
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

Purl: Safe and Effective Sanitization 
of Link Decoration

Shaoor Munir and Patrick Lee, University of California, Davis; Umar Iqbal, 
Washington University in St. Louis; Zubair Shafiq, University of California, Davis; 

Sandra Siby, Imperial College London
https://www.usenix.org/conference/usenixsecurity24/presentation/munir



PURL: Safe and Effective Sanitization of Link Decoration

Shaoor Munir

UC Davis
smunir@ucdavis.edu

Patrick Lee

UC Davis
pelee@ucdavis.edu

Umar Iqbal

Washington University in St. Louis
umar.iqbal@wustl.edu

Zubair Shafiq

UC Davis
zubair@ucdavis.edu

Sandra Siby

Imperial College London
s.siby@imperial.ac.uk

Abstract

While privacy-focused browsers have taken steps to block

third-party cookies and mitigate browser fingerprinting, novel

tracking techniques that can bypass existing countermeasures

continue to emerge. Since trackers need to share information

from the client-side to the server-side through link decoration

regardless of the tracking technique they employ, a promising

orthogonal approach is to detect and sanitize tracking infor-

mation in decorated links. To this end, we present PURL (pro-

nounced purel-l), a machine-learning approach that leverages

a cross-layer graph representation of webpage execution to

safely and effectively sanitize link decoration. Our evaluation

shows that PURL significantly outperforms existing counter-

measures in terms of accuracy and reducing website breakage

while being robust to common evasion techniques. PURL’s

deployment on a sample of top-million websites shows that

link decoration is abused for tracking on nearly three-quarters

of the websites, often to share cookies, email addresses, and

fingerprinting information.

1 Introduction

Web browsers and browser extensions are actively crack-

ing down on new and emerging online tracking techniques.

For example, almost all mainstream web browsers now al-

ready block or will soon block third-party cookies [1]–[3]

and some privacy-focused browsers even deploy countermea-

sures against emerging tracking techniques, such as browser

fingerprinting [4]–[6]. In response, online trackers continue

to evolve and devise innovative tracking techniques that can

bypass existing privacy-enhancing countermeasures [7]–[10].

The key limitation of existing privacy-enhancing tools is that

they aim to mitigate specific types of tracking (e.g., third-

party cookies, first-party cookies, email addresses, canvas

fingerprinting, AudioContext fingerprinting, CNAME cloak-

ing) [8], [11]–[13]. This approach works reasonably well to

protect against known forms of tracking but fails against new

or unknown forms of tracking, which routinely emerge from

time to time [7], [10], [14], [15].

Our key insight is that trackers need to share information

(e.g., user/device identifiers) from the client to the server

side regardless of what type of tracking is employed. There-

fore, we contend that a promising orthogonal approach to

anti-tracking is to detect and block the sharing of tracking

information in network requests. Trackers commonly include

tracking information in “decorated” network request URLs

(aka link decoration). Existing privacy-enhancing tools out-

right block network requests to endpoints using filter lists

of known tracking services. However, a decorated link can

include both tracking (e.g., user/device identifiers) and func-

tional (e.g., CSRF tokens, identifying news/product subpages)

information, which renders existing request blocking counter-

measures ineffective – they risk breaking legitimate function-

ality as collateral damage if they block the request and risk

allowing privacy-invasive tracking if they do not. This is fun-

damentally a granularity issue. To the best of our knowledge,

there is an unmet need for a fine-grained approach that can

precisely remove tracking information in decorated links.

To sanitize link decoration (i.e., precisely removing just the

tracking information from a request URL), privacy-focused

browsers and browser extensions such as Safari, Firefox,

Brave, uBlock Origin, and AdGuard employ a manually-

curated list of query parameters that are known to be abused

for tracking [16]–[20], similar to the request-blocking filter

lists such as EasyList and EasyPrivacy [21], [22]. While the

manual approach might work for a small number of tracking

query parameters, it cannot keep pace with the increasing

adoption of query parameters by trackers [23], a problem that

has also severely impacted filter lists [24]–[26]. Thus, it is

not surprising that the filter lists to sanitize link decoration

conservatively target only 10-100s of query parameters.

In this paper, we propose PURL (pronounced purel-l), a

machine-learning approach to distinguish between tracking

and functional link decorations. PURL makes use of a cross-

layer graph representation to capture the complete execution

of a webpage, which includes interactions between the HTML

DOM structure, JavaScript execution behavior, information

stored in browser storage, and network requests issued during

USENIX Association 33rd USENIX Security Symposium    4103



a webpage load. PURL then extracts distinguishing features

from this rich graph representation and uses a supervised

classifier to detect tracking link decorations.

Our evaluation on a sample of top-million websites shows

that PURL can effectively (98.87% recall) and safely (98.62%

precision) sanitize link decoration. Overall PURL achieves

98.74% accuracy, significantly outperforming existing coun-

termeasures by at least 7.71% in terms of precision, 4.83% in

terms of recall, and 6.43% overall accuracy while reducing

website breakage by more than 8×. Our evaluation also shows

that PURL is robust against common evasion attempts such as

changing link decoration names and splitting/combining link

decoration values.

We deploy PURL on a subset of top-million websites to

measure the prevalence of link decorations for tracking. PURL

detects that 73.02% of the sites abuse link decorations for

tracking, with an average site using 10.75 tracking link deco-

rations. We find that the most common abusers of link deco-

ration include well-known advertising and tracking services,

which use link decorations to share cookies, email addresses,

and fingerprinting information.

Our key contributions are as follows:

1. We propose and evaluate an automated machine learn-

ing approach, called PURL, to detect tracking link dec-

orations using features that capture interactions and flow

of information across multiple layers of the web stack.

2. We deploy PURL on top-million sites to measure the

prevalence, abusers, and type of tracking information

shared via link decorations.

3. We use PURL to generate a filter list, which can and

is already being used by privacy-focused browsers and

browser extensions.

To promote reproducibility and facilitate further research,

we are also open-sourcing PURL source code, including the

OpenWPM patch, the machine learning pipeline, and the

detected list of link decorations [27].

2 Background & Related Work

In this section, we discuss preliminaries, review related work,

and survey existing countermeasures against the abuse of link

decoration for tracking in industry and academia.

2.1 What is Link Decoration?

A URL is composed of the following key compo-

nents: scheme, fully qualified domain name (FQDN), re-

source path, query parameters, and fragments. We use

https://a.site.example/YYY/ZZZ/pixel.jpg?

ISBN=XXX&UID=ABC123#xyz, as an example URL to define

these segments below:

Base URL. https:// is the scheme in this URL and

a.site.example is the FQDN. These segments are com-

bined to form the base URL.

Resource path. Immediately following the FQDN,

/YYY/ZZZ is the resource path in the URL. It points to a

directory, file, API endpoint, or other resource on the server.

pixel.jpg is the name of the resource hosted on the server.

Query parameters. Immediately following the resource path

after the ? delimiter, ISBN=XXX&UID=abc123 are the query

parameters in the URL. A query parameter consists of a key-

value pair, where the key is separated from the value by the =

delimiter. Multiple query parameters in a URL are separated

from each other by the & delimiter.

Fragments. Immediately following the query parameters af-

ter the # delimiter, xyz is the fragment in the URL. Fragments

can be a singular value or multiple key-value pairs that are

separated by the & delimiter (similar to query parameters).1

While only query parameters are traditionally considered

as link decoration [23], [28], we find that link decoration

can be carried out using the resource path, query parameters,

and fragments (discussed further in Section 3.1)2. Next, we

describe the threat model we consider for tracking through

link decoration.

2.2 Threat Model

Our threat model focuses on the sharing of identifying infor-

mation through link decoration in third-party requests. We

exclude first-party requests (i.e. requests sent from and to the

first party) from our analysis, as we assume that first-parties

would use identifying information to provide legitimate web-

site functionality. However, our analysis includes first-party

initiated requests sent to third-party domains, such as tracking

via click identifiers used by social media and search engines.

Our threat model considers the abuse of link decoration for

both same-site and cross-site tracking because even same-site

identifiers (e.g., first-party cookies [7], [8], [10]) can be com-

bined with additional information for cross-site tracking. We

consider two main entities in our threat model: the victim

(users) and the adversary (third-party trackers). While third-

party trackers require some cooperation from the website

publisher (i.e., embedding a script on the page), we do not

consider the publisher to be an active part of the threat model.

We assume that the victim/user:

• has third-party and first-party cookies enabled in the

browser3

1In cases where fragments contain multiple key-value pairs, we treat these

key-value pairs similarly as query parameters to facilitate easier comparison

and analysis across different URL components.
2While fragments are not sent alongside a request to a server, the server

can send a redirect to another page, which can access the fragments from the

URL, e.g., through window.location.hash.
3We allow third-party cookies as they are supported in major browsers

such as Chrome and Edge. However, PURL’s approach is agnostic to using

first- or third-party cookies for tracking.

4104    33rd USENIX Security Symposium USENIX Association



• may provide personally identifiable information (PII) such

as email address on the website (e.g., to log in)

We assume that the adversary/third-party tracker:

• may be present in a third-party context or a first-party con-

text (i.e., a script embedded in the main frame) on the websites

visited by the user

• aims to collect identifying information such as identifier

cookies and email addresses for tracking

As described below, third-party trackers can use link deco-

rations to share identifying information in several ways:

A user visits a website website.example, where tracker A

is present in a first-party context (e.g., a script that sets a

first-party identifier cookie) and tracker B is present in a third-

party context (e.g., a pixel that sets a third-party identifier

cookie). The user provides their email address on a form

field that is accessible to only tracker A4. To send the email

address to its server, tracker A has to append the email address

as a link decoration in the request URL to its server. To

send the first-party cookie to its server, tracker A again has

to append the first-party cookie as a link decoration in the

request URL to its server because first-party cookies would

not be automatically sent to its third-party domain. Upon

subsequent visits to the website by the same user, tracker

A can associate its first-party cookie with the email address

for same-site tracking, even though the user may not provide

the email address in subsequent visits. Tracker A can also

share the email address with tracker B by appending the email

address as a link decoration in the request URL to tracker

B’s server. Tracker B can cross-site track the user with its

third-party cookie, while also being able to associate it with

the email address shared by tracker A.

2.3 Abuse of Link Decorations for Tracking

The abuse of link decoration for tracking is not a new phe-

nomenon. To the best of our knowledge, the earliest evidence

of link decoration abuse is from 1996, when Webtrends (an

analytics service) used the WT.mc_id query parameter for

click tracking in advertising campaigns [30], [31]. Since then,

link decorations in general, and query parameters specifically,

have been widely used for creating personalized links to track

the success of advertising campaigns. For example, Urchin

Tracking Module (UTM) parameters, such as utm_source

identify the source of traffic on a website and attribute it to

specific advertising campaigns [32]–[35].

Prior research has shown that trackers abuse link decora-

tion to implement various tracking techniques [10], [36]–[42].

While prior work has proposed approaches to detect and block

specific tracking techniques, which in turn rely on link deco-

ration, these studies do not specifically study the abuse of link

decorations for tracking. To the best of our knowledge, Ran-

dall et al. [23] is the first study to specifically study tracking

4Prior research [10], [29] shows that email identifiers help trackers moni-

tor user activity across websites

query parameters. The authors found that 8.1% of the naviga-

tion URLs are decorated with identifiers as query parameters

for tracking.

With new restrictions [1], [2], [43] on third-party cook-

ies, trackers are moving towards alternative techniques of

tracking, which include the use of first-party cookies [7], [8],

[10], personally identifiable information (PII) [44], [45], and

device/browser fingerprinting [46]–[48]. In contrast to third-

party cookies that are automatically included as headers in

outgoing HTTP requests, these alternative tracking techniques

must rely on link decoration for sharing identifying informa-

tion. As trackers shift their focus towards these alternative

tracking techniques, it is reasonable to assume that the abuse

of link decoration for tracking will also continue to increase.

2.4 Countermeasures Against the Abuse of

Link Decorations for Tracking

Given the increased focus on alternative techniques to track

users due to restrictions on third-party cookies, privacy-

focused browsers, and browser extensions have started de-

ploying countermeasures against the abuse of link decora-

tions. These countermeasures can largely be divided into two

different categories: filter list based countermeasures that rely

on a static filter list of link decorations and heuristic-based

countermeasures that rely on certain properties to identify

tracking link decorations. Next, we describe existing counter-

measures against tracking link decoration and highlight their

limitations.

2.4.1 Filter List Based Countermeasures

Filter lists of link decorations contain both site-specific and

site-agnostic rules which determine which link decorations

should be allowed and which link decorations should be re-

moved. These filter lists are manually curated and maintained,

which has been shown by previous research to have issues

such as slow updates and being error-prone [26], [49], [50].

As discussed below, filter list based countermeasures are used

by both privacy-focused browsers and browser extensions.

Brave. Since July 2020 [51], Brave browser attempts to re-

move tracking query parameters from URLs by matching

them against a list of known tracking query parameters. This

filter list is curated by analyzing the documentation provided

by the trackers themselves and from the reports submitted by

Brave developers and users. At the time of writing, Brave’s

filter list of tracking query parameters contains 59 query pa-

rameters [18], [52].

Firefox. In January 2022, Firefox introduced the query pa-

rameter stripping feature [53] in Firefox Nightly 96.

Mozilla integrated this feature in Firefox 102.0 in June

2022 [54] although it was not enabled by default – Firefox

users have to set Strict security level in Enhanced Tracking

Prevention (ETP) to enable this feature. Firefox also allows

users to remove tracking link decorations from copied URLs

USENIX Association 33rd USENIX Security Symposium    4105



[55]. Similar to Brave, Firefox also relies on a curated filter

list of tracking query parameters. At the time of writing,

Firefox’s filter list of tracking query parameters contains 23

query parameters [56].

Safari. Since June 2023, Safari 17 [57] removes known track-

ing query parameters in Safari’s private browsing mode. Sim-

ilar to Brave and Firefox, Safari also relies on a curated filter

list of tracking query parameters. At the time of writing, Sa-

fari’s filter list of tracking query parameters contains 24 query

parameters [16].

AdGuard. AdGuard introduced a new filter type named

removeparam to remove tracking query parameters from re-

quest URLs in 2021 [19]. At the time of writing, AdGuard’s

filter list includes more than one thousand query parameter

rules [58]–[60].

uBlock Origin. uBlock Origin introduced new filter types

queryprune in 2020 and then switched to removeparam [61].

Unlike AdGuard, uBlock Origin supports regular expression-

based filters to remove tracking query parameters. At the time

of writing, uBlock Origin includes 46 query parameter rules

[62].

Requests-based filter lists. Filter lists such as EasyList [21]

and EasyPrivacy [22], which are designed to block network re-

quests to known trackers, would indirectly also block tracking

link decorations. However, blocking the whole URL is not

practical where tracking and non-tracking link decorations

are mixed in the same URL. As we show later, using EasyList

[21] and EasyPrivacy [22] results in non-trivial false positives

and false negatives.

2.4.2 Heuristic Based Countermeasures

The aforementioned filter list based countermeasures are lim-

ited because they need to be manually created and updated.

These limitations are apparent in their smaller size, with only

one filter list including close to a thousand rules to detect

tracking link decorations.

To address these issues, Randall et al. [23] proposed Crum-

bCruncher – a semi-automated heuristic-based approach to

detect query parameters involved in the sharing of identifiers.

CrumbCruncher conducts parallel and consecutive crawls

to identify query parameters that are distinct across parallel

crawls but persistent across consecutive crawls. However,

their approach is prone to false positives and false negatives.

Specifically, not all persistent parameters are predisposed

to be tracking, e.g., parameters such as share_button or

en-US remain consistent during multiple visits by the same

user, however, they are not used for tracking. The manual

review by the authors showed that CrumbCruncher suffers

from a 36% false positive rate that needs to be addressed

through a manual review. CrumbCruncher also suffers from

false negatives because it incorrectly assumes that tracking

query parameters are persistent across subsequent crawls. We

find that almost 80% of potential identifiers (i.e., longer than

8 characters as defined by CrumbCruncher) that are shared to

known tracking endpoints (defined using EasyList [21] and

EasyPrivacy [22]) via query parameters change their value

across consecutive crawls. For example, the fbp query param-

eter, which is used by Meta Pixel to share identifiers stored

in the _fbp cookie, does not maintain its value in about 87%

of the cases.5 In summary, CrumbCruncher suffers from non-

trivial false positives and false negatives due to its simplistic

heuristic.

3 Motivating Measurements

In this section, we motivate the need for a tailored solution to

curb the abuse of link decoration, such as PURL, by demon-

strating that link decoration abuse is a prevalent phenomenon.

Our key idea is to crawl a large set of websites and investigate

the network requests, from known advertising and tracking

services that appear on those websites, for link decoration.

We exclusively focus on known advertising and tracking ser-

vices because they are the main culprits who engage in such

practices, and also because currently there are no current

approaches to effectively detect link decoration abuse.

3.1 Methodology

Crawler configuration. We use OpenWPM (v0.17.0) [11]

and Firefox (v102) [64] for crawling. Our crawls are stateless

– i.e., we clear all cookies and other local browser states before

crawling each website. By using stateless crawling, we ensure

that each crawl is independent and not biased by the residual

state from previous website crawls. We turn off all built-in

tracking protections provided by Firefox (Enhanced Tracking

Protection [ETP]) [65]. We conduct our crawls entirely from

the vantage point of an academic institution in the US, hence,

we do not interact with consent banners.

Websites crawled. We crawl a 20K sample of the Tranco

top-million websites between March and April 2023 [66]. As

previous research has highlighted the importance of making

crawls representative of sites with varying popularity [67], we

crawl all of the top-1K sites, uniformly sample another 9K

sites from the sites ranked 1K–100K, and a further 10K from

sites ranked 100K–1M. Additionally, to capture differing con-

tent on both the landing and internal pages [68], we perform

an interactive crawl that covers both types of pages. Specifi-

cally, for each site, we crawl its landing page, randomly scroll

and move the cursor (for bot mitigation), and then select up to

20 internal pages to visit at random. After each page load is

complete (i.e., when the onLoad event is fired), we uniformly

at random wait an additional 5–30 seconds for bot mitigation

and other resources to finish loading. The success rate of our

crawler is 98.79%. A tiny fraction of web pages do not load

correctly because of server-side errors.

5Bekos et al. [63] showed that the value of the _fbp cookie (and conse-

quently the fbp query parameter) is randomly chosen from a list of up to 50

different identifiers, resulting in a new identifier for the same user each time.

4106    33rd USENIX Security Symposium USENIX Association



w
w
w
.g
o
o
g
le
-a
n
a
ly
ti
cs
.c
o
m
|p
a
th
|0

w
w
w
.g
o
o
g
le
ta
g
m
a
n
a
g
er
.c
o
m
|p
a
th
|0

w
w
w
.g
o
o
g
le
ta
g
m
a
n
a
g
er
.c
o
m
|i
d

w
w
w
.g
o
o
g
le
-a
n
a
ly
ti
cs
.c
o
m
|c
id

co
n
n
ec
t.
fa
ce
b
o
o
k
.n
et
|p
a
th
|1

w
w
w
.f
a
ce
b
o
o
k
.c
o
m
|i
d

cd
n
js
.c
lo
u
d
fl
a
re
.c
o
m
|p
a
th
|0

cd
n
.j
sd
el
iv
r.
n
et
|p
a
th
|0

m
a
tc
h
.a
d
sr
v
r.
o
rg
|p
a
th
|0

ib
.a
d
n
x
s.
co
m
|p
a
th
|0

m
a
tc
h
.a
d
sr
v
r.
o
rg
|t
td

p
id

c1
.a
d
fo
rm

.n
et
|p
a
th
|1

c1
.a
d
fo
rm

.n
et
|p
a
rt
y

p
x
.a
d
s.
li
n
k
ed
in
.c
o
m
|p
a
th
|0

u
p
s.
a
n
a
ly
ti
cs
.y
a
h
o
o
.c
o
m
|p
a
th
|1

i.
y
ti
m
g
.c
o
m
|p
a
th
|0

a
.t
ri
b
a
lf
u
si
o
n
.c
o
m
|p
a
th
|0

a
.t
ri
b
a
lf
u
si
o
n
.c
o
m
|p

x
.b
id
sw

it
ch
.n
et
|p
a
th
|0

p
x
.a
d
s.
li
n
k
ed
in
.c
o
m
|p
id

0

10

20

30

40

50

60

P
er
ce
n
ta
g
e
o
f
si
te
s

Figure 1: Percentage of sites where the same link decoration

by top domain appears and their primary usage. The shades

of red and green show link decoration’s usage as ATS and

Non-ATS, respectively.

Labeling tracking requests. To analyze the prevalence of

link decoration in tracking requests, we use EasyList [21]

and EasyPrivacy [22]. Specifically, we use them to label

requests as Advertising and Tracking Service (ATS) or non-

Advertising and Tracking Service (Non-ATS). We label a

request as ATS if its URL matches the rules in either one of

the lists. Otherwise, we label it as Non-ATS.

Naming link decorations. When link decorations are in

the key-value format, the key can simply be combined with

FQDN6 to uniquely identify a link decoration. For example,

if a link decoration with key username is sent to an FQDN

site.example.com, site.example.com+username can be used to

identify the link decoration. When link decorations are not in

the key-value format (e.g., resource paths and fragments), we

assign them keys based on the FQDN and their position in the

URL. We identify link decorations for resource paths based on

their distance (directory levels) from the root. For the example

URL: https://a.site.example/YYY/ZZZ/pixel.jpg?

ISBN=ABC&UID=DEF123#xyz, we identify the following link

decorations as key-value pairs:

• a.site.example | path0: YYY

• a.site.example | path1: ZZZ

• a.site.example | ISBN: ABC

• a.site.example | UID: DEF123

• a.site.example | f ragment: xyz7

This naming scheme allows us to compare link decoration

values across different URLs.

6We combine FQDN with the link decoration key because different

FQDNs can use the same key names.
7If fragments are in the key-value format like query parameters, we treat

them similarly as query parameters.

g
o
o
g
le
sy
n
d
ic
a
ti
o
n
.c
o
m

o
m
tr
d
c.
n
et

g
o
o
g
le
-a
n
a
ly
ti
cs
.c
o
m

cl
o
u
d
fr
o
n
t.
n
et

2
m
d
n
.n
et

ro
ck
so
ff
rp
m
.c
o
m

g
o
o
g
le
v
id
eo
.c
o
m

g
o
o
g
le
.c
o
m

o
p
en
x
.n
et

a
m
a
zo
n
a
w
s.
co
m

m
k
to
re
sp
.c
o
m

2
o
7
.n
et

si
te
im

p
ro
v
ea
n
a
ly
ti
cs
.i
o

d
o
u
b
le
cl
ic
k
.n
et

a
k
a
m
a
iz
ed
.n
et

a
tt
n
.t
v

tv
sq
u
a
re
d
.c
o
m

se
n
tr
y.
io

d
o
u
b
le
v
er
if
y.
co
m

m
a
to
m
o
.c
lo
u
d

0

10000

20000

30000

40000

U
n
iq
u
e
L
in
k
D
ec
o
ra
ti
o
n
s

Figure 2: Total unique link decorations used by domains. The

shades of red and green show link decoration’s usage as ATS

and Non-ATS, respectively.

3.2 Prevalence of Link Decoration

We investigate the prevalence of link decoration used on the

20K sample of the top-million websites. Of the 44,648,436

link decorations in our data, 41.22% are query parameters,

58.14% are resource paths, and 0.63% are fragments. Con-

sidering only unique link decorations, we observe a total of

584,174 decorations: 42.41% of which are query parameters,

53.85% are resource paths, and 3.73% are fragments.

Overall, 45.55% unique link decorations are in the URLs

labeled as ATS, while the rest are sent to Non-ATS endpoints.

We find that requests sent to ATS endpoints disproportion-

ately contain more decorations on average (7.69) than the

requests sent to Non-ATS endpoints (4.68), highlighting that

link decorations are more frequently used by ATS than Non-

ATS. A similar trend holds for third-party requests (4.80) vs.

first-party endpoints (2.10).

We further find that the same link decorations are widely

reused (use of the same link decoration key/name on more

than one site) by advertising and tracking services. Figure

1 shows the top 20 link decorations and their prevalence in

our dataset.8 The color of the bar shows the usage of link

decoration for either ATS or Non-ATS purpose (i.e., the red

represents ATS and green represents Non-ATS). The plot

shows that while both ATS and Non-ATS services show reuse

of the same link decoration across multiple websites, it is

ATS who predominately exhibit this behavior. For example,

www.googletagmanager.com|id is used in around 55% of

sites in our dataset and is primarily used in ATS requests. On

the other hand, the most commonly used Non-ATS link dec-

oration is cdnjs.cloudflare.com|path|0, which is found

on slightly more than 10% of sites in our dataset.

8To simplify the illustration due to space constraints, we limit link deco-

rations for each FQDN to only the top two.

USENIX Association 33rd USENIX Security Symposium    4107



w
w
w
.g
o
o
g
le
.c
o
m
|p
a
th
|0

w
w
w
.g
o
o
g
le
.c
o
m
|p
a
th
|1

w
w
w
.g
o
o
g
le
.c
o
m
|p
a
th
|2

w
w
w
.g
o
o
g
le
.c
o
m
|v

w
w
w
.g
o
o
g
le
.c
o
m
|c
id

w
w
w
.g
o
o
g
le
.c
o
m
|t

w
w
w
.g
o
o
g
le
.c
o
m
|z

w
w
w
.g
o
o
g
le
.c
o
m
|t
id

w
w
w
.g
o
o
g
le
.c
o
m
|
r

w
w
w
.g
o
o
g
le
.c
o
m
|
v

w
w
w
.g
o
o
g
le
.c
o
m
|a
ip

w
w
w
.g
o
o
g
le
.c
o
m
|j
id

w
w
w
.g
o
o
g
le
.c
o
m
|s
lf
rd

w
w
w
.g
o
o
g
le
.c
o
m
|
u

a
d
se
rv
ic
e.
g
o
o
g
le
.c
o
m
|p
a
th
|0

a
d
se
rv
ic
e.
g
o
o
g
le
.c
o
m
|p
a
th
|1

w
w
w
.g
o
o
g
le
.c
o
m
|u

h

w
w
w
.g
o
o
g
le
.c
o
m
|u

w

w
w
w
.g
o
o
g
le
.c
o
m
|f
rm

w
w
w
.g
o
o
g
le
.c
o
m
|u
rl

0

10

20

30

40

50
P
er
ce
n
ta
g
e
o
f
si
te
s

Figure 3: Average number of link decorations used by Google

endpoints (minimum 1000 requests across 20K sites)

Next, we analyze the use of link decoration by ATS. Fig-

ure 2 plots top-20 tracking domains based on the number of

unique link decorations they use. The intensity of the color

(green for Non-ATS and red for ATS) in the figure for each

domain shows its use of link decorations in ATS or Non-

ATS requests. We note that googlesyndication.com, which

is used by Google Ad Manager [69], uses the highest num-

ber of unique link decorations among the ATS domains. It

is followed by omtrdc.net, which is used by Adobe Market-

ing Cloud [70], google-analytics.com, which aggregates and

reports user stats for sites [71], and cloudfront.net, which

is an Amazon-owned content delivery network [72]. Other

well-known ATS such as Facebook, Baidu, and Microsoft are

also among the domains that use the most link decorations in

their requests. Our main finding is that link decorations are

widely used by well-known advertising and tracking services.

Crucially, Figure 2 also shows some mixed usage of link dec-

orations. For example, link decorations used by google.com

were part of 122,028 ATS requests and 56,026 Non-ATS re-

quests (this is represented by a lighter shade of red in the

figure as compared to other domains which are either darker

shades or red or green). On the other hand, link decorations

used by amazonaws.com were part of 863 ATS requests and

16,420 Non-ATS requests (represented by a darker shade of

green in Figure 2).

To identify the reason behind significant mixed usage

of link decorations by google.com, we take a closer look

at different link decorations used by google.com and their

prevalence in our dataset. Figure 3 plots the preva-

lence of the top 20 link decorations used by google.com.

The color of each link decoration represents its use as

ATS and Non-ATS, with higher shades of red represent-

ing predominant use in ATS requests and higher shades of

green representing predominant use in Non-ATS requests.

The top four link decorations have significant mixed us-

http://go.artinstitutes.edu/search/brand/local/PGC?source
=BGNAG&ven=search&Tac=sem&school=newyork&Matchtype=Exact&
gclid=KjwKEAjwq6m3BRsdfdfsdfCP7IfMq6Oo9gsdfACRc0bN3J-fcQ1

t1DdfO5AyuTfKIyFbgTFPfCmPXyGdrKRBoCmv3w_wcB

Figure 4: Example URL with mixed link decorations. indi-

cates a Non-ATS link decoration while indicates an ATS

link decoration. Resource paths are highlighted as green and

the query parameters with keys source, ven, Tac, school,

and Matchtype are used for functional purposes, while gclid

contains an identifier that is used to track ad clicks.

age between ATS and Non-ATS requests, with the top

three: www.google.com|path|0, www.google.com|path|1,

and www.google.com|path|2 leaning towards more ATS

while www.google.com|v slightly leaning towards Non-ATS.

These results show that a single link decoration can be part

of both ATS and Non-ATS requests. Next, we try to evalu-

ate if a single request can also have both ATS and Non-ATS

link decorations. To this end, we make use of query parame-

ter filter lists used by Brave[18], Firefox[17], and Safari[16],

as well as privacy-enhancing extensions uBlock Origin[20]

and AdGuard[58], [59]. We label every link decoration not

included in these filter lists as a Non-ATS link decoration.

Overall, we observe 51,736 requests that contain one or more

ATS link decoration, while only 248 of these requests contain

no other Non-ATS link decoration. On average, an ATS link

decoration is accompanied by 16.06 Non-ATS link decora-

tions in the same request URL. An example of such mixed

URLs is shown in Figure 4.

Takeaway. Our measurements show that a request URL can

contain both ATS and Non-ATS link decorations. Moreover,

the classification of a link decoration can change depending

on which site it is used on and its destination domain. Thus,

as we show later in Section 4.3, it is non-trivial to detect and

block ATS link decorations using existing countermeasures.

4 PURL

In this section, we present PURL (pronounced purel-l), our

machine learning approach to detect ATS link decorations.

PURL’s key idea is to use the execution traces of ATS link dec-

orations as their signatures, which it learns and automatically

detects with the help of a machine learning (ML) classifier.

PURL captures detailed execution traces across the HTML,

network, JavaScript, and storage layers of the web stack and

models them in a graph representation. The graph representa-

tion captures the natural interaction between different layers

of the web stack and provides a parse-able representation

to extract various characteristics (i.e., features) of ATS link

decoration execution, that are used to train a supervised ML

classifier. Figure 5 provides an overview of PURL’s design.

4.1 Design and Implementation

Browser instrumentation. PURL extends OpenWPM [11],

an open-source web measurement tool, to record the execu-

4108    33rd USENIX Security Symposium USENIX Association



Webpage cr aw l  using 
OpenWPM  i nst r um ented 

Fi r efox  br owser

Pr ocess cr aw l  data to bu i l d 
a gr aph r epr esentat i on of  

page execut ion

Featur e ex t r act i on
 and label i ng using 

f i l ter  l i st s and Cook iepedia

Link  decor at i on 
classf i i cat i on 

ATS

Non-ATS

Figure 5: Overview of PURL pipeline: (1) Webpage crawl using an instrumented browser; (2) Construction of a graph

representation to represent the instrumented webpage execution information; (3) Feature extraction for graph nodes that represent

link decorations; and (4) Classifier training to separate out ATS and Non-ATS link decorations.

tion of a webpage across HTML, network, JavaScript, and

storage layers during a webpage load. Similar to prior work

on tracking detection (e.g., [10], [73], [74]), PURL captures

the HTML elements created by scripts, network requests sent

by scripts and HTML elements, responses received to these

requests, sharing of identifiers stored in storage (local stor-

age and cookies), and other read/write operations on storage

mechanisms present in the browser.

PURL improves upon previous work by creating a more

granular representation of the network layer of a webpage,

which is essential for capturing characteristics of link deco-

ration. Specifically, instead of coarsely capturing network

requests and responses, PURL breaks them down and cap-

tures granular components of link decorations. For example,

instead of identifying that a request contains a cookie value,

PURL identifies the exact link decoration that was used to

share that cookie value.

Graph Construction. There are five types of nodes in PURL’s

graph representation: storage, HTML, script, network, and

decoration. Storage nodes refer to information stored in cook-

ies and localStorage.HTML nodes are HTML Document Ob-

ject Model (DOM) elements on a webpage. Script nodes map

interactions of JavaScript execution on a webpage. Network

nodes represent outgoing HTTP requests and incoming HTTP

responses from network endpoints. Decoration nodes are cre-

ated by splitting each network node into its link decorations.

We capture read and write operations performed on infor-

mation in browser storage by different scripts, their sharing

through network requests, and the setting of browser stor-

age through network responses. We capture the interaction

of different scripts with HTML elements and also map re-

quests generated through HTML elements. In addition to

these interactions, PURL captures actions and attributes that

are specific to link decorations. Since link decorations may

be used to share information stored in browser storage and

the network responses received as a result of this sharing may

be used to set browser storage elements using HTTP head-

ers or JavaScript APIs, we monitor Base64-, MD5-, SHA-1-,

and SHA-256-encoded9 storage node values in decorations

to associate relevant interactions between decoration, storage,

network, and script nodes.

Figure 6 and 7 show how PURL constructs a graph rep-

resentation for an example scenario where a script is read-

ing/writing to browser storage and sending requests including

link decorations to tracking sources. The nodes in the given

example graph are storage, script, request, and decoration.

The numbers on the edges represent a particular action, as

represented in Figure 6. Dotted and dashed lines respectively

show the flow of information from storage to decoration nodes

(exfiltration) and the flow of information from request nodes

to storage nodes (infiltration). PURL links the outward flow

of information (exfiltration) to decoration nodes, and also

maps the inward flow of information (infiltration) from a par-

ent request/response node to the storage node. We use this

graph structure to calculate features for decoration nodes that

represent this flow of information.

Feature extraction. PURL leverages the graph representation

to extract three different types of features that capture the

execution traces of link decoration, referred to as structural,

flow, and content features.

Structural features map the relationship of different nodes

in the graph with each other, such as the connectivity of nodes

and their ancestry information. For example, the connectivity

of nodes captures how many different link decorations are in

a request. As per Section 3, on average, ATSes use far more

link decorations than Non-ATSes, resulting in stronger con-

nectivity for ATS link decorations, which is also reflected in

their structural feature values. Structural features help encode

this information for our classifier using graph properties such

as centrality, connectivity, and closeness[75], [76].

Flow features represent information flow across different

layers of a webpage. Capturing this flow of information is

important to track how user information is, extracted, stored,

9PURL can be extended to support other encodings.

USENIX Association 33rd USENIX Security Symposium    4109



JavaScript

tracker1.com

tracker3.com

tracker2.com

Browser 
Storage

info=xxx

UID=zzz

example.com

1. read Info via document.cookie

4. store UID via document.cookie

5. read UID via document.cookie

2. tracker1.com?info=xxx&time=yyyy

3. receive UID in response payload

6. tracker2.com?UID=zzz

7. tracker3.com?UID=zzz

Figure 6: Example scenario to illustrate PURL’s graph construction (shown in Figure 7). (1) A script on example.com reads info

cookie from browser storage using document.cookie. (2) The script sends a network request to tracker1.com which includes

the info cookie value and the current time in the decorated link. (3) tracker1.com sends a network response that contains UID in

the response payload. (4) The script stores UID in the browser storage using document.cookie. (5) The script reads UID using

document.cookie (6,7) The script sends the UID to tracker2.com and tracker3.com as decorated links.

1 1, 2

2

2

4, 5

5, 6

5, 7

6

7

2

3, 4

6

7

info

time

UID

info

UID
UID

JavaScript

Figure 7: Graph representation of Figure 6 in PURL.

network nodes, script nodes, storage nodes, and rep-

resent decoration nodes. The solid lines show the interactions

of the script nodes with the storage and request nodes, while

the dashed (_ _ _) and dotted (...) lines represent the flow

edges captured by PURL from a storage node to a decoration

node and from a network node to a storage node, respectively.

and sent out through tracking link decorations. First, PURL

captures the direct sharing of storage values through the link

decoration. As described in Figure 6, storage values can di-

rectly be sent out using link decorations. PURL represents this

sharing as additional edges from storage nodes to decoration

nodes. Second, PURL also keeps track of whether the parent

request of a link decoration results in the setting of a storage

node. This inward flow of information (infiltration) is usually

used by ATS to set identifiers based on information sent out in

requests (mainly through link decorations) [10]. PURL maps

this infiltration through indirect edges connecting the parent

request/response of decoration with the corresponding storage

node. In addition, PURL monitors if the script sending the

parent request of decoration is involved in sending storage

information in non-parent requests or is part of redirects [37].

To determine the suitability of a decoration as a poten-

tial identifier, PURL also computes content features such as

character-level Shannon entropy [77] and the relative position

of the decoration in the URL. The complete list of the features

used by PURL and their analysis is in the appendix.

Ground Truth Labeling. Once we capture the execution

traces, we need to label them before they can be used to train

a classifier. However, as discussed in Section 2, there are

currently no readily available sources that can be reliably

used to label link decoration abuse. Thus, we create our own

set of labels by combining three different sources, which are:

(i) filter lists of known advertising and tracking sources, (ii)

a database of known tracking cookies, and (iii) short lists

of manually curated tracking query parameters. Recall from

Section 3.1 that each link decoration instance is a combination

of the site where it appeared and the decoration key, and it is

labeled as such. Next, we describe our ground truth labeling

process that leverages the three aforementioned approaches.

1) Filter lists. Filter lists, such as EasyList and EasyPrivacy

[21], [22], are the most reliable sources to identify tracking,

which are used by almost all privacy-enhancing tools. How-

ever, their detection granularity is at the level of a URL and

thus cannot be directly used to label individual parameters as

ATS in a URL. This is because even a URL detected as ATS

by filter lists might contain both tracking and non-tracking

parameters [78], [79]. Despite this problem, filter lists can

still be used to identify benign parameters, i.e., the parameters

found in URLs from Non-ATS services, and we use them as

such. Specifically, we rely on EasyList [21] and EasyPrivacy

[22] filter lists to first identify Non-ATS URLs and then label

all parameters in them as Non-ATS. As shown in Section

3.2, a single URL can contain both ATS and Non-ATS link

decorations. In such cases, labeling all link decorations in

URLs that are not blocked by filter lists as Non-ATS will

result in incorrect labels for ATS link decorations. To account

for this, we re-label all Non-ATS link decorations identified

in this step as ATS if they are found to be involved in tracking

in the next steps.

2) Cookiepedia. Link decoration can contain values stored

in cookies, which are traditionally used to store and share user

4110    33rd USENIX Security Symposium USENIX Association



identifiers [7], [10]. To identify such link decorations that can

be used to exfiltrate tracking cookies, we make use of Cook-

iepedia [80], which is a database of cookies maintained by

a well-known Consent Management Platform (CMP) called

OneTrust [42], [81]. Primarily, Cookiepedia provides the

purpose of each cookie in its database through its integration

with OneTrust. Each cookie is provided one of the four labels:

strictly necessary, functional, analytics, and advertising/track-

ing. We monitor the sharing of all cookies labeled as either

analytics or advertising/tracking in Cookiepedia through a

link decoration and label those link decorations as ATS.

3) Manually Curated Lists. Recall from Section 2 that sev-

eral privacy-enhancing browsers and extensions maintain lists

of known ATS link decorations parameters. Despite these

lists being limited, they contain popular query parameters that

are manually vetted to be used for tracking. Thus, we also

make use of ATS link decoration lists, maintained by Brave

[82], Firefox [17], AdGuard [83], and uBlock Origin [20].

Using a combination of these techniques, we were able to

label 18.76% of our dataset, with 1.40% (60,573 instances)

being labeled as ATS and 17.36% (749,553) as Non-ATS.

Even though the ground truth is limited, especially for ATS

samples, we argue that it is a significant improvement over the

existing countermeasures. As described in Section 2.4, prior

work has identified only a handful (maximum of around one

thousand) ATS link decorations. Additionally, mislabelling

link decorations can result in significant website breakage,

necessitating a high-precision, albeit limited, ground truth.

Classifier. After curating the ground truth, we next train a

supervised classifier to detect ATS link decoration. We use a

random forest ensemble classifier because it is tolerant against

noisy labeled data, is efficient to train, and is interpretable

[84], [85]. We train the model using a balanced set of ATS and

Non-ATS link decoration samples. We evaluate the accuracy

of our classifier using stratified 10-fold cross-validation, to

ensure that we do not train and test on the same samples.

Overall, our classifier achieves 98.74% accuracy, 98.62%

precision, and 98.87% recall, indicating that it is successful

in detecting ATS link decorations.

The classifier accuracy is also comparable across different

types of link decorations. For resource paths, it achieves an

accuracy of 99.36%, 99.03% precision, and 99.69% recall.

For query parameters, the accuracy is 96.40%, precision is

93.39%, and recall is 99.87%. Finally, for fragments the

accuracy is 99.33%, precision is 98.75%, and recall is 100%.

4.2 Analysis of Disagreements between PURL

and Ground Truth

We manually analyze PURL’s false positives and false nega-

tives to assess whether these are actual mistakes or limitations

of our ground truth (recall that we curated a high-precision,

albeit limited, ground truth).

First, we analyze the false positives of PURL. We manu-

ally verify the most common false positives in our dataset

by first, analyzing information sent by false positive link

decorations (user identifiers, values stored in cookies, etc.),

and second, by analyzing available online documentation by

senders/receivers of these link decorations. Our analysis of

the most commonly misclassified ATS link decorations re-

veals that most of them are indeed used for tracking. In total,

PURL classifies 8,058 Non-ATS instances (out of 749,553

total, 1.07%) as ATS, which correspond to 2,994 unique link

decorations. The three most common false positive link dec-

orations include utk query parameter sent to hubspot.com,

bsi query parameter sent to frog.wix.com, and iiqpciddate

query parameter sent to api.intentiq.com. We manually ana-

lyzed these three link decorations, which account for almost

10% of all false positives. Our analysis of the documentation

for these three link decorations shows that these are not false

positives, but rather these were falsely labeled as Non-ATS

in our ground truth, and PURL actually correctly classified

them as ATS. utk query parameter contains the HubSpot’s

hubspotutk cookie which is used to identify a user visiting a

website [86]; bsi query parameter contains the identifier used

by BSI’s Customer Data Platform [87], while iiqpciddate

accompanies iiqpcid query parameter which is used by In-

tentIQ to uniquely identify a user [88]. We conclude that

PURL’s false positives are, in actuality, false negatives in the

ground truth, which was curated conservatively to be highly

precise (rather than high recall).

Second, we analyze the false negatives of PURL. In total,

PURL incorrectly classifies only 50 ATS instances as nega-

tives (out of 60,573 total, 0.08%). In all of these instances,

PURL was unable to link the sharing of stored information

through these link decorations. In addition to this, values of

structural features (e.g., number of edges) for these instances

were also lower than true positive instances (e.g. 11,501.99

number of edges as compared to 14,762.86 for true positives).

We conclude that false negatives happen when PURL is unable

to trace certain tracking behaviors of ATS link decorations.

We elaborate on PURL’s implementation limitations in tracing

storage sharing in Section 6.

Beyond these disagreements, PURL is more than the sum

of its ground truth. Concretely, PURL detects 52,489 ATS link

decorations that are not detected by Cookiepedia, EasyList

[21], EasyPrivacy [22], or the manually curated filter lists for

ATS link decorations.

4.3 Comparison with Existing Countermea-

sures

In this section, we compare PURL versus existing counter-

measures against ATS link decorations to demonstrate that

it significantly advances the state-of-the-art. We compare it

against approaches that directly detect ATS link decoration

and also approaches that were originally designed to detect

ATS link decoration but can be repurposed to detect them.

USENIX Association 33rd USENIX Security Symposium    4111



We compare PURL against CrumbCruncher [23] and link

decoration based filter lists, which are designed to detect ATS

link decoration. For comparison with CrumbCruncher, we

rely on the list of ATS query parameters published by Randall

et al. [89]. For comparison with link decoration based filter

lists, we rely on the lists offered by Brave [82], Firefox [17],

Safari [16], uBlock Origin [20], and AdGuard [83]).

Additionally, we also compare PURL against Cookiepe-

dia [80] and request-based filter lists (i.e., EasyList [21] and

EasyPrivacy [22]), which we repurpose to detect ATS link

decoration. We compare with Cookiepedia cookie labels by

identifying link decorations that are used to exfiltrate values

of cookies labeled as ATS by Cookiepedia. For comparison

with request-based filter lists, we consider all link decorations

in the requests labeled as ATS by filter lists to be ATS link

decorations. We compare these approaches across two axes:

(i) accuracy and (ii) breakage.

Accuracy. Table 1 shows the comparison of accuracy,

precision, and recall of all four countermeasures against

PURL. It can be seen from the table that PURL outperforms

the runner-up countermeasure (i.e., request-based filter

lists) by 6.43% in terms of accuracy and by 7.71% in

terms of precision. Some of the most common ATS

link decorations detected by PURL and missed by the

runner-up countermeasure are sync.intentiq.com|pcid,

pr-bh.ybp.yahoo.com|path|2, and

partner.mediawallahscript.com|uid. As we dis-

cuss next, the higher precision results in a measurable

reduction in website breakage when PURL is used as

compared to runner-up countermeasures.

Classifier Accuracy Precision Recall

PURL 98.74% 98.62% 98.87%

CrumbCruncher 50.16% 59.09% 10.67%

Cookiepedia 80.99% 99.01% 62.63%

Filter lists (Requests) 92.31% 90.91% 94.04%

Filter lists (Decorations) 50.50% 100.0% 10.15%

Table 1: Classification accuracy of PURL, CrumbCruncher,

Request Filter lists, Decoration Filter lists, and Cookiepedia

Classifier
Navigation SSO Appearance Miscellaneous

Minor Major Minor Major Minor Major Minor Major

PURL 0% 0% 2% 0% 2% 1% 2% 0%

Filter lists 0% 2% 1% 2% 8% 6% 4% 1%

Table 2: Website breakage comparison of all three

countermeasures.( ) signifies no breakage, ( ) minor

breakage, and ( ) major breakage. Each cell represents the

percentage of sites on which breakage was observed.

Website Breakage. To determine what effect each counter-

measure has on the usability of a site, we compare website

breakage caused by PURL and the countermeasure with the

second-highest accuracy and recall (request-based filter lists)

on 100 sites. We use 20K sites from section 3, out of which

50 sites were sampled from those ranked 1-1000 and 50 from

the rest to ensure the sample is representative. A list of sites

used for breakage analysis is available at [90]. Our breakage

analysis is divided into four different categories of how a web-

site is used: navigation (moving from one page of the website

to another), SSO (third-party login integrations), appearance

(visual consistency and acuity), and miscellaneous (additional

functionality such as shopping carts, chatbots, etc.). We also

categorize each breakage into minor or major, the former

implying that the underlying functionality is disrupted but

still usable, and the latter implying that the functionality is

completely unusable from the user’s perspective. Two re-

viewers interact with the webpage while ATS link decorations

detected by PURL or filter lists are removed. Any disagree-

ments between the two reviewers are resolved after careful

discussion.

Our evaluation shows that out of the 100 sites, PURL caused

minor breakage on 5 sites and major breakage due to a failure

to load CSS on autodesk.com10. On the other hand, requests-

based filter lists caused minor breakage on 12 different sites

and major breakage on 9 sites, including a complete break-

down of navigation on directunlocks.com and CSS issues on

engadget.com and mysuncoast.com.

These results show that PURL not only significantly outper-

forms existing countermeasures in terms of accurately sani-

tizing more ATS link decorations, but it also does so without

causing additional website breakage.

5 Deployment

In this section, we deploy PURL on a 20K sample of top-

million sites to understand the prevalence and the nature of

information shared in ATS link decorations.

5.1 Prevalence of ATS Link Decorations

We first analyze the breakdown of PURL’s classification of

link decorations. PURL classifies 4.56% (196,890) of link

decorations in our dataset as ATS. 73.02% (14,604) of the

tested sites contain at least one request with an ATS link deco-

ration. Overall, an average site employs 10.75 ATS and 44.59

Non-ATS link decorations. Table 3 provides the breakdown

of different types of ATS and Non-ATS link decorations. Out

of the 196,890 link decorations labeled as ATS, 6.62% are

resource paths, 93.36% are query parameters, and 0.02% are

fragments. Our findings indicate that while query parameters

account for the majority of ATS link decorations, trackers

also abuse resource paths and fragments that are ignored in

prior work [23](e.g., CMID cookie set by Casalemedia and

shared through resource path in request to Yahoo: https://pr-

bh.ybp.yahoo.com/sync/casale/ZBlPAJ28Qf7u...).

Table 4 lists the top-50 most prevalent ATS link decorations.

We note that a majority of the top ATS link decorations are

used by various Google advertising and tracking endpoints

10PURL misclassified the second resource path in https://static-

dc.autodesk.net/etc.clientlibs/v605.20230316.1511/autodesk/clientlibs/clientlib-

dhig.min.css

4112    33rd USENIX Security Symposium USENIX Association



Resource Paths Query Parameters Fragments Total

ATS 13,030 183,813 47 196,890

(6.62%) (93.36%) (0.02%) (100.00%)

Non-ATS 1,295,246 2,824,549 2,233 4,122,028

(31.42%) (68.52%) (0.05%) (100.00%)

Total 1,308,276 3,008,362 2,280 4,318,918

(30.29%) (69.65%) (0.05%) (100.00%)

Table 3: Distribution of link decorations between ATS and

Non-ATS across the 20K sample of top-million sites

FQDN Key Storage %

Keys Sites

www.google-analytics.com cid 251 56.84

www.google-analytics.com _gid 206 50.90

stats.g.doubleclick.net cid 220 36.60

stats.g.doubleclick.net _gid 133 34.04

www.google.com cid 193 23.43

www.facebook.com fbp 5 19.14

googleads.g.doubleclick.net auid 46 13.41

analytics.google.com cid 98 11.03

googleads.g.doubleclick.net cookie 1 7.72

googleads.g.doubleclick.net gpic 1 7.71

googleads.g.doubleclick.net ga_vid 112 6.97

securepubads.g.doubleclick.net ga_vid 54 6.69

partner.googleadservices.com cookie 1 5.60

partner.googleadservices.com gpic 1 5.59

bat.bing.com vid 2 5.55

bat.bing.com sid 2 5.54

securepubads.g.doubleclick.net cookie 1 5.45

securepubads.g.doubleclick.net gpic 1 5.42

www.google-analytics.com sid 802 4.99

x.bidswitch.net user_id 139 4.70

idsync.rlcdn.com partner_uid 208 4.61

pixel.tapad.com partner_device_id 174 4.50

cm.g.doubleclick.net google_hm 77 4.28

ups.analytics.yahoo.com uid 182 4.19

pixel.rubiconproject.com put 185 3.96

www.facebook.com ts 202 3.84

Table 4: Prevalence of Top-25 ATS link decorations and the

number of cookies they share

on doubleclick.net, google-analytics.com, and google.com.

For example, cid and _gid are used by all of the aforemen-

tioned Google domains, with cid and _gid on www.google-

analytics.com shared on more than half of the sites. After

Google, fbp on www.facebook.com used by Meta pixel [91]

is present on nearly 20% of the sites. After Facebook, vid

and sid on bat.bing.com used by Microsoft/Bing Ads Con-

version tracking [92] are present on about 5% of the sites.

All of the remaining top-50 ATS link decorations also belong

to well-known advertising and tracking organizations such

as BidSwitch [93], LiveRamp [94], Yahoo! [95], Magnite

[96], Amazon [97], Criteo [98], OpenX [99], Oracle/BlueKai

[100], The Trade Desk [101], Sovrn Holdings [102], Index

Exchange [103], TripleLift [104], and LiveIntent [105]. The

presence of these advertising and tracking organizations in

top-50 ATS link decorations (and even beyond top-50, not

shown here due to space constraints) highlights PURL’s effec-

tiveness in detecting both popular and relatively lesser known

ATS link decorations.

Next, we investigate different types of information shared

through these ATS link decorations.

5.2 Sharing of Browser Storage through ATS

Link Decorations

Prior work has shown that browser storage, such as cookies

and local storage, is widely used for tracking by ATS [7],

[10], [74]. To investigate whether ATS link decorations are

used to share browser storage, we look for the presence of

browser storage in link decorations. Table 4 shows the num-

ber of distinct browser storage keys shared in the plaintext

or encoded formats (Base64, SHA1, SHA-256, and MD5)

by top-50 ATS link decorations. We find that most of the

ATS link decorations detected by PURL are used to share

a large number of browser storage keys (cookies and local

storage). For example, google_hm on cm.g.doubleclick.net

is used by Google’s cookie matching service [106] to re-

ceive cookies of its advertising partners such as CMID (set by

casalemedia.com), suid (set by simpli.fi), __mguid_ (set by

mediago.io), and tuuid (set by adsrvr.com). Other such well-

known ATS link decorations that are similarly used to share

browser storage keys set by various organizations include

partner_uid (LiveRamp), partner_device_uid (Tapad),

uid (Yahoo!), put (RubiconProject), and ttd_puid (The

Trade Desk). We also note that some ATS link decorations are

used to share only a few browser storage keys. For example,

fbp (www.facebook.com) is mainly used to share ghosted [7],

[10] _fbp cookie set by Meta pixel [91]. As another example,

vid and sid (bat.bing.com) are mainly used to share ghosted

_uetvid and _uetsid cookies set by Microsoft UET tracking

tag [92]. A related interesting example is cid (www.google-

analytics.com), which is mainly used to share ghosted _ga

cookie set by Google Analytics [107], [108]. However, it is

also used to share 250 other browser storage keys, potentially

due to cookie name conflicts [109].

5.3 Sharing of Deterministic Information

through ATS Link Decorations

Next, we look at the sharing of deterministic identifiers

through ATS link decoration. Deterministic identifiers include

email addresses and any commonly used user identifiers such

as username, phone number, etc. provided by the user to log

into a site. In contrast with identifiers stored in third-party

cookies, these deterministic identifiers are not automatically

sent with requests, necessitating their sharing through mecha-

nisms such as link decorations. To study this sharing of deter-

ministic identifiers, we crawl the 20K sample of top-million

websites twice, both with and without providing determinis-

tic identifiers such as email addresses in text input fields.11

Similar to the aforementioned storage analysis, we analyze

whether link decorations contain these deterministic identi-

fiers in plaintext or encoded format using well-known hashing

techniques (Base64, SHA1, SHA256, and MD5). We repeat

these parallel crawls two additional times for a total of three

11To automatically fill in the text fields on web pages, we extended a

crawler released by prior work [45].

USENIX Association 33rd USENIX Security Symposium    4113



FQDN Key Sites

p.adsymptotic.com _expected_cookie 90

idsync.reson8.com userid 47

api-2-0.spot.im ayl_id 33

comcluster.cxense.com glb 29

polo.feathr.co ttd_id 21

rtb.mfadsrvr.com _ 20

cs.iqzone.com puid 18

pixel-geo.prfct.co xid 13

sync.richaudience.com pmUserId 11

rp.liadm.com ext__pubcid 8

cdn-p.cityspark.com b 6

ssl.connextra.com path | 0 6

aps.zqtk.net url 5

trackingapi.trendemon.com CookieId 5

cs-tam.yellowblue.io aid 5

b6.im-apps.net vid 4

m.trafmag.com id 4

sync.upravel.com uid 3

cdn.gladly.com q 3

cms.getblue.io appnexusid 3

Table 5: Top-20 link decorations which were only present in

at least 2 of the crawls where user email address was entered

in text fields

crawls with and without entering deterministic identifiers. We

find 538 link decorations that are present in multiple crawls

where we enter deterministic identifiers, but are absent in

crawls where we do not enter deterministic identifiers. PURL

labels 62 of these 538 link decorations as ATS.

Table 5 shows the top-20 such link decorations. Most

notable of these ATS link decorations are ttd_id used by

Feathr (provides marketing campaign solutions to non-profits

[110]), pmUserId used by Rich Audience (an advertising

solution which works with major universal identifiers such as

by ID5 [111] and The Trade Desk unified ID [112], [113]),

and ext__pubcid used by LiveIntent (provides “cookieless

email-based solutions” [114]).

5.4 Sharing of Probabilistic Information

through ATS Link Decorations

Finally, we look at the exfiltration of probabilistic informa-

tion through ATS link decorations. Probabilistic information

includes features such as screen resolution, fonts, etc. that

can be combined to extract a browser fingerprint [10], [46].

To determine if link decoration is potentially being used to

send out probabilistic information, we use FP-Inspector an

ML-based tool proposed by prior work [46] to detect whether

the initiator scripts of link decorations are fingerprinters. We

run FP-Inspector to detect 1,528 fingerprinting scripts on the

tested websites. These fingerprinting scripts initiate requests

containing 1,800 unique link decorations, out of which 200

are labeled as ATS by PURL. Table 6 shows the top 20 most

common ATS link decorations sent by fingerprinting scripts.

While it is challenging to reverse-engineer the scripts, names

(e.g., aduid, uuid) of some of these link decorations make it

fairly obvious that they contain some sort of identifiers.

FQDN Key Sites

securepubads.g.doubleclick.net ippd 212

kraken.rambler.ru tid 146

sofire.baidu.com t 127

ib.adnxs.com path | 0 117

kraken.rambler.ru top100_id 115

kraken.rambler.ru lv 104

log.rutube.ru sid 92

kraken.rambler.ru aduid 55

trackingapi.trendemon.com vid 41

connect.facebook.net path | 0 41

kraken.rambler.ru adtech_uid 39

hexagon-analytics.com uu 37

api.segment.io path | 1 35

trackingapi.trendemon.com MarketingAutomationCookie 27

idr.cdnwidget.com bxvid 24

events.bouncex.net visitid 23

sofire.baidu.com h 22

unseenreport.com uuid 20

ids.cdnwidget.com path | 0 18

hexagon-analytics.com h 17

Table 6: Top-20 ATS link decorations used by scripts involved

in fingerprinting, along with their presence count on websites.

6 Discussion

In this section, we further discuss the robustness of PURL to

evasion, PURL’s deployment in browsers and browser exten-

sions, and coverage of PURL’s dynamic analysis.

6.1 Robustness to Evasion

We evaluate the robustness of PURL against three differ-

ent evasion techniques: manipulation of link decoration key

names, splitting link decoration values, and combining of link

decoration values.

First, we evaluate whether changing link decoration keys

impacts PURL’s accuracy. To this end, we randomly change

the query parameter names as well as the position of resource

paths and fragments. Our evaluation shows that there is no

change in PURL’s accuracy due to this randomization. This is

because PURL does not directly use name features for query

parameters and fragments, and thus there is no impact on

the features. Moreover, changing the key names of resource

paths by changing their position in the URL impacts just one

feature (maximum depth of decoration) but does not end up

changing the classification outcome for any link decoration.

Second, we evaluate whether splitting a link decoration

into multiple link decorations impacts PURL’s accuracy. If

the individual character lengths of the new smaller link deco-

rations are shorter than 8 characters, PURL’s pre-processing

would remove such link decorations from the classification

pipeline – resulting in a successful evasion. To mitigate this

issue, we can exclude this pre-processing step, but it might

result in more false positives. We evaluate PURL (without

this pre-processing step) against this evasion technique by

splitting the link decorations longer than 8 characters into

multiple smaller link decorations. Splitting link decorations

results in only a 0.4% drop in accuracy, which corresponds to

an increase of false positive rate by 0.17%.

4114    33rd USENIX Security Symposium USENIX Association



Finally, we evaluate whether combining all link

decorations into a single encrypted string impacts

PURL’s accuracy. This approach has been attempted

by Facebook [115] to circumvent query parameter strip-

ping. In Facebook’s case, the obfuscated URL (e.g.,

https://www.facebook.com/user/posts/pfbid0RjTS7KpBA...)

contains a single encrypted resource path that essentially

combines multiple query parameters. A consequence of

combining link decorations in an encrypted string is that

PURL would be unable to attribute storage exfiltration

features to this new link decoration. However, this change

also results in higher entropy and, as discussed in Section

A, increases the likelihood that the link decoration will be

labeled as ATS. We evaluate PURL against this evasion

technique by combining the link decorations in an SHA-256

encoded string for 156,348 requests containing both ATS

and Non-ATS link decorations. Here, PURL only uses the

features whose values are the same across all the combined

link decorations (e.g., number of ancestors, descendants,

presence of ad keyword in the ascendant). Our evaluation

shows that PURL is still able to detect 83.4% of new link

decorations as ATS.

We do not consider any attacks that adversarially modify

the graph structure, as previous research [74] has found these

attacks to be non-trivial and likely to cause collateral damage,

deterring attackers from using such attacks.

6.2 PURL’s implementation in privacy-focused

browsers or browser extensions

While PURL’s implementation is not suitable for runtime

deployment (mainly due to the performance overheads of the

browser instrumentation and subsequent dynamic analysis), it

can be used in existing privacy-focused browsers and browser

extensions as follows. Concretely, we run PURL on live

webpages to detect ATS link decorations offline, and then

add the detected link decorations to a filter list used in Brave,

Firefox, Safari, uBlock Origin, or AdGuard for runtime URL

sanitization [16], [17], [20], [82], [83]. We generated a filter

list compatible with popular privacy-focused extensions such

as uBlock Origin and AdBlock Plus by running PURL on

our dataset [27]. Our filter list is incorporated in the adfilt

filter list [116], which is used by AdGuard. Note that PURL’s

classifier can be periodically rerun to generate a new filter

list in case a tracker frequently changes their link decoration

keys/names. If a tracker randomly generates link decoration

keys/names each time, PURL’s filter list can applied based on

their relative position in the URL. Note that it is challenging

in practice for a tracker to change its link decorations at a

fast pace because it requires changing both client-side and

server-side logic across different servers and organizations.

6.3 Coverage

PURL builds a graph representation of the webpage execution.

The number of interactions captured depends on the intensity

and variety of user activity on a webpage (e.g., scrolling activ-

ity, number of internal pages clicked). PURL may not detect

certain ATS link decorations if its graph representation does

not capture certain interactions between different elements

in the webpage because it does not sufficiently emulate dif-

ferent user interactions. We attempt to mitigate this issue by

randomly scrolling and clicking, but it might not be always

sufficient. The coverage of PURL’s dynamic analysis can

be improved, if needed, using various techniques from prior

research [117], [118].

7 Conclusion

In this paper, we investigated the abuse of link decoration for

tracking. We found that link decoration is used by known

trackers for both functional and tracking purposes, even

within a single URL, necessitating a fine-grained approach

to detect tracking link decorations. We proposed PURL— a

machine learning approach to detect and sanitize tracking link

decorations. PURL leverages a graph representation that cap-

tures interactions and the flow of information across multiple

layers of the web stack.

Our evaluation showed that PURL significantly outper-

formed existing countermeasures in its ability to detect link

decorations accurately and in minimizing website breakage.

Our deployment of PURL on top-million sites showed that

link decoration is abused for tracking on almost three-quarters

of the websites by well-known advertising and tracking ser-

vices to exfiltrate first-party cookies, email addresses, and

fingerprints. We also showed that PURL is robust to common

evasion attempts and is readily deployable in privacy-focused

browsers and browser extensions as a filter list. While PURL

is orthogonal to existing countermeasures that focus on de-

tecting specific types of tracking, it can be deployed alongside

them for a defense-in-depth strategy against new and emerg-

ing online tracking techniques. We also note that there are

future research directions worth exploring for detecting track-

ing link decorations, namely the use of LLMs (large language

models). Our exploration of existing LLMs shows that out-

of-the-box solutions provide an accuracy between 79-81%;

however, future work can explore better prompting, context,

and fine-tuning to improve this performance.

8 Acknowledgments

This work was supported in part by the National Science

Foundation under grant numbers 2103439, 2103038, and

2138139.

References

[1] WebKit, Tracking prevention in webkit, https://webkit.

org/tracking-prevention/.

USENIX Association 33rd USENIX Security Symposium    4115

https://webkit.org/tracking-prevention/
https://webkit.org/tracking-prevention/


[2] MDN, Storage access policy: Block cookies from trackers,

https : / / developer . mozilla . org / en - US / docs /

Mozilla/Firefox/Privacy/Storage_access_policy.

[3] Privacy Sandbox for the Web, https://privacysandbox.

com/open-web/.

[4] Tracking prevention in webkit, https://webkit.org/

tracking-prevention/#anti-fingerprinting.

[5] Firefox’s protection against fingerprinting, https : / /

web . archive . org / web / 20230716154817 / https :

/ / support . mozilla . org / en - US / kb / firefox -

protection-against-fingerprinting.

[6] Brave privacy updates, https://brave.com/privacy-

updates/.

[7] I. Sanchez-Rola, M. Dell’Amico, D. Balzarotti, P.-A.

Vervier, and L. Bilge, “Journey to the center of the cookie

ecosystem: Unraveling actors’ roles and relationships”, in

S&P 2021, 42nd IEEE Symposium on Security & Privacy,

23-27 May 2021, San Francisco, CA, USA, 2021.

[8] Q. Chen, P. Ilia, M. Polychronakis, and A. Kapravelos,

“Cookie swap party: Abusing first-party cookies for web

tracking”, in Proceedings of the Web Conference, 2021.

[9] I. Fouad, C. Santos, A. Legout, and N. Bielova, “My cookie

is a phoenix: Detection, measurement, and lawfulness of

cookie respawning with browser fingerprinting”, in Privacy

Enhancing Technologies Symposium, 2022.

[10] S. Munir, S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and

C. Troncoso, “Cookiegraph: Understanding and detecting

first-party tracking cookies”, in ACM SIGSAC Conference

on Computer and Communications Security (CCS), 2023.

[11] S. Englehardt and A. Narayanan, “Online tracking: A 1-

million-site measurement and analysis”, in Proceedings of

ACM CCS 2016, 2016.

[12] H. Dao, J. Mazel, and K. Fukuda, “Cname cloaking-based

tracking on the web: Characterization, detection, and pro-

tection”, IEEE Transactions on Network and Service Man-

agement, 2021.

[13] S. Englehardt, J. Han, and A. Narayanan, “I never signed

up for this! privacy implications of email tracking”, Pro-

ceedings on Privacy Enhancing Technologies, vol. 2018,

no. 1, pp. 109–126, 2018.

[14] J. Wilander, Bounce Tracking Protection, https : / /

github.com/privacycg/proposals/issues/6.

[15] P. N. Bahrami, U. Iqbal, and Z. Shafiq, “Fp-radar: Longitu-

dinal measurement and early detection of browser finger-

printing”, Proceedings on Privacy Enhancing Technologies,

2022.

[16] Open-source tests of web browser privacy, https : / /

web.archive.org/web/20230731221803/https://

privacytests.org/.

[17] List of query parameters removed by brave, https://

web.archive.org/web/20230714022136/https://

firefox . settings . services . mozilla . com / v1 /

buckets / main / collections / query - stripping /

records.

[18] Brave-Core, Brave query filter, https : / / web .

archive . org / web / 20240207231358 / https : / /

raw.githubusercontent.com/brave/brave- core/

master/components/query_filter/utils.cc.

[19] Adguard url tracking filter, https://web.archive.org/

web/20230415152141/https://adguard.com/en/

blog/adguard-url-tracking-filter.html.

[20] List of query parameters removed by ublock origin, https:

//web.archive.org/web/20230321033919/https://

github.com/uBlockOrigin/uAssets/blob/master/

filters/filters.txt.

[21] Easylist, https://easylist.to/easylist/easylist.

txt.

[22] Easyprivacy, https : / / easylist . to / easylist /

easyprivacy.txt.

[23] A. Randall, P. Snyder, A. Ukani, et al., “Measuring uid

smuggling in the wild”, in Proceedings of the 22nd ACM

Internet Measurement Conference (IMC ’22), Association

for Computing Machinery, 2022, pp. 230–243.

[24] M. Alrizah, S. Zhu, X. Xing, and G. Wang, “Errors, mis-

understandings, and attacks: Analyzing the crowdsourcing

process of ad-blocking systems”, in Proceedings of the

2019 Internet Measurement Conference (IMC), 2019.

[25] P. Snyder, A. Vastel, and B. Livshits, “Who filters the filters:

Understanding the growth, usefulness and efficiency of

crowdsourced ad blocking”, in ACM SIGMETRICS, 2020.

[26] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: Retrospec-

tive measurement and analysis of anti-adblock filter lists”,

in IMC, 2017.

[27] PURL Sanitizer, Purl: Tracking link decorations, https:

//github.com/purl-sanitizer/purl.

[28] Y. Takata, D. Ito, H. Kumagai, and M. Kamizono, “Risk

analysis of cookie sharing by link decoration and cname

cloaking”, Journal of Information Processing, vol. 29,

pp. 649–656, Jan. 2021.

[29] S. Englehardt, J. Han, and A. Narayanan, “I never signed

up for this! privacy implications of email tracking”, Pro-

ceedings on Privacy Enhancing Technologies, 2018.

[30] WebTrends, Webtrends, https://web.archive.org/

web/19961226204618/http://webtrends.com/, Dec.

1996.

[31] Webtrends analytics software implementa-

tion and maintenance guide, https : / /

web . archive . org / web / 20091122130817 /

http : / / www . heureka . com : 80 / upload /

WebTrendsAnalyticsSoftwareImplementationGuide .

pdf.

[32] Collect campaign data with custom urls, https : / /

web.archive.org/web/20230621153745/https://

support.google.com/analytics/answer/1033863#

zippy=%2Cin-this-article.

[33] Understanding the basics of utm parameters, https://

web . archive . org / web / 20230329071707 / https :

//blog.hubspot.com/customers/understanding-

basics-utm-parameters, 2018.

4116    33rd USENIX Security Symposium USENIX Association

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://privacysandbox.com/open-web/
https://privacysandbox.com/open-web/
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://web.archive.org/web/20230716154817/https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://web.archive.org/web/20230716154817/https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://web.archive.org/web/20230716154817/https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://web.archive.org/web/20230716154817/https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://brave.com/privacy-updates/
https://brave.com/privacy-updates/
https://github.com/privacycg/proposals/issues/6
https://github.com/privacycg/proposals/issues/6
https://web.archive.org/web/20230731221803/https://privacytests.org/
https://web.archive.org/web/20230731221803/https://privacytests.org/
https://web.archive.org/web/20230731221803/https://privacytests.org/
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20240207231358/https://raw.githubusercontent.com/brave/brave-core/master/components/query_filter/utils.cc
https://web.archive.org/web/20240207231358/https://raw.githubusercontent.com/brave/brave-core/master/components/query_filter/utils.cc
https://web.archive.org/web/20240207231358/https://raw.githubusercontent.com/brave/brave-core/master/components/query_filter/utils.cc
https://web.archive.org/web/20240207231358/https://raw.githubusercontent.com/brave/brave-core/master/components/query_filter/utils.cc
https://web.archive.org/web/20230415152141/https://adguard.com/en/blog/adguard-url-tracking-filter.html
https://web.archive.org/web/20230415152141/https://adguard.com/en/blog/adguard-url-tracking-filter.html
https://web.archive.org/web/20230415152141/https://adguard.com/en/blog/adguard-url-tracking-filter.html
https://web.archive.org/web/20230321033919/https://github.com/uBlockOrigin/uAssets/blob/master/filters/filters.txt
https://web.archive.org/web/20230321033919/https://github.com/uBlockOrigin/uAssets/blob/master/filters/filters.txt
https://web.archive.org/web/20230321033919/https://github.com/uBlockOrigin/uAssets/blob/master/filters/filters.txt
https://web.archive.org/web/20230321033919/https://github.com/uBlockOrigin/uAssets/blob/master/filters/filters.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://github.com/purl-sanitizer/purl
https://github.com/purl-sanitizer/purl
https://web.archive.org/web/19961226204618/http://webtrends.com/
https://web.archive.org/web/19961226204618/http://webtrends.com/
https://web.archive.org/web/20091122130817/http://www.heureka.com:80/upload/WebTrendsAnalyticsSoftwareImplementationGuide.pdf
https://web.archive.org/web/20091122130817/http://www.heureka.com:80/upload/WebTrendsAnalyticsSoftwareImplementationGuide.pdf
https://web.archive.org/web/20091122130817/http://www.heureka.com:80/upload/WebTrendsAnalyticsSoftwareImplementationGuide.pdf
https://web.archive.org/web/20091122130817/http://www.heureka.com:80/upload/WebTrendsAnalyticsSoftwareImplementationGuide.pdf
https://web.archive.org/web/20091122130817/http://www.heureka.com:80/upload/WebTrendsAnalyticsSoftwareImplementationGuide.pdf
https://web.archive.org/web/20230621153745/https://support.google.com/analytics/answer/1033863#zippy=%2Cin-this-article
https://web.archive.org/web/20230621153745/https://support.google.com/analytics/answer/1033863#zippy=%2Cin-this-article
https://web.archive.org/web/20230621153745/https://support.google.com/analytics/answer/1033863#zippy=%2Cin-this-article
https://web.archive.org/web/20230621153745/https://support.google.com/analytics/answer/1033863#zippy=%2Cin-this-article
https://web.archive.org/web/20230329071707/https://blog.hubspot.com/customers/understanding-basics-utm-parameters
https://web.archive.org/web/20230329071707/https://blog.hubspot.com/customers/understanding-basics-utm-parameters
https://web.archive.org/web/20230329071707/https://blog.hubspot.com/customers/understanding-basics-utm-parameters
https://web.archive.org/web/20230329071707/https://blog.hubspot.com/customers/understanding-basics-utm-parameters


[34] Learn how to create utm links and understand why

you need them, https : / / web . archive . org /

web / 20230619202741 / https : / / mailchimp . com /

resources/utm-links/.

[35] A beginners guide to utm parameters (and how to use them),

https://web.archive.org/web/20230529162103/

https://www.monsterinsights.com/a-beginners-

guide-to-utm-parameters/.

[36] P. Papadopoulos, N. Kourtellis, and E. P. Markatos, “Cookie

synchronization: Everything you always wanted to know

but were afraid to ask”, in Proceedings of the World Wide

Web (WWW) Conference, 2019.

[37] U. Iqbal, C. Wolfe, C. Nguyen, S. Englehardt, and Z. Shafiq,

“Khaleesi: Breaker of advertising and tracking request

chains”, in USENIX Security Symposium, 2022.

[38] I. Fouad, N. Bielova, A. Legout, and N. Sarafijanovic-

Djukic, “Missed by filter lists: Detecting unknown third-

party trackers with invisible pixels”, Proceedings on Pri-

vacy Enhancing Technologies, vol. 2020, pp. 499–518, Apr.

2020.

[39] Y. Dimova, G. Acar, L. Olejnik, W. Joosen, and T. V.

Goethem, “The cname of the game: Large-scale analy-

sis of dns-based tracking evasion”, Proceedings on Privacy

Enhancing Technologies, vol. 2021, no. 4, 2021.

[40] T. R. ( P. Institute) et al., “An analysis of first-party cookie

exfiltration due to cname redirections”, in Proceedings of

the Network and Distributed System Security Symposium

(NDSS), 2021.

[41] M. Koop, E. Tews, and S. Katzenbeisser, “In-Depth Evalu-

ation of Redirect Tracking and Link Usage”, Proceedings

on Privacy Enhancing Technologies, 2020.

[42] D. Bollinger, K. Kubicek, C. Cotrini, and D. Basin, “Au-

tomating cookie consent and GDPR violation detection”,

in Security Symposium, 2022.

[43] J. Schuh, Building a more private web: A path towards

making third party cookies obsolete, https : / / blog .

chromium.org/2020/01/building- more- private-

web-path-towards.html.

[44] G. Acar, S. Englehardt, and A. Narayanan, “No boundaries:

Data exfiltration by third parties embedded on web pages.”,

Proc. Priv. Enhancing Technol., vol. 2020, no. 4, pp. 220–

238, 2020.

[45] A. Senol, G. Acar, M. Humbert, and F. Z. Borgesius,

“Leaky forms: A study of email and password exfiltration

before form submission”, in USENIX Security Symposium,

2022.

[46] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the

fingerprinters: Learning to detect browser fingerprinting

behaviors”, in IEEE Symposium on Security and Privacy,

2021.

[47] I. Fouad, C. Santos, A. Legout, and N. Bielova, “My cookie

is a phoenix: Detection, measurement, and lawfulness of

cookie respawning with browser fingerprinting”, in Privacy

Enhancing Technologies Symposium (PETS), 2022.

[48] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine,

“Browser fingerprinting: A survey”, ACM Transactions

on the Web (TWEB), vol. 14, no. 2, pp. 1–33, 2020.

[49] L. Hieu, M. Athina, and S. Zubair, “Cv-inspector: Towards

automating detection of adblock circumvention”, in Net-

work and Distributed System Security Symposium, 2021.

[50] M. Alrizah, S. Zhu, X. Xing, and G. Wang, “Errors, mis-

understandings, and attacks: Analyzing the crowdsourcing

process of ad-blocking systems”, in Proceedings of the

Internet Measurement Conference, 2019, pp. 230–244.

[51] Grab bag: Query stripping, referrer policy, and reporting

api, https://brave.com/privacy-updates/5-grab-

bag/, 2020.

[52] Brave-Core, Brave filter list source code, https://github.

com/brave/brave-core/blob/master/browser/net/

brave_site_hacks_network_delegate_helper.cc#

L29.

[53] M. Nightly, These weeks in firefox: Issue 117, https :

//blog.nightly.mozilla.org/2022/06/02/these-

weeks-in-firefox-issue-117/, 2022.

[54] M. Foundation, Firefox 102.0 release notes, https://www.

mozilla.org/en-US/firefox/102.0/releasenotes,

2022.

[55] Mozilla, Enhanced tracking protection in firefox for desk-

top, https : / / support . mozilla . org / en - US / kb /

enhanced-tracking-protection-firefox-desktop.

[56] Firefox query stripping, https : / / web . archive .

org / web / 20230714022136 / https : / / firefox .

settings . services . mozilla . com / v1 / buckets /

main/collections/query-stripping/records, 2023.

[57] News from wwdc23:webkit features in safari 17 beta,

https : / / webkit . org / blog / 14205 / news - from -

wwdc23-webkit-features-in-safari-17-beta/.

[58] Adguard general url tracking filter rules, https : / /

raw . githubusercontent . com / AdguardTeam /

AdguardFilters / master / TrackParamFilter /

sections/general_url.txt.

[59] Adguard specific url tracking filter rules, https : / /

raw . githubusercontent . com / AdguardTeam /

AdguardFilters / master / TrackParamFilter /

sections/specific.txt.

[60] Adguard allowlist url tracking filter rules, https :

/ / raw . githubusercontent . com / AdguardTeam /

AdguardFilters / master / TrackParamFilter /

sections/allowlist.txt.

[61] Implement $queryprune parameter, https : / / web .

archive.org/web/20230614232000/https://github.

com/uBlockOrigin/uBlock-issues/issues/760.

[62] Ublock origin assets github repository, https://web.

archive.org/web/20230802013435/https://github.

com/uBlockOrigin/uAssets/tree/master/filters.

USENIX Association 33rd USENIX Security Symposium    4117

https://web.archive.org/web/20230619202741/https://mailchimp.com/resources/utm-links/
https://web.archive.org/web/20230619202741/https://mailchimp.com/resources/utm-links/
https://web.archive.org/web/20230619202741/https://mailchimp.com/resources/utm-links/
https://web.archive.org/web/20230529162103/https://www.monsterinsights.com/a-beginners-guide-to-utm-parameters/
https://web.archive.org/web/20230529162103/https://www.monsterinsights.com/a-beginners-guide-to-utm-parameters/
https://web.archive.org/web/20230529162103/https://www.monsterinsights.com/a-beginners-guide-to-utm-parameters/
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://brave.com/privacy-updates/5-grab-bag/
https://brave.com/privacy-updates/5-grab-bag/
https://github.com/brave/brave-core/blob/master/browser/net/brave_site_hacks_network_delegate_helper.cc#L29
https://github.com/brave/brave-core/blob/master/browser/net/brave_site_hacks_network_delegate_helper.cc#L29
https://github.com/brave/brave-core/blob/master/browser/net/brave_site_hacks_network_delegate_helper.cc#L29
https://github.com/brave/brave-core/blob/master/browser/net/brave_site_hacks_network_delegate_helper.cc#L29
https://blog.nightly.mozilla.org/2022/06/02/these-weeks-in-firefox-issue-117/
https://blog.nightly.mozilla.org/2022/06/02/these-weeks-in-firefox-issue-117/
https://blog.nightly.mozilla.org/2022/06/02/these-weeks-in-firefox-issue-117/
https://www.mozilla.org/en-US/firefox/102.0/releasenotes
https://www.mozilla.org/en-US/firefox/102.0/releasenotes
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://web.archive.org/web/20230714022136/https://firefox.settings.services.mozilla.com/v1/buckets/main/collections/query-stripping/records
https://webkit.org/blog/14205/news-from-wwdc23-webkit-features-in-safari-17-beta/
https://webkit.org/blog/14205/news-from-wwdc23-webkit-features-in-safari-17-beta/
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/general_url.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/general_url.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/general_url.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/general_url.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/specific.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/specific.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/specific.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/specific.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/allowlist.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/allowlist.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/allowlist.txt
https://raw.githubusercontent.com/AdguardTeam/AdguardFilters/master/TrackParamFilter/sections/allowlist.txt
https://web.archive.org/web/20230614232000/https://github.com/uBlockOrigin/uBlock-issues/issues/760
https://web.archive.org/web/20230614232000/https://github.com/uBlockOrigin/uBlock-issues/issues/760
https://web.archive.org/web/20230614232000/https://github.com/uBlockOrigin/uBlock-issues/issues/760
https://web.archive.org/web/20230802013435/https://github.com/uBlockOrigin/uAssets/tree/master/filters
https://web.archive.org/web/20230802013435/https://github.com/uBlockOrigin/uAssets/tree/master/filters
https://web.archive.org/web/20230802013435/https://github.com/uBlockOrigin/uAssets/tree/master/filters


[63] P. Bekos, P. Papadopoulos, E. P. Markatos, and N. Kourtel-

lis, “The hitchhiker’s guide to facebook web tracking with

invisible pixels and click ids”, in Proceedings of the ACM

Web Conference 2023, ser. WWW ’23, Austin, TX, USA:

Association for Computing Machinery, 2023.

[64] Mozilla Foundation, Firefox 102.0, see all new features,

updates and fixes, https : / / www . mozilla . org / en -

US/firefox/102.0/releasenotes, 2022.

[65] Enhanced tracking protection in firefox for desktop, https:

/ / support . mozilla . org / en - US / kb / enhanced -

tracking-protection-firefox-desktop.

[66] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, and W.

Joosen, “Tranco: A research-oriented top sites ranking hard-

ened against manipulation”, in Network and Distributed

Systems Security (NDSS) Symposium 2019, 2019.

[67] K. Ruth, A. Fass, J. Azose, et al., “A world wide view

of browsing the world wide web”, in Proceedings of the

22nd ACM Internet Measurement Conference, ser. IMC ’22,

Association for Computing Machinery, 2022.

[68] W. Aqeel, B. Chandrasekaran, A. Feldmann, and B. M.

Maggs, “On landing and internal web pages: The strange

case of jekyll and hyde in web performance measurement”,

in Proceedings of the ACM Internet Measurement Confer-

ence, 2020.

[69] Referrals are from googleads.g.doubleclick.net or

tpc.googlesyndication.com, https://web.archive.org/

web / 20221119020135 / https : / / support . google .

com/analytics/answer/1011829?hl=en.

[70] Adobe marketing cloud, https : / / web . archive .

org/web/20220117161726/https://better.fyi/

trackers/omtrdc.net/.

[71] How google analytics works, https://web.archive.

org/web/20230730023525/https://support.google.

com/analytics/answer/12159447?hl=en.

[72] What is amazon cloudfront?, https://web.archive.

org / web / 20230713064336 / https : / / docs .

aws . amazon . com / AmazonCloudFront / latest /

DeveloperGuide/Introduction.html.

[73] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and

Z. Shafiq, “Adgraph: A graph-based approach to ad and

tracker blocking”, in IEEE Symposium on Security and

Privacy, IEEE, 2020.

[74] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Troncoso,

“Webgraph: Capturing advertising and tracking information

flows for robust blocking”, in USENIX Security Symposium,

USENIX Association, 2022.

[75] S. Maurya, X. Liu, and T. Murata, “Graph Neural Networks

for Fast Node Ranking Approximation”, ACM Transactions

on Knowledge Discovery from Data (TKDD), 2021.

[76] M. Roy, S. Schmid, and G. Trédan, “Modeling and Measur-

ing Graph Similarity: The Case for Centrality Distance”,

ArXiv, 2014.

[77] C. E. Shannon, “A mathematical theory of communication”,

The Bell System Technical Journal, pp. 379–423, 1948.

[78] Prevent tracking based on link decoration via query string

or fragment, https : / / web . archive . org / web /

20220310181355/https://github.com/brave/brave-

browser/issues/4239.

[79] Security/anti tracking policy, https://web.archive.

org/web/20230520014736/https://wiki.mozilla.

org/Security/Anti_tracking_policy.

[80] Onetrust. cookiepedia, https://cookiepedia.co.uk.

[81] M. Hils, D. W. Woods, and R. Böhme, “Measuring the

emergence of consent management on the web”, in Pro-

ceedings of the ACM Internet Measurement Conference,

2020.

[82] List of query parameters removed by brave, https://web.

archive.org/web/20230314220905/https://github.

com/brave/brave-core/blob/master/browser/net/

brave_query_filter.cc.

[83] List of query parameters removed by adguard, https :

//web.archive.org/web/20230702140315/https:

/ / raw . githubusercontent . com / AdguardTeam /

FiltersRegistry / master / filters / filter _ 17 _

TrackParam/filter.txt.

[84] M. S. Uddin, G. Chi, M. A. Janabi, and T. Habib, “Leverag-

ing random forest in micro-enterprises credit risk modelling

for accuracy and interpretability”, International Journal of

Finance & Economics, vol. 27, no. 3, pp. 3713–3729, 2022.

[85] A. Mills, T. Spyridopoulos, and P. Legg, “Efficient and

interpretable real-time malware detection using random-

forest”, in 2019 International conference on cyber situa-

tional awareness, data analytics and assessment (Cyber

SA), IEEE, 2019, pp. 1–8.

[86] Cookies set in a visitor’s browser by hubspot, https://

web.archive.org/web/20230729122826/https://

knowledge . hubspot . com / privacy - and - consent /

what-cookies-does-hubspot-set-in-a-visitor-s-

browser.

[87] Bsi customer data platform, https://web.archive.org/

web/20230601052226/https://www.bsi-software.

com/en/cdp.

[88] Cookieless advertising solution, https://web.archive.

org/web/20230729220324/https://www.intentiq.

com/.

[89] List of query parameters removed by crumbcruncher,

https://web.archive.org/web/20230724081035/

https://github.com/ucsdsysnet/crumbcruncher/

blob/master/data/simple_results.csv.

[90] PURL Sanitizer Contributors, Breakage analysis sites –

purl sanitizer, https : / / raw . githubusercontent .

com/purl- sanitizer/purl/main/data/breakage-

analysis-sites.md.

[91] fbp and fbc Parameters, https : / / web . archive .

org / web / 20220722220344 / https : / / developers .

facebook.com/docs/marketing-api/conversions-

api/parameters/fbp-and-fbc/.

4118    33rd USENIX Security Symposium USENIX Association

https://www.mozilla.org/en-US/firefox/102.0/releasenotes
https://www.mozilla.org/en-US/firefox/102.0/releasenotes
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://web.archive.org/web/20221119020135/https://support.google.com/analytics/answer/1011829?hl=en
https://web.archive.org/web/20221119020135/https://support.google.com/analytics/answer/1011829?hl=en
https://web.archive.org/web/20221119020135/https://support.google.com/analytics/answer/1011829?hl=en
https://web.archive.org/web/20220117161726/https://better.fyi/trackers/omtrdc.net/
https://web.archive.org/web/20220117161726/https://better.fyi/trackers/omtrdc.net/
https://web.archive.org/web/20220117161726/https://better.fyi/trackers/omtrdc.net/
https://web.archive.org/web/20230730023525/https://support.google.com/analytics/answer/12159447?hl=en
https://web.archive.org/web/20230730023525/https://support.google.com/analytics/answer/12159447?hl=en
https://web.archive.org/web/20230730023525/https://support.google.com/analytics/answer/12159447?hl=en
https://web.archive.org/web/20230713064336/https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://web.archive.org/web/20230713064336/https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://web.archive.org/web/20230713064336/https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://web.archive.org/web/20230713064336/https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://web.archive.org/web/20220310181355/https://github.com/brave/brave-browser/issues/4239
https://web.archive.org/web/20220310181355/https://github.com/brave/brave-browser/issues/4239
https://web.archive.org/web/20220310181355/https://github.com/brave/brave-browser/issues/4239
https://web.archive.org/web/20230520014736/https://wiki.mozilla.org/Security/Anti_tracking_policy
https://web.archive.org/web/20230520014736/https://wiki.mozilla.org/Security/Anti_tracking_policy
https://web.archive.org/web/20230520014736/https://wiki.mozilla.org/Security/Anti_tracking_policy
https://cookiepedia.co.uk
https://web.archive.org/web/20230314220905/https://github.com/brave/brave-core/blob/master/browser/net/brave_query_filter.cc
https://web.archive.org/web/20230314220905/https://github.com/brave/brave-core/blob/master/browser/net/brave_query_filter.cc
https://web.archive.org/web/20230314220905/https://github.com/brave/brave-core/blob/master/browser/net/brave_query_filter.cc
https://web.archive.org/web/20230314220905/https://github.com/brave/brave-core/blob/master/browser/net/brave_query_filter.cc
https://web.archive.org/web/20230702140315/https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_17_TrackParam/filter.txt
https://web.archive.org/web/20230702140315/https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_17_TrackParam/filter.txt
https://web.archive.org/web/20230702140315/https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_17_TrackParam/filter.txt
https://web.archive.org/web/20230702140315/https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_17_TrackParam/filter.txt
https://web.archive.org/web/20230702140315/https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_17_TrackParam/filter.txt
https://web.archive.org/web/20230729122826/https://knowledge.hubspot.com/privacy-and-consent/what-cookies-does-hubspot-set-in-a-visitor-s-browser
https://web.archive.org/web/20230729122826/https://knowledge.hubspot.com/privacy-and-consent/what-cookies-does-hubspot-set-in-a-visitor-s-browser
https://web.archive.org/web/20230729122826/https://knowledge.hubspot.com/privacy-and-consent/what-cookies-does-hubspot-set-in-a-visitor-s-browser
https://web.archive.org/web/20230729122826/https://knowledge.hubspot.com/privacy-and-consent/what-cookies-does-hubspot-set-in-a-visitor-s-browser
https://web.archive.org/web/20230729122826/https://knowledge.hubspot.com/privacy-and-consent/what-cookies-does-hubspot-set-in-a-visitor-s-browser
https://web.archive.org/web/20230601052226/https://www.bsi-software.com/en/cdp
https://web.archive.org/web/20230601052226/https://www.bsi-software.com/en/cdp
https://web.archive.org/web/20230601052226/https://www.bsi-software.com/en/cdp
https://web.archive.org/web/20230729220324/https://www.intentiq.com/
https://web.archive.org/web/20230729220324/https://www.intentiq.com/
https://web.archive.org/web/20230729220324/https://www.intentiq.com/
https://web.archive.org/web/20230724081035/https://github.com/ucsdsysnet/crumbcruncher/blob/master/data/simple_results.csv
https://web.archive.org/web/20230724081035/https://github.com/ucsdsysnet/crumbcruncher/blob/master/data/simple_results.csv
https://web.archive.org/web/20230724081035/https://github.com/ucsdsysnet/crumbcruncher/blob/master/data/simple_results.csv
https://raw.githubusercontent.com/purl-sanitizer/purl/main/data/breakage-analysis-sites.md
https://raw.githubusercontent.com/purl-sanitizer/purl/main/data/breakage-analysis-sites.md
https://raw.githubusercontent.com/purl-sanitizer/purl/main/data/breakage-analysis-sites.md
https://web.archive.org/web/20220722220344/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20220722220344/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20220722220344/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20220722220344/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/


[92] Microsoft, Conversion tracking – microsoft advertising,

url = https://about.ads.microsoft.com/en- us/

solutions/tools/conversion-tracking,

[93] BidSwitch, User matching – bidswitch, https : / /

protocol.bidswitch.com/features/user-matching.

html.

[94] LiveRamp, Implementing liveramp’s cookie sync tag,

https : / / docs . liveramp . com / identity / en /

implementing-liveramp-s-cookie-sync-tag.html.

[95] DuckDuckGo, Yahoo.com tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker-radar/blob/main/domains/US/yahoo.com.

json.

[96] DuckDuckGo, Rubiconproject.com tracking data – duck-

duckgo tracker radar, https : / / github . com /

duckduckgo/tracker- radar/blob/main/domains/

US/rubiconproject.com.json.

[97] DuckDuckGo, Amazon-adsystem.com tracking data –

duckduckgo tracker radar, https : / / github . com /

duckduckgo/tracker- radar/blob/main/domains/

US/amazon-adsystem.com.json.

[98] DuckDuckGo, Criteo.com tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker-radar/blob/main/domains/US/criteo.com.

json.

[99] DuckDuckGo, Openx.net tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker-radar/blob/main/domains/US/openx.net.

json.

[100] DuckDuckGo, Bluekai.com tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker- radar/blob/main/domains/US/bluekai.

com.json.

[101] DuckDuckGo, Adsrvr.org tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker-radar/blob/main/domains/US/adsrvr.org.

json.

[102] DuckDuckGo, Lijit.com tracking data – duckduckgo tracker

radar, https://github.com/duckduckgo/tracker-

radar/blob/main/domains/US/lijit.com.json.

[103] DuckDuckGo, Casalemedia.com tracking data – duck-

duckgo tracker radar, https : / / github . com /

duckduckgo/tracker- radar/blob/main/domains/

US/casalemedia.com.json.

[104] DuckDuckGo, 3lift.com tracking data – duckduckgo tracker

radar, https://github.com/duckduckgo/tracker-

radar/blob/main/domains/US/3lift.com.json.

[105] DuckDuckGo, Liadm.com tracking data – duckduckgo

tracker radar, https : / / github . com / duckduckgo /

tracker-radar/blob/main/domains/US/liadm.com.

json.

[106] Google, Cookie guide – authorized buyers real-time bid-

ding, https://developers.google.com/authorized-

buyers/rtb/cookie-guide.

[107] How Google Uses Cookies, https://web.archive.org/

web / 20230731174820 / https : / / policies . google .

com/technologies/cookies?hl=en-US.

[108] Our advertising and measurement cookies, https : / /

web.archive.org/web/20230730054216/https://

business.safety.google/adscookies/.

[109] M. Zhang and W. Meng, “Detecting and understanding

javascript global identifier conflicts on the web”, in Euro-

pean Software Engineering Conference and Symposium on

the Foundations of Software Engineering, 2020.

[110] Reach your people where they are with digital ads, https:

//www.feathr.co/platform/digital-advertising.

[111] Id5 - first party ids and identity resolution methods

explained, https : / / web . archive . org / web /

20220408035339 / https : / / id5 . io / news / index .

php/2022/03/24/first-party-ids-and-identity-

resolution-methods-explained/.

[112] Unified id adoption guidelines for ssps, https://web.

archive.org/web/20230801095601/https://www.

thetradedesk . com / assets / global / Unified - ID -

Adoption-Guidelines-for-SSPs-v1.8.pdf.

[113] Our marketplace, a solution for premium publishers,

https://web.archive.org/web/20230615100615/

https://richaudience.com/en/publishers/.

[114] Discover a new advertising channel for powering profitable

growth: Email. https : / / web . archive . org / web /

20230529064659 / https : / / www . liveintent . com /

advertiser-solutions/.

[115] Facebook is now encrypting links to prevent url stripping,

https://web.archive.org/web/20230527091045/

https://www.schneier.com/blog/archives/2022/

07 / facebook - is - now - encrypting - links - to -

prevent-url-stripping.html.

[116] Actually legitimate url shortener tool, https : / /

github . com / DandelionSprout / adfilt / blob /

29122371931262576705adc68620a5fd2da6b501 /

LegitimateURLShortener.txt#L1482.

[117] J. Kupoluyi, M. Chaqfeh, M. Varvello, et al., “Muzeel:

Assessing the impact of javascript dead code elimination

on mobile web performance”, in Proceedings of the 22nd

ACM Internet Measurement Conference, 2022.

[118] X. Hu, Y. Cheng, Y. Duan, A. Henderson, and H. Yin, “Js-

force: A forced execution engine for malicious javascript

detection”, in Security and Privacy in Communication Net-

works: 13th International Conference, SecureComm 2017,

Niagara Falls, ON, Canada, October 22–25, 2017, Pro-

ceedings 13, Springer, 2018, pp. 704–720.

[119] Interpreting random forests, https : / / web . archive .

org/web/20230519192208/http://blog.datadive.

net/interpreting-random-forests/.

A Feature Analysis

We rank the most important features for classifying ATS and

Non-ATS link decorations by summing the feature contribu-

USENIX Association 33rd USENIX Security Symposium    4119

https://about.ads.microsoft.com/en-us/solutions/tools/conversion-tracking
https://about.ads.microsoft.com/en-us/solutions/tools/conversion-tracking
https://protocol.bidswitch.com/features/user-matching.html
https://protocol.bidswitch.com/features/user-matching.html
https://protocol.bidswitch.com/features/user-matching.html
https://docs.liveramp.com/identity/en/implementing-liveramp-s-cookie-sync-tag.html
https://docs.liveramp.com/identity/en/implementing-liveramp-s-cookie-sync-tag.html
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/yahoo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/yahoo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/yahoo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/rubiconproject.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/rubiconproject.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/rubiconproject.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/amazon-adsystem.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/amazon-adsystem.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/amazon-adsystem.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/criteo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/criteo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/criteo.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/openx.net.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/openx.net.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/openx.net.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/bluekai.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/bluekai.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/bluekai.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/adsrvr.org.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/adsrvr.org.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/adsrvr.org.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/lijit.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/lijit.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/casalemedia.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/casalemedia.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/casalemedia.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/3lift.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/3lift.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/liadm.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/liadm.com.json
https://github.com/duckduckgo/tracker-radar/blob/main/domains/US/liadm.com.json
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://web.archive.org/web/20230731174820/https://policies.google.com/technologies/cookies?hl=en-US
https://web.archive.org/web/20230731174820/https://policies.google.com/technologies/cookies?hl=en-US
https://web.archive.org/web/20230731174820/https://policies.google.com/technologies/cookies?hl=en-US
https://web.archive.org/web/20230730054216/https://business.safety.google/adscookies/
https://web.archive.org/web/20230730054216/https://business.safety.google/adscookies/
https://web.archive.org/web/20230730054216/https://business.safety.google/adscookies/
https://www.feathr.co/platform/digital-advertising
https://www.feathr.co/platform/digital-advertising
https://web.archive.org/web/20220408035339/https://id5.io/news/index.php/2022/03/24/first-party-ids-and-identity-resolution-methods-explained/
https://web.archive.org/web/20220408035339/https://id5.io/news/index.php/2022/03/24/first-party-ids-and-identity-resolution-methods-explained/
https://web.archive.org/web/20220408035339/https://id5.io/news/index.php/2022/03/24/first-party-ids-and-identity-resolution-methods-explained/
https://web.archive.org/web/20220408035339/https://id5.io/news/index.php/2022/03/24/first-party-ids-and-identity-resolution-methods-explained/
https://web.archive.org/web/20230801095601/https://www.thetradedesk.com/assets/global/Unified-ID-Adoption-Guidelines-for-SSPs-v1.8.pdf
https://web.archive.org/web/20230801095601/https://www.thetradedesk.com/assets/global/Unified-ID-Adoption-Guidelines-for-SSPs-v1.8.pdf
https://web.archive.org/web/20230801095601/https://www.thetradedesk.com/assets/global/Unified-ID-Adoption-Guidelines-for-SSPs-v1.8.pdf
https://web.archive.org/web/20230801095601/https://www.thetradedesk.com/assets/global/Unified-ID-Adoption-Guidelines-for-SSPs-v1.8.pdf
https://web.archive.org/web/20230615100615/https://richaudience.com/en/publishers/
https://web.archive.org/web/20230615100615/https://richaudience.com/en/publishers/
https://web.archive.org/web/20230529064659/https://www.liveintent.com/advertiser-solutions/
https://web.archive.org/web/20230529064659/https://www.liveintent.com/advertiser-solutions/
https://web.archive.org/web/20230529064659/https://www.liveintent.com/advertiser-solutions/
https://web.archive.org/web/20230527091045/https://www.schneier.com/blog/archives/2022/07/facebook-is-now-encrypting-links-to-prevent-url-stripping.html
https://web.archive.org/web/20230527091045/https://www.schneier.com/blog/archives/2022/07/facebook-is-now-encrypting-links-to-prevent-url-stripping.html
https://web.archive.org/web/20230527091045/https://www.schneier.com/blog/archives/2022/07/facebook-is-now-encrypting-links-to-prevent-url-stripping.html
https://web.archive.org/web/20230527091045/https://www.schneier.com/blog/archives/2022/07/facebook-is-now-encrypting-links-to-prevent-url-stripping.html
https://github.com/DandelionSprout/adfilt/blob/29122371931262576705adc68620a5fd2da6b501/LegitimateURLShortener.txt#L1482
https://github.com/DandelionSprout/adfilt/blob/29122371931262576705adc68620a5fd2da6b501/LegitimateURLShortener.txt#L1482
https://github.com/DandelionSprout/adfilt/blob/29122371931262576705adc68620a5fd2da6b501/LegitimateURLShortener.txt#L1482
https://github.com/DandelionSprout/adfilt/blob/29122371931262576705adc68620a5fd2da6b501/LegitimateURLShortener.txt#L1482
https://web.archive.org/web/20230519192208/http://blog.datadive.net/interpreting-random-forests/
https://web.archive.org/web/20230519192208/http://blog.datadive.net/interpreting-random-forests/
https://web.archive.org/web/20230519192208/http://blog.datadive.net/interpreting-random-forests/


0 1 2 3 4 5 6

Shannon Entropy

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Non-ATS

ATS

0 20000 40000 60000 80000

Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Non-ATS

ATS

20 40 60 80 100

Number of Exfiltrations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D
F

Non-ATS

ATS

Figure 8: Distribution of the number of edges, Shannon entropy and number of exfiltrations for ATS and Non-ATS link

decorations. ATS link decorations interact more with the neighboring nodes, have a higher Shannon entropy and are exfiltrated

more as compared to Non-ATS link decorations.

tions during classification [119]. Table 7 reports the top-10

features ranked based on the percentage of instances where

the feature was important for ATS classification. For ATS

instances, Shannon Entropy, the number of nodes, edges, pre-

decessors, and ancestors are the most important. Figure 8

plots the conditional distribution of two top-ranked features:

Shannon entropy and the number of edges. The Shannon

entropy for ATS decorations is higher than Non-ATS deco-

rations – more than 70% of Non-ATS link decorations and

only 8% of ATS link decorations have Shannon entropy lower

than 3, respectively. The usage of higher entropy strings by

ATS link decorations is expected, as they are more suitable

for storing unique identifiers.

Figure 8 shows that ATS decorations are more connected

as compared to Non-ATS decorations – less than 50% of

ATS link decorations and more than 85% of Non-ATS link

decorations have less than 10,000 edges, respectively. ATS

link decorations tend to interact more with other elements

of the webpage, which is expected as ATS link decorations

are expected to be fetched and updated more frequently from

storage and shared more frequently through network requests.

Additionally, the flow of information from storage to link dec-

oration nodes also affects the decision due to the importance

of indirect features, which are calculated by exfiltration and

infiltration to and from the storage nodes. ATS link deco-

rations are more likely to exfiltrate storage values, with an

ATS decoration averaging 7.4 exfiltrations (standard deviation

of 20.56) while a Non-ATS decoration averaging only 0.06

(standard deviation of 1.41).

For Non-ATS instances, the lack of information flow was

a strong indicator, with the top three features related to exfil-

tration and infiltration of storage values. The classifier also

considered string entropy and advertisement-related keywords

in ascendants as important features for classifying Non-ATS

link decorations. Our analysis shows that information flow

features, entropy, and the position of link decoration within

the URL are the most critical for classifying link decorations

into ATS and Non-ATS categories.

Feature Percentage

Shannon Entropy 17.43%

Number of Nodes 16.38%

Closeness Centrality of Indirect Edges 13.22%

Ratio of Nodes over Edges 12.4%

Number of Edges 11.54%

Number of Script Predecessors 5.28%

Number of Ancestors 3.22%

Ratio of Edges over Nodes 3.06%

Number of Indirect Ancestors 2.83%

Closeness Centrality 2.03%

Table 7: Percentage of instances where a feature was the most

important for ATS link decoration classification

Feature Type

Graph size (# of nodes, # of edges, and nodes/edge ratio) Structure

Degree (in, out, in+out, and average degree connectivity) Structure

Centrality (closeness centrality, eccentricity) Structure

Ascendant’s attributes Structure

Descendant of a script Structure

Ascendant’s script properties (Ad keyword, FP keyword, length of script) Structure

Parent is an eval script Structure

Depth of Link Decoration in URL Content

Shannon Entropy Content

Local storage access by parent (# of sets, # of gets) Flow

Cookie accesses by parent (# of sets, # of gets) Flow

Requests (sent, received) by parent Flow

Redirects (sent, received, depth in chain) by parent Flow

Common access to the same storage node Flow

Cookie exfiltration Flow

Cookie infiltrations by parent Flow

Cookie Setter (# of exfiltration, # redirects) by parent Flow

Graph size (# of nodes, # of edges, and nodes/edge ratio) Flow

Degree (in, out, in+out, and average degree connectivity) Flow

Centrality (closeness centrality, eccentricity) Flow

Table 8: Features used by PURL. PURL calculates Graph

size, Degree, and Centrality features using both normal and

shared information edges. The former comes under structural

features while the latter comes under flow features.

4120    33rd USENIX Security Symposium USENIX Association


	Introduction
	Background & Related Work
	What is Link Decoration?
	Threat Model
	Abuse of Link Decorations for Tracking
	Countermeasures Against the Abuse of Link Decorations for Tracking
	Filter List Based Countermeasures
	Heuristic Based Countermeasures


	Motivating Measurements
	Methodology
	Prevalence of Link Decoration

	Purl
	Design and Implementation
	Analysis of Disagreements between Purl and Ground Truth
	Comparison with Existing Countermeasures

	Deployment
	Prevalence of ATS Link Decorations
	Sharing of Browser Storage through ATS Link Decorations
	Sharing of Deterministic Information through ATS Link Decorations
	Sharing of Probabilistic Information through ATS Link Decorations

	Discussion
	Robustness to Evasion
	Purl's implementation in privacy-focused browsers or browser extensions
	Coverage

	Conclusion
	Acknowledgments
	Feature Analysis

