss

From the scanning results of the Doctor Appointment Man-
agement System, we can see that ZAP fails to detect multiple
XSS vulnerabilities. By analyzing database snapshots before
and after execution we note that ZAP was only able to insert
data into the tbldoctor table. While it was able to add the
string “ZAP” to the FullName column, it could not add an
XSS payload. Furthermore, ZAP misses other tables, such
as tblpage and tblappointment, that our method modifies
and detects as unprotected output.

We also note cases where the compared scanners fail
to find XSS due to a lack of database coverage. For ex-
ample, in MyBB, no other scanner affects the vulnerable
mybb_usergroups.namestyle column.

6.5 Exploitability

Both black-box scanners and our method will report on in-
jected JavaScript being reflected and executed. However, as
we see in Table 2, not all these executions could, in their
current form, be exploitable. Interestingly, we note that web
applications are relatively equally split on using sanitization
and escaping on user input. Validation, on the other hand, is
less common. Moreover, permissions also play an important
role in protecting these XSS vulnerabilities from becoming
exploitable.

6.6 Drop-in testing with Spider-Scents

In our evaluation, we assisted other scanners by modifying the
web applications under test, so they could evade typical login
checks. While beneficial for increasing their performance for
the sake of comparison, such modifications are not ideal.

To demonstrate the applicability of Spider-Scents, we do
not modify web applications when we run Spider-Scents.
Therefore, we rely entirely on our breakage heuristics, auto-
matic reverting, and automatic use of captured log-in details.

6.7 Manual analysis with Spider-Scents

Spider-Scents requires more manual effort to verify a vul-
nerability compared to a black-box solution. However, as
Spider-Scents reports the corresponding database table and
column, e.g. users.email, it is usually relatively easy to
manually find relevant input fields and test for a working XSS
payload, as described in Section 4.8. In our evaluation, it took
an author approximately 15 minutes per report, on average.
Preparing Spider-Scents to scan takes a similar time to other
scanners, with the small addition of database credentials.

Further automation to ease analysis is possible, such as
mapping input fields to the database, although this will require
addressing general challenges of crawling, such as exploration
and input validation [11].

6.8 Runtime performance of Spider-Scents

In contrast to other black-box scanners, which can run indef-
initely [11], our method runs for a time proportional to the

Table 3: Runtime performance of Spider-Scents. Runtime is
proportional to the size of the database of the application,
reported in both the raw number of database cells and those
that Spider-Scents can scan (satisfy payload requirements).

Scan time ‘ Database cells | Scannable

CMSMS 7:14 11844 4339
Doctor Apt. 0:08 195 87
Hospital 0:22 282 106
Hostel 0:13 205 90
Joomla 12:59 11584 4813
MyBB 4:21 15701 5321
OpenCart 1:39 31490 11553
Piwigo 1:07 1826 520
PrestaShop 32:29 44529 10745
SCARF 0:06 36 15
User Login 0:01 10 6
WordPress 1:55 385 868

database of the application. In our evaluation, other black-
box scanners are limited to a runtime of 8 hours. Spider-
Scents almost always completed its scans within this time
window, with the exception of modern applications Joomla
and PrestaShop. Reference applications are scanned within
minutes, while modern applications are scanned in hours.

We report the scan time of Spider-Scents in evaluation in
Table 3. These times are collected on a laptop from 2021
with 8 cores and 16 gigabytes of RAM, running both the
application’s web server and the Spider-Scents scanner.

6.9 Coordinated disclosure

We have reported all new vulnerabilities to the affected ven-
dors and will summarize their responses here. MyBB is plan-
ning to fix the vulnerabilities we reported in the upcoming 1.9
version. The CMSMS developers argue that any authenticated
XSS (regardless of the specific user/group permissions) is
not considered a vulnerability. Instead, they will revise their
documentation to no longer motivate their permission model
as a “security mechanism”. WordPress, on the other hand,
does consider some authenticated XSS as vulnerabilities, de-
pending on permission. However, their security model differs
from that evaluated. In our model, we considered any privi-
lege escalation as a vulnerability, while WordPress developers
consider editor and admin to be equivalent. As such, there
does not seem to be a consensus among web developers as to
how application permissions should be modelled. We are still
waiting for a response from PHPGurukul for vulnerabilities
in their multiple applications. However, these vulnerabilities
have a clearer precedence with similar vulnerabilities to ours,
e.g. CVE-2023-27225.

USENIX Association

33rd USENIX Security Symposium 6753

6.10 Summary

As the results show, Spider-Scents performs both better in
database coverage and stored XSS vulnerability detection
when compared to state-of-the-art scanners. Based on what
vulnerabilities the other scanners miss and what we uniquely
find, we believe the reason for this improved performance is
because we bypass the majority of the roadblocks that cur-
rent XSS scanners face (as defined in Section 3). Solving
these challenges directly is a substantially harder problem [8],
and will require solving fundamental challenges with crawl-
ing [11]. In many instances, the other scanners fail to get any
data into the vulnerable database column for vulnerabilities
only Spider-Scents finds, and in other cases when they do,
only benign data is added. In general, the main problem cur-
rent scanners face, which we bypass, is getting the payload
into the database.

7 Related Work

7.1 Black-box scanners

Enemy of the State [7] models server-side state in different
links and requests are identified that drive such state changes.
Notably, this work recognizes the necessity of a solution to
resetting a web application. In this case, the application is run
in a VM, and the machine is reset to counteract irreversible
state changes. Spider-Scents does not need a VM, and resets
can be done in a granular and inexpensive fashion. Further-
more, Enemy of the State’s access to the VM subsumes this
paper’s access to the database.

LigRE [9] and KameleonFuzz [10] also focus on server-
side state. LigRE improves XSS detection with taint flow
inference, and KameleonFuzz adds genetic algorithms for
payload generation and modification. Similar to Enemy of
the State, these approaches require the ability to reset the web
application.

jak [33] instead focuses on modelling client-side state.
JavaScript APIs are hooked to be able to model dynamic be-
haviour. The crawler generates a navigation graph including
this information.

CrawlJax [25] also models client-side state. Interactable
candidate elements, such as clickable ones, are interacted with
to extend the crawler’s reach. A state-flow graph models the
user interface.

Black Widow [11] identifies key fundamental challenges
for black-box scanning. They mitigate them by combining
navigation graphs, workflows, and inter-state dependencies
in one XSS scanner. In contrast to prior work, Black Widow
does not assume the ability to reset the web application.

7.2 White-box scanners

Saner [4] focuses on identifying improper sanitization to find
vulnerabilities such as XSS and SQLi. Saner is limited to
analyzing PHP, and even more to custom sanitization routines.
To reduce complexities with application state — such as the

database — Saner does not interact with a live instance of the
web application, instead choosing to build a model of the
sanitization process from static analysis results.

Restler [3] does not use the entire application’s codebase,
but instead only the REST API specification. Static analy-
sis of this specification identifies inter-request dependencies
to generate tests, which generate dynamic feedback execu-
tion to guide further testing. Similar to Spider-Scents in both
analyzing a different artifact/interface than typical static or
‘grey-box’ analyses, Restler also focuses on bugs. Indeed, they
note that vulnerabilities in a REST specification are unclear.

Sentinel [24] seeks to limit access to sensitive data in the
database to SQLi attacks. The authors model web applications
to identify invariants for the ‘normal’ functionality, which they
use to examine queries and responses to block malicious SQL
usage.

7.3 Grey-box scanners

Most prior grey-box approaches inform a white-box scan with
some runtime information from a black-box scan, to reduce
the false positive rate and generate a full exploit proof. We
argue that only needing database access is more general than
source code . It is easier to apply our approach to a different
web application. Being almost black-box, we are agnostic
to the coding language and framework for the application’s
implementation. White-box approaches might not be able to
handle obfuscated code. Obfuscated code can also be present
due to extensions, such as plugins. We also do not replace the
database or insert some proxy between the database and the
application. This makes it easy to adapt our approach to other
storage mechanisms.

webfuzz [50] instruments code for coverage, and uses this
feedback to fuzz requests for detecting reflected and stored
XSS. This approach is expensive - WordPress reaches 27%
coverage in 2000 minutes.

Witcher [49] identifies issues with using grey-box coverage
to guide a web application fuzzer for vulnerability discovery.
A Fault Escalator is defined to detect when the application is
in some vulnerable state, and guide the fuzzer to escalate that
to a vulnerability. Together with a refined notion of coverage,
Witcher can fuzz URLSs to find command and SQL injection.
This approach is limited to first-order reflected vulnerabilities
and does not model application state.

Gelato [18] detects reflected and DOM-based XSS. Taint
analysis is used to target exploration of the large state space
of modern JavaScript.

Backrest [14] statically infers a model REST API, then
uses coverage and taint feedback to drive fuzzing of requests
for detecting SQLi, XSS, and command injection. While the
motivations are to both improve coverage and runtime, the
runtime improvements are more evident. Notably, XSS detec-

7Static analysis can also be performed on compiled binaries or intermedi-
ate representations. However, the same arguments against generality apply to
those other artifacts.

6754 33rd USENIX Security Symposium

USENIX Association

tion, especially stored XSS, is reduced when provided with
feedback. The authors point out the problem of following
taint across the interface with storage in a database.

Chainsaw [1] implements automated exploit generation,
where potential vulnerabilities derived from static analysis
are dynamically tested, with successful executions being con-
crete exploits. Symbolic execution of PHP is used to find
sources and sinks, as well as sanitizations/transformations
along paths. The database is regarded as an additional in-
put to the application, with the database schema consumed.
Workflow-based vulnerabilities, such as stored XSS, are found
within a comparable 600 minutes.

7.4 Database-aware grey-box web scanning

Similarly to Spider-Scents, Steinhauser and Ttma utilize
a grey-box approach for detecting context-sensitive XSS
using the database alongside a normal black-box scanner
[47]. They deal with context-sensitivity in line with Context-
Auditor [23].

Steinhauser and Tdma’ s grey-box approach intercepts
database and web application communication, injecting non-
XSS payloads into the application by replacing data coming
from the database.

XSS flaws are detected by black-box parsing of HTML
responses from the application matching portions of payloads
in responses, to detect the payload if the application applies
some common encodings. The parser continues with the pos-
sible XSS flaw, and payloads are iteratively modified to avoid
context encoding. Some automatic reports of XSS flaws must
then be manually analyzed to identify vulnerabilities

This approach is substantially different from that of Spider-
Scents. We achieve a different, more complete form of cover-
age, by iterating through the contents of the database, instead
of only modifying values as they are retrieved by the requests
from a black-box scanner. This approach (1) skips missing
database entries, with the database only populated by pre-
provided configs or manually sampled data from public demo
instances. We also scale differently; with the database mod-
elled as additional inputs, this approach of extending HTTP
request fields can become (2) several orders of magnitude
slower than the base black-box scanner. For efficiency, all
database injections are combined per request, (3) which au-
thors note increases breakage, without proposing a solution.
The applications under test are also (4) substantially modified
to aid the scanner. Finally, Steinhauser and Ttima’s approach
is implemented by (5) extending MariaDB, which replaces
the database in the tested web application.

In contrast, Spider-Scents (1) augments the database, (2) is
lightweight in our evaluation, (3) identifies and fixes applica-
tion breakage, (4) works without modifying web applications,
and (5) is implemented without a heavy-weight database re-
placement or proxy.

In terms of results, we share Joomla and PrestaShop. Stein-
hauser and Ttima verified 5 and 12 vulnerabilities in Joomla

and PrestaShop, with their reports resulting in all Joomla and
some PrestaShop flaws being fixed. As all Joomla flaws re-
ported were fixed, the 9 we identify either are missed by their
approach or come from further development of Joomla. Unfor-
tunately, source code artifacts for this paper are unavailable,
so we cannot do a direct comparison.

7.5 Database synthesis

SynthDB [6] is a recent work addressing the tangential prob-
lem of preparing database-backed web applications for secu-
rity testing, such as vulnerability scanning, by synthesizing
a database. In contrast to our simplistic approach, with the
singular goal of having some data in every table while cor-
relating inserted fields across tables, SynthDB uses concolic
execution of PHP source to collect database constraints. These
constraints are solved to uncover more program paths, while
not violating ‘database integrity’. Similar to Spider-Scents,
the performance of scanners such as Burp is improved with
this white-box preprocessing step.

Our approach also uncovers a separate problem - finding
a minimal database. In the osCommerce application, there
are over 3 million cells in the base application.Our approach
must have its parameters tuned to handle this volume of cells.
However, we have found this application’s scale abnormal by
several orders of magnitude; other web applications typically
only have hundreds to tens of thousands of cells.

8 Conclusion

Black-box vulnerability scanners are the best tools currently
available for democratizing security testing—allowing web
developers with no security background or knowledge to
proactively find vulnerabilities in their web applications. How-
ever, the twisted designs and logic of web applications make
it difficult for black-box vulnerability scanners to even in-
ject XSS payloads into the web application. Our approach
cuts this Gordian Knot of properly supplying inputs to a web
application—by injecting the XSS payloads directly into the
database. We believe that this approach represents a step for-
ward in automatic stored XSS detection, and the evaluation
results show that our Spider-Scents prototype surpasses state-
of-the-art black-box vulnerability scanners, while our manual
systematization provides the necessary contextualization of
vulnerability and exploitability to these results.

Acknowledgements This work was partially supported by
the Wallenberg Al, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foun-
dation, the Swedish Foundation for Strategic Research (SSF),
and the Swedish Research Council (VR).

References

[1] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and
VN Venkatakrishnan. Chainsaw: Chained automated
workflow-based exploit generation. In CCS, 2016.

USENIX Association

33rd USENIX Security Symposium 6755

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Arachni. https://www.arachni-scanner.com.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Pol-
ishchuk. Restler: Stateful rest api fuzzing. In ICSE,
2019.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Ne-
nad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In
S&P, 2008.

Username Changer. https://wordpress.org/
plugins/username-changer/#description.

An Chen, JiHo Lee, Basanta Chaulagain, Yonghwi
Kwon, and Kyu Hyung Lee. Synthdb: Synthesizing
database via program analysis for security testing of
web applications. NDSS, 2023.

Adam Doupé, Ludovico Cavedon, Christopher Kruegel,
and Giovanni Vigna. Enemy of the state: A state-aware
black-box web vulnerability scanner. In USENIX Secu-
rity, 2012.

Adam Doupé, Marco Cova, and Giovanni Vigna. Why
johnny can’t pentest: An analysis of black-box web vul-
nerability scanners. In DIMVA, 2010.

Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and
Roland Groz. Ligre: Reverse-engineering of control and
data flow models for black-box xss detection. In WCRE,
2013.

Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and
Roland Groz. Kameleonfuzz: evolutionary fuzzing for
black-box xss detection. In CODASPY, 2014.

Benjamin Eriksson, Giancarlo Pellegrino, and Andrei
Sabelfeld. Black widow: Blackbox data-driven web
scanning. In S&P, 2021.

Viktoria Felmetsger, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. Toward automated de-
tection of logic vulnerabilities in web applications. In
USENIX Security, 2010.

Martin Fowler. Codesmell. https://
martinfowler.com/bliki/CodeSmell.html.

Francois Gauthier, Behnaz Hassanshahi, Benjamin
Selwyn-Smith, Trong Nhan Mai, Max Schliiter, and
Micah Williams. Backrest: A model-based feedback-
driven greybox fuzzer for web applications. arXiv
preprint arXiv:2108.08455, 2021.

Google. https://security.googleblog.com/
2023/02/vulnerability-reward-program-2022-
year.html.

[16] Philip J. Guo, Thomas Zimmermann, Nachiappan Na-
gappan, and Brendan Murphy. "not my bug!" and
other reasons for software bug report reassignments. In
CSCW, 2011.

[17] HackerOne. https://www.hackerone.com/reports/
6th-annual-hacker-powered-security-report.

[18] Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan.
Gelato: Feedback-driven and guided security analysis
of client-side web applications. In SANER, 2022.

[19] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web ap-
plication code by static analysis and runtime protection.
In WWW, 2004.

[20] A03:2021 Injection. https://owasp.org/Topl0/
A03_2021-Injection/.

[21] Joomla. https://www.joomla.org.

[22] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Static analysis for detecting taint-style vulnerabilities in
web applications. Journal of Computer Security, 2010.

[23] Faezeh Kalantari, Mehrnoosh Zaeifi, Tiffany Bao,
Ruoyu Wang, Yan Shoshitaishvili, and Adam Doupé.
Context-auditor: Context-sensitive content injection mit-
igation. In RAID, 2022.

[24] Xiaowei Li, Wei Yan, and Yuan Xue. Sentinel: secur-
ing database from logic flaws in web applications. In
CODASPY, 2012.

[25] Ali Mesbah, Engin Bozdag, and Arie Van Deursen.
Crawling ajax by inferring user interface state changes.
In ICWE, 2008.

[26] Meta. https://about.fb.com/news/2022/12/
metas-bug-bounty-program-2022/.

[27] MyBB. https://mybb.com.

[28] CWE-79: Improper Neutralization of Input During Web
Page Generation (’Cross-site Scripting’). https://
cwe.mitre.org/data/definitions/79.html.

[29] OpenCart. https://www.opencart.com.

[30] Oracle. https://dev.mysgl.com/doc/refman/8.0/
en/information-schema.html.

[31] OWASP. https://
cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

[32] Muhammad Parvez, Pavol Zavarsky, and Nidal Khoury.
Analysis of effectiveness of black-box web application
scanners in detection of stored sql injection and stored
xss vulnerabilities. In ICITST, 2015.

6756 33rd USENIX Security Symposium

USENIX Association

https://www.arachni-scanner.com
https://wordpress.org/plugins/username-changer/#description
https://wordpress.org/plugins/username-changer/#description
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://security.googleblog.com/2023/02/vulnerability-reward-program-2022-year.html
https://security.googleblog.com/2023/02/vulnerability-reward-program-2022-year.html
https://security.googleblog.com/2023/02/vulnerability-reward-program-2022-year.html
https://www.hackerone.com/reports/6th-annual-hacker-powered-security-report
https://www.hackerone.com/reports/6th-annual-hacker-powered-security-report
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://www.joomla.org
https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/
https://about.fb.com/news/2022/12/metas-bug-bounty-program-2022/
https://mybb.com
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://www.opencart.com
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

[33] Giancarlo Pellegrino, Constantin Tschiirtz, Eric Bodden,
and Christian Rossow. jik: Using dynamic analysis to
crawl and test modern web applications. In RAID, 2015.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In S&P, 2018.

[35] PHPGurukul. https://phpgurukul.com/hospital-
management-system-in-php/.

[36] PHPGurukul. https://phpgurukul.com/
sdm_downloads/login-system/.

[37] PHPGurukul. https://phpgurukul.com/doctor-
appointment-management-system-using-php-
and-mysql/.

[38] PHPGurukul. https://phpgurukul.com/hostel-
management-system/.

[39] Piwigo. https://piwigo.org.
[40] Prestashop. https://prestashop.com.

[41] The Menlo Report. https://www.dhs.gov/
sites/default/files/publications/CSD-
MenloPrinciplesCORE-20120803_1.pdf.

[42] Mike Samuel, Prateek Saxena, and Dawn Song. Context-
sensitive auto-sanitization in web templating languages
using type qualifiers. In CCS, 2011.

[43] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and
Dawn Song. Flax: Systematic discovery of client-side
validation vulnerabilities in rich web applications. In
NDSS, 2010.

[44] Prateek Saxena, David Molnar, and Benjamin Livshits.
Scriptgard: Automatic context-sensitive sanitization for
large-scale legacy web applications. In CCS, 2011.

[45] SCARF. https://scarf.sourceforge.net.

[46] CMS Made Simple.

www.cmsmadesimple.org.

http://

[47] Antoni n Steinhauser and Petr Tima. Database traffic
interception for graybox detection of stored and context-
sensitive XSS. Digital Threats: Research and Practice,
2020.

[48] OWASP Top Ten.
project-top-ten/.

https://owasp.org/www-

[49] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel,
Giovanni Vigna, Christopher Kruegel, Ruoyu Wang,
Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé.
Toss a fault to your witcher: Applying grey-box
coverage-guided mutational fuzzing to detect sql and
command injection vulnerabilities. In S&P, 2022.

Table 4: Web applications used in the evaluation

GitHub Stars Lines of Code Prior Research
144944

Application Date Version
CMSMS 2022 2.2.16

Doctor Apt. 2023 2023/1/11 ~ 65603 [49]

Hospital 2022 2022/11/8 ~ 67667 [49]

Hostel 2021 2021/9/30 ~ 9377

Joomla 2023 4.2.8 4.5k 747197 [11,33,47,50]
MyBB 2023 1.8.33 932 153055 [33]
OpenCart 2023 4.0.1.1 6.8k 186101

Piwigo 2023 13.6.0 2.6k 280906 [33]
PrestaShop 2022 1.7.8.8 7.3k 1175530 [11,47]
SCARF 2007 2007/2/127 ~ 1318 [7,11,24]
User Login 2021 V3 ~ 7036 [49]
WordPress 2023 6.1.1 17.6k 651599 [9-11,33,49,50]

[50] Orpheas van Rooij, Marcos Antonios Charalambous,
Demetris Kaizer, Michalis Papaevripides, and Elias
Athanasopoulos. webfuzz: Grey-box fuzzing for web
applications. In ESORICS, 2021.

[51] WordPress VIP. https://docs.wpvip.com/
technical-references/security/validating-
sanitizing-and-escaping/.

[52] WordPress. https://developer.wordpress.org/
apis/security/escaping/.

[53] WordPress. https://wordpress.com.

[54] OWASP ZAP. https://www.zaproxy.org.

A Appendix

A.1 Spider-Scents configuration

We have implemented a variety of tunable parameters for con-

figuring Spider-Scents’ choice of heuristics while scanning.

Some notable parameters are:

* Avoid sensitive rows or not

* Insert rows into empty tables or not

 Configure the traversal through the database (order by table,
row, column, random, reverse)

* Breakage threshold and detection type (based on status
codes, response length, link content)

» Enforce independence across boundaries (across table, row,
column)

We evaluate our approach avoiding sensitive rows, inserting

into empty tables, traversing the database by tables and then

columns, with breakage sensitive to status codes and allowing

up to 50% of link content to be missing, and independence

enforced across bounds.

USENIX Association

33rd USENIX Security Symposium 6757

https://phpgurukul.com/hospital-management-system-in-php/
https://phpgurukul.com/hospital-management-system-in-php/
https://phpgurukul.com/sdm_downloads/login-system/
https://phpgurukul.com/sdm_downloads/login-system/
https://phpgurukul.com/doctor-appointment-management-system-using-php-and-mysql/
https://phpgurukul.com/doctor-appointment-management-system-using-php-and-mysql/
https://phpgurukul.com/doctor-appointment-management-system-using-php-and-mysql/
https://phpgurukul.com/hostel-management-system/
https://phpgurukul.com/hostel-management-system/
https://piwigo.org
https://prestashop.com
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://scarf.sourceforge.net
http://www.cmsmadesimple.org
http://www.cmsmadesimple.org
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://github.com/joomla/joomla-cms
https://github.com/mybb/mybb
https://github.com/opencart/opencart%20
https://github.com/Piwigo/Piwigo
https://github.com/PrestaShop/PrestaShop
https://github.com/WordPress/WordPress
https://docs.wpvip.com/technical-references/security/validating-sanitizing-and-escaping/
https://docs.wpvip.com/technical-references/security/validating-sanitizing-and-escaping/
https://docs.wpvip.com/technical-references/security/validating-sanitizing-and-escaping/
https://developer.wordpress.org/apis/security/escaping/
https://developer.wordpress.org/apis/security/escaping/
https://wordpress.com
https://www.zaproxy.org

Table 5: The number of unique database columns affected by each scanner. For each column in the table, we present: database
columns only covered by Spider-Scents (A \ B), columns covered by both scanners (A N B), and columns covered by the other
scanner (B \ A). The very last column presents the maximum number of columns that allow arbitrary text values.

Crawler Arachni Black Widow ZAP MAX
A\B ANB B\A|A\B ANB B\A|A\B ANB B\A |

CMSMS 85 13 1 82 16 3 85 13 2 111

Doctor Apt. 6 10 0 14 2 0 12 4 0 16

Hospital 14 28 2 20 22 2 21 21 2 44

Hostel 15 19 0 15 19 0 7 27 0 36

Joomla 283 12 1 281 14 1 287 8 0 325

MyBB 194 15 5 133 76 15 184 25 7 264

OpenCart 282 3 0| 272 13 1 278 7 0 326

Piwigo 37 21 1 41 17 2 32 26 2 63

PrestaShop 306 55 3 313 48 4 329 32 2 410

SCARF 10 5 0 2 13 0 8 7 0 15

User Login 2 4 1 2 4 1 6 0 0 7

WordPress 35 9 2 22 22 5 16 28 7 53

Table 6: Known stored XSS vulnerabilities from CVEs and other publications.

Application Source Description We Find
CMSMS CVE-2023-36970 File upload stored XSS X
Hospital https://github.com/Ko-kn3t/CVE-2020-25271 username v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 weight v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 temperature 4
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 medicalpres v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 BloodPressure v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3 BloodSugar v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientName v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientEmail v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientGender v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientAdd v
Hospital https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2 PatientMedhis v
Hospital https://www.exploit-db.com/exploits/47841 doctorspecilization v
Hostel CVE-2020-25270 guardianName v
Hostel CVE-2020-25270 guardianRelation v
Hostel CVE-2020-25270 corresAddress v
Hostel CVE-2020-25270 corresCIty v
OpenCart https://github.com/nipunsomani/Opencart-3.x.x-Authenticated-Stored-XSS/blob/master/README.md Category description X
SCARF [11] Add session v
SCARF [11] Comment v
SCARF [11] Conference name v
SCARF [11] Edit paper v
SCARF [11] Edit session v
SCARF [11] Delete comment v
SCARF [11] General options v
SCARF [11] User options v
User Login ~ CVE-2022-43097, CVE-2020-23051, CVE-2020-24723 fname v
User Login ~ CVE-2022-43097, CVE-2020-23051, CVE-2020-24723 lname v
WordPress https://research.securitum.com/xss-in-wordpress-via-open-embed-auto-discovery Embed in post content X

6758 33rd USENIX Security Symposium

USENIX Association

https://github.com/Ko-kn3t/CVE-2020-25271
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms3
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2
https://sisl.lab.uic.edu/projects/chess/cross-site-scripting-in-hms2
https://www.exploit-db.com/exploits/47841
https://github.com/nipunsomani/Opencart-3.x.x-Authenticated-Stored-XSS/blob/master/README.md
https://research.securitum.com/xss-in-wordpress-via-open-embed-auto-discovery

	Introduction
	Terminology
	Roadblocks for current XSS scanners
	Approach
	Overview
	Reports

	Motivating Examples
	Preparing the web application
	Database synthesis
	Reverting changes
	Logging in

	Choosing a database cell
	Avoiding sensitive rows
	Choosing a cell

	Payload insertion
	Structured data

	Application breakage
	Reflection scanning
	Manual analysis

	Evaluation
	Web applications
	Experimental setup
	Performance metrics
	Scanner configuration

	Comparison results

	Analysis
	Database coverage
	False positives
	What we miss
	What others miss
	Exploitability
	Drop-in testing with Spider-Scents
	Manual analysis with Spider-Scents
	Runtime performance of Spider-Scents
	Coordinated disclosure
	Summary

	Related Work
	Black-box scanners
	White-box scanners
	Grey-box scanners
	Database-aware grey-box web scanning
	Database synthesis

	Conclusion
	Appendix
	Spider-Scents configuration

