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Abstract
Recent advancements in privacy-preserving machine learning
are paving the way to extend the benefits of ML to highly
sensitive data that, until now, has been hard to utilize due
to privacy concerns and regulatory constraints. Simultane-
ously, there is a growing emphasis on enhancing the trans-
parency and accountability of ML, including the ability to
audit deployments for aspects such as fairness, accuracy and
compliance. Although ML auditing and privacy-preserving
machine learning have been extensively researched, they have
largely been studied in isolation. However, the integration
of these two areas is becoming increasingly important. In
this work, we introduce Arc, an MPC framework designed
for auditing privacy-preserving machine learning. Arc crypto-
graphically ties together the training, inference, and auditing
phases to allow robust and private auditing. At the core of our
framework is a new protocol for efficiently verifying inputs
against succinct commitments. We evaluate the performance
of our framework when instantiated with our consistency pro-
tocol and compare it to hashing-based and homomorphic-
commitment-based approaches, demonstrating that it is up to
104× faster and up to 106× more concise.

1 Introduction

Mounting concerns regarding security and privacy in Machine
Learning (ML) have spurred interest in Privacy-Preserving
Machine Learning (PPML) [42, 68]. These developments
aim to address concerns related to user data, whether during
inference or training, as well as securing ML models, as orga-
nizations seek to maintain a competitive advantage by keeping
them confidential. Consequently, secure inference and secure
training frameworks have emerged to address various security
and privacy concerns inherent in using and training machine
learning models [27, 47, 54, 56, 66, 88]. The majority of these
frameworks rely on secure computation techniques [6, 50, 51],
which offer security guarantees by hiding the data and/or the
model during computation. While these techniques are effec-

tive in achieving the intended security goals, they also intro-
duce new challenges due to their inherent opacity. To achieve
secrecy, these technologies conceal the processes of training
and inference, making it difficult to audit PPML pipelines for
fairness, transparency, accountability, and other (often legally
mandated) objectives. However, a variety of scenarios require
both the privacy guarantees of PPML and the ability to audit
the ML pipeline. For example, banks interested in collabo-
rating on training better risk assessment algorithms (e.g., for
creditworthiness) will need to rely on PPML techniques to
protect both customer privacy and commercial information.
At the same time, they must also fulfill legal requirements
for auditability such as those of the recently enacted EU AI
Act [25], which specifically calls out creditworthiness evalua-
tion [79]. While auditability may seem to be in direct conflict
with the privacy requirements of PPML, secure computation
can, in principle, offer a way forward for verifying these prop-
erties while preserving privacy. However, realizing this in an
efficient and robust manner is challenging.

Private ML Auditing. ML auditing involves the examina-
tion and verification of machine learning models, algorithms,
and data to ensure accountability and desired properties such
as fairness, transparency, and accuracy during deployment.
Approaches to ML auditing can be divided into a priori and
post-hoc auditing mechanisms [9]. The former focus on pre-
deployment verification techniques that act as predefined sets
of verifications on the model, data, or training process [22, 44],
such as model and data validation tests [19, 63] or robust-
ness [31] and fairness [7] verification. While covering im-
portant use cases of auditing, these remain limited to known
prior issues, which, in the case of ML, are hard to exhaus-
tively address given the black box nature of ML. Post-hoc au-
dits, which are triggered in response to detecting undesirable
behavior or other triggers, are therefore essential to ensure
accountability in real-world deployments of ML [40, 80, 81].
For example, individuals may seek an explanation of a de-
cision to mitigate potential harm or to investigate its fair-
ness [62, 74]. Recent efforts have examined the realization
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of a priori-auditing techniques in secure settings using a va-
riety of ad-hoc techniques. This includes work for verifying
robustness, verifiable fairness, and model and data validation
techniques [19, 46, 53, 78]. Post-hoc audits, however, have
received scant attention in the secure setting. Due to their on-
demand nature, they present a unique set of challenges that
a priori audits do not face. In this paper, we, therefore, focus
primarily on achieving secure post-hoc audits for PPML.

Secure Post-Hoc Audits. In current practice, auditing of
PPML systems generally requires assuming a trusted third
party (which can be granted access to training data, models,
and predictions) that applies traditional auditing solutions.
However, in addition to undermining the privacy-preserving
nature of PPML, even a trusted auditor is not sufficient to
achieve robust audits. Specifically, parties might inadvertently
or maliciously alter their inputs to the auditing phase so that
they no longer match their original inputs to the PPML sys-
tem, distorting the results of the auditing phase. Instead, the
auditor would need visibility into the entire training and in-
ference process to ensure the consistency of the audit. One
might consider realizing such a trusted auditor cryptographi-
cally, by relying on (maliciously secure) Multi-Party Compu-
tation (MPC) for the entire pipeline. In practice, however, it
is generally not feasible to continuously run large MPC de-
ployments with many parties (e.g., different clients receiving
inferences and/or different auditing parties). This is because
MPC, in general, scales extremely poorly in the number of
involved parties, and due to the complexities of maintaining
(and periodically refreshing) a large amount of secret state
over extended periods [41, 65, 77]. Note that PPML systems
usually sidestep these issues, as training and inference can be
realized as distinct phases. As a result, the (usually significant)
resources utilized for training do not need to be maintained in
order to perform inferences. A practical approach to crypto-
graphic auditing for PPML, therefore, needs to maintain this
decoupling while nevertheless ensuring consistent audits.

Contribution. This paper presents Arc, a new framework for
privacy-preserving auditing of PPML systems. Arc is highly
modular and supports a wide range of efficient PPML ap-
proaches and auditing functions, and is the first framework
to efficiently implement post-hoc auditing for PPML. Our
framework ties together training, inference, and auditing while
maintaining consistency via the use of concise cryptographic
receipts. Arc supports a wide range of PPML approaches,
including mixed secure/plaintext settings which are common
in practical deployments but pose significant challenges for
auditing. The overhead of our framework is primarily deter-
mined by the efficiency of the underlying consistency mecha-
nism. We first describe (and prove secure) our auditing pro-
tocol using a black-box definition of the consistency layer.
We then present a highly efficient instantiation that makes
Arc practical for a wide range of PPML deployment scenar-
ios. Finally, we evaluate the performance of our framework

when instantiated with our consistency protocol and compare
it to hashing-based and homomorphic-commitment-based ap-
proaches, demonstrating that it is up to 104× faster and up to
106× more concise.

In the following, we discuss background and related work
in §2. We present the requirements of PPML auditing systems
and the design of our PPML auditing framework in §3. In §4,
we formalize the Proof-of-Consistency (PoC) and present our
consistency check protocol. In §5, we discuss how to realize
common auditing functions under MPC. Finally, in §6, we
evaluate our framework and compare against related work.

2 Background & Related Work

We briefly introduce relevant background for PPML and ML
auditing, and then discuss related work.

Privacy-Preserving Machine Learning. PPML enables
parties to securely train and deploy sensitive ML models in
environments that involve untrusted or potentially compro-
mised entities. There has been significant progress in PPML
in recent years, leveraging advanced cryptographic techniques
to ensure data privacy and model integrity [6, 14, 27, 47, 54,
56, 57, 66, 88]. Approaches that rely on MPC typically offer
the best performance by distributing trust among n parties.
These parties collaboratively execute training or inference
computations, all while preserving the privacy of each party’s
inputs. Protocols are categorized based on the number of par-
ties (t) an adversary can corrupt without breaching security,
with distinctions made between a majority of honest parties
(t < n

2 ) and a dishonest majority (t < n). Moreover, proto-
cols are designed to withstand different adversarial behaviors,
ranging from passive corruption, where compromised parties
may collude to learn information while following the pro-
tocol honestly, to active corruption, allowing adversaries to
deviate from the protocol arbitrarily. As of today, the most
efficient MPC protocols for PPML rely on homomorphic se-
cret sharing over a field Fp or ring Z2k [6]. This allows them
to perform integer arithmetic by adding and scaling shares
using the homomorphism of the scheme. Communication
among parties is only required during the multiplication of
shares. PPML frameworks frequently also offer higher-order
primitives essential for machine learning, such as dot prod-
ucts, comparisons, bit extraction, exponentiation, and trunca-
tion [6, 27, 51, 56, 66, 88]. Different functionalities might be
implemented most efficiently in different fields or rings, in
which case we can use share conversion to switch between
them, e.g., ring and field-based MPC. In Appendix E in the
extended version of the paper [1], we discuss this technique
in more detail.

ML Auditing. Auditing of ML systems is an emerging field
focused on enhancing the accountability of ML algorithms.
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Auditing involves verifying the compliance of organizations'
ML models with safety and legal standards, e.g., ensuring they
do not infringe on copyright laws. Here, we refer to auditing
techniques that analyze an algorithm to offer further insights
or assurances regarding the model and its predictions. This
includes efforts to enhance transparency by explaining predic-
tions, ensuring fairness, or providing accountability for the
contributions of different parties. Depending on the technique,
these algorithms may require access to the training data, the
model, the prediction, or a combination thereof. Techniques
that involve only the training data and the model can often be
conducted a priori as part of an internal quality assurance pro-
cess. However, such a priori techniques are inherently limited:
important classes of auditing techniques fundamentally re-
quire, or only become practical with, access to the prediction
sample. For example, audits for explainability/accountability
or fairness, respectively. In addition, due to the nature of ML,
we can frequently only identify a prediction as unwanted af-
ter the fact, potentially even only after significant time has
passed. As a result, we require the ability to perform post-hoc
auditing in real-world ML deployments.

A wide range of approaches for post-hoc auditing have been
proposed in the literature, many of which build upon similar
techniques. For example, many algorithms in this space rely
on perturbing input data or prediction features to assess the
impact of such changes on the model’s behavior, effectively
treating the model as a black box. These methods find appli-
cation in a variety of contexts, such as providing explanations
for predictions [62, 74], investigating the model’s training
data for biased or poisoned samples [64, 81, 90], or ensuring
fairness by analyzing model predictions under hypothetical
scenarios where specific input features are altered [67]. As
evaluating these methods can be resource-intensive, alterna-
tive techniques employ propagation-based methods, which
are more computationally efficient by assuming knowledge
of the model’s internal structure. These methods attribute im-
portance to model neurons, input features, or training samples
based on gradients or activations [5, 86]. These techniques
share foundational computational operations with training
and inference processes, such as forward passes through the
neural network and backpropagation. This similarity in com-
putational models implies that the protocols developed for
training and inference can be repurposed, to some extent, for
auditing purposes. In §5, we provide a detailed description of
the algorithmic aspects of the auditing functions supported in
our framework.

Related Work. While this is, to the best of our knowledge,
the first framework for (post-hoc) PPML auditing, our work
is closely related to efforts aimed at enhancing the reliability
of PPML systems. Thus, we briefly discuss the most relevant
related work here. Prior research primarily focuses on narrow
aspects, enhancing isolated components and instantiations of
the PPML pipeline as shown in Table 1. Phoenix integrates

Mal. Sec. T M I Co Ba St

Phoenix [46] × #   –
Agrawal et al. [2] × #  #
Kilbertus et al. [53] ✓ #   
Segal et al. [78] ✓ #  #
Holmes [19] ✓  # # –
Cerebro [93] ✓  # #
Ours (§3) ✓    

Table 1: Related work covers different subsets of the PPML
pipeline by allowing to audit combinations of the training data
(T), the model (M) and the inference (I), and have different
overheads for compute (Co), bandwidth (Ba) and storage (St).

randomized smoothing techniques into Fully Homomorphic
Encryption (FHE)-based ML inference to guarantee robust
and fair model predictions [46]. Holmes improves the quality
of MPC training to conduct distribution tests on training data
via efficient interactive zero-knowledge proofs before train-
ing starts [19]. These works apply and optimize reliability
techniques to PPML inference and training but do not allow
for retroactive auditing of predictions or training data.

Another line of work enables retroactive verification of cer-
tain properties, but only for specific components of the PPML
pipeline in isolation. Fairness certification allows clients to
verify that their private predictions were generated by a cer-
tified model [3, 53, 78]. This is usually achieved by hav-
ing a regulator sign a hash-based commitment of the model.
Cerebro [93] extends MPC training by enabling an auditor
to conduct post-hoc computation on parties’ inputs through
a consistency check involving cryptographic commitments.
However, their system only allows auditing of parties’ datasets
individually, which significantly limits the scope of auditing.
Additionally, the commitment techniques they employ to en-
sure the integrity of the training data do not scale to a complete
PPML system handling large amounts of training data and
potentially many clients.

3 Arc Design

Arc enables private and secure auditing for existing PPML
systems by providing end-to-end consistency of data, model,
and predictions while preserving the benefits of distinct train-
ing, inference, and auditing phases. Our framework is highly
modular and supports a wide range of inference and training
approaches, including deployments that mix secure computa-
tion and plaintext computation. For example, many scenarios
permit the release of a differentially private model after a
secure training phase, or consider secure inference for a cen-
trally trained model. Our framework allows the execution of
arbitrary auditing functions over the original training data,
model, and predictions using secure multi-party computation.
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Figure 1: Overview of Arc, which augments existing PPML pipelines with an MPC auditing phase to execute auditing functions.
Clients receive a receipt that can later be used to verify the consistency of the training data, model and prediction under audit.

Notably, these audits can be conducted post-hoc, i.e., long
after the training or inference phases. In Fig. 1, we illustrate
how Arc extends a typical PPML pipeline. Specifically, Arc
augments the training phase with a consistency layer that
generates a concise cryptographic receipt linking the model
received by the model owners and the training data provided
by the data owners. During inference, Arc’s consistency layer
extends this receipt to include the client’s prediction sample
and result. Using this receipt, the client can later request audit
functions to be executed and verify that the data owners and
model owners provided their original inputs. This design al-
lows our framework to scale independently of the number of
clients and predictions, as the only additional state necessary
is the (concise) prediction held by the client.
Threat Model. We consider an actively malicious adversary
that can (statically) compromise parties across the training,
inference, and auditing phases. The adversary can observe
and modify all inputs, states and network traffic of the parties
it controls. We assume that at least one party that provides
inputs (i.e., training data, model, or prediction sample) or
receives outputs is honest. Note that because not all parties
are involved in each phase, it is possible that all parties in-
teracting in a phase are malicious. If a phase involves secure
computation, we assume at least one of the computational
parties is honest. Note that, certain instantiations of secure
computation might impose additional constraints on the ad-
versary. For example, Arc can be used with MPC protocols
that assume an honest majority of computing parties, which
are frequently significantly more efficient than their dishonest
majority counterparts.

3.1 Modeling Cryptographic Auditing
A privacy-preserving auditing system must achieve secrecy,
correctness, and soundness. For secrecy, the system must pre-
serve the privacy guarantees of the underlying PPML systems,
except for what can be inferred from the output of auditing1.
However, to prevent unexpected leakage from malicious audit
requests, the system must also be restricted to serving only

1Special care should be taken when choosing auditing functions to ensure
their output presents an acceptable privacy-utility trade-off.

valid auditing requests, i.e., those corresponding to actual pre-
dictions made by the system. Moreover, in order to allow us
to rely on the results of auditing, the system must be correct
& sound, i.e., the audit must be correctly computed even in
the presence of malicious parties. In particular, the system
must ensure the audit is performed on the original training
data and model corresponding to the prediction that is being
audited. The system must also have the ability to detect mali-
cious disruptions of the audit process. Specifically, we want to
prevent malicious parties from surreptitiously aborting the au-
dit computation and therefore require Identifiable Abort (ID-
Abort) security for the auditing phase. Otherwise, malicious
actors could prevent auditing without fear of repercussion,
fundamentally undermining the concept of auditability. While
publicly identifiable abort (i.e., everyone, including input par-
ties, learns the identity) would potentially be desirable in the
secure outsourced computation (SOC) setting, protocols to
achieve this introduce prohibitive overhead [26, 70] and we
therefore only require traditional ID-Abort. For training and
inference, in comparison, we require only security with abort,
as is common in practical protocols for PPML training and
inference [18, 21, 38, 66, 71, 88, 94].

As we prove our protocol secure in the real-ideal
paradigm [15], we begin by modeling the ideal functionality
that a privacy-preserving auditing protocol for PPML should
achieve based on the requirements set out above. Despite
the separation of the training, inference and auditing phases,
we model the intended behavior as a single reactive ideal
functionality FArc (cf. Fig. 2) as this directly implies input
consistency. We annotate parts only relevant in the plaintext
training and/or inference settings in which the adversary can
generate local models and predictions (in olive and blue, re-
spectively).
Training & Inference. The functionality allows training
models on the input data (assuming the adversary does not
choose to abort the computation), adding the resulting model
to a list LM. We assume that there is an out-of-band commu-
nication channel for learning which models exist and assume
the adversary learns about any models that have been trained,
even if all parties involved in the training were honest. In the
functionality, we model this by leaking the model identifier to
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Functionality FArc

The functionality is parameterized by a learning algorithm T , a set of allowed auditing functions Faudit, NDH data
owners DH = {DH1, . . . ,DHNDH}, NM model owners M = {M1, . . . ,MNM}, NC clients C = {C1, . . . ,CNC}, NTC training computers
TC= {TC1, . . . ,TCNTC}, NIC inference computers IC= {IC1, . . . ,ICNIC}, NAC audit computers AC= {AC1, . . . ,ACNAC}. We denote
the set of all parties as P = DH∪M∪C∪TC∪IC∪AC, The functionality is reactive and its state consists of a set LM of models
and corresponding datasets, and a set LP of inference samples and corresponding predictions, Operations only relevant to
plaintext training are marked in olive and those only relevant to plaintext inference are marked in blue.

Training: On input (InputData,Di), store (DHi,Di), in the plaintext setting: if A controls any TC, send Di to A . When the
functionality has input Di from all DHi, clear all (DHi,Di) and proceed with:

1. Set J $← J and compute M← T (D1, . . . ,DNDH ,J). In the plaintext setting: if A controls any TC, send (J,M) to A
2. If A controls any model owners, send M to A . Otherwise, send ⊥ to A . Wait for a response a ∈ {Abort,Deliver}.
3. If a is Deliver, choose a random identifier idM , and append ((D1, . . . ,DNDH),M, idM) to LM, and send the model

(Output, idM,M) to each model owner M j, and send (idM) to A . Otherwise, send (Output,⊥) to all parties in P .

Inference: On input (Predict,M j, idM,x) from Ci, the functionality does the following:
1. In the plaintext setting: if A controls ICi, find M in LM using idM and send x,M to A .
2. If A controls M j, all DHi, and all TCi:

– ask A for an alternative model M′ and NDH datasets D′k and training randomness J′.
– If A returns ⊥, continue with Step 3.
– Else, if M′ = T (D′1, . . . ,D

′
NDH

,J′), choose a random id′M , add ((D′1, . . . ,D
′
NDH

),M′, id′M) to LM, set idM = id′M and send
(idM) to A .

– Otherwise, send Abort to all parties.
3. Find M in LM using idM and compute y←M(x).
4. If A controls Ci, send (idM,y) to A .
5. If A controls M j or any IC, send (idM) and (y) to A .
6. Wait for a response a ∈ {Abort,Deliver}. If a is Abort, send (Output,⊥) to all parties in P .

Else, if a is Deliver, send (Output, idM,y) to Ci and add (M j, idM,x,y) to LP.

Auditing: On input (Audit,M j, ˜idM, faudit, x̃, ỹ,aux) from Ci, the functionality does the following
1. If faudit /∈ Faudit, send (Malicious,Ci) to all parties in AC and halt.
2. If (·, ·, idM) ∈ LM, get ((D1, · · · ,DN),M, idM) from LM. Else, send (Malicious,Ci) to all parties in AC and halt.
3. If A controls M j and all ICi: append (M j, idM, x̃, ỹ) to LP if M(x̃) = ỹ, else, send (Malicious,Ci) to all AC and halt.
4. If (M j, idM, x̃, ỹ) /∈ LP send (Malicious,Ci) to all parties in AC and halt.
5. Evaluate o← faudit(x̃, ỹ,M,D1, · · · ,DN ,aux).
6. Send (o) to A if A controls Ci and send (M j, idM, faudit,aux) to A otherwise.

Wait for a response a ∈ {(Abort,P),Deliver}, where P ∈ P .
7. If a is Deliver, send (Output,o) to C. If a is (Abort,P), send (Malicious,P) to all parties in AC.

Figure 2: Arc’s Ideal Functionality.

the adversary after training. In the case of plaintext training,
the functionality additionally leaks the input data and model
to the adversary if it controls any training computer. Inference
proceeds similarly, storing the inference result in the list LP.
However, we must take care to also model the special case
that occurs if an adversary has control over all data owners,
all training computers and at least one model owner. In this
case, the adversary could locally generate a valid combination
of data and model ((D1, · · · ,DN),M). In the ideal world, we
model this by extending the functionality to accept such lo-
cally trained models and, if consistent with the training data,

append them to LM before proceeding with the inference.

Auditing. Any client that has received a prediction, can re-
quest audits of that prediction using any auditing function
from a set of allowed auditing functions. During auditing, the
lists LM and LP are used to verify that an auditing request is
consistent. Similarly to the special case we had to consider
during inference, we must model the ability to locally gen-
erate valid inferences if the adversary controls all inference
computers and a model owner. In this case, the functionality
appends such locally generated predictions to LP (if internally
consistent) before verifying the auditing request. During au-
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diting, the adversary can still choose to abort the computation,
but as we require auditing to achieve identifiable abort, the
adversary must reveal the identity of at least one malicious
party to the functionality. In the case of inconsistencies in the
audit inputs, the functionality also aborts and identifies the
(uniquely determined) party at fault to the audit computers.

3.2 Arc Protocol

Our protocol lifts existing PPML systems to the cryptographic
auditing setting by augmenting training and inference to pro-
duce receipts that can later be used to verify the consistency
of the training data, model, and prediction under audit. Sup-
porting real-world deployments with many potential inference
clients requires scaling independently of the number of infer-
ences and clients in the system. At the same time, we want
to minimize the state that clients need to store beyond the
received predictions. In Arc, we achieve this through concise
cryptographic receipts for training and inference, which al-
lows clients to efficiently store all material necessary to later
verify the consistency of training data, model, inference sam-
ple, and prediction during auditing. At the same time, receipts
are cryptographically bound to specific inferences, i.e., clients
cannot generate audit requests for predictions they did not
receive. In the following, we give an overview of our proto-
col, ΠArc (c.f. Fig. 3) and its building blocks. We prove the
security of our protocol in the real/ideal world paradigm [15]
in Appendix B in the extended version of the paper [1].
Building Blocks. We construct our protocol from sev-
eral cryptographic primitives, including a reactive arithmetic
black-box (ABB) interface to abstract PPML protocols. In
addition, we require secure point-to-point channels between
parties that participate in the same phase and, in the auditing
phase, a secure broadcast channel in order to achieve identifi-
able abort. We assume that all parties (except for clients) have
a cryptographic identity which is set up through a public-key
infrastructure (PKI), and that clients can access the (public)
identities of the other parties through the PKI. Our proto-
col makes use of standard signatures (cf. Definition A.5 in
Appendix A [1]) and a Proof-of-Consistency (PoC) (cf. Defi-
nition 4.1) which acts like a commitment, but admits signifi-
cantly more efficient instantiations in the secure computation
setting, as we discuss in the next section. In the following, we
will use commitment and PoC interchangeably.
Proof of Training/Inference. When training and infer-
ence are realized via secure computation, computational in-
tegrity follows directly from the guarantees of the underlying
MPC protocol. However, supporting real-world deployment
scenarios where either training or inference are computed
centrally on plaintexts, requires explicit proofs of computa-
tional integrity. There has been significant work on increas-
ingly efficient proofs for both training [36, 85] and infer-
ence [20, 48], making use of advances in SNARKs and re-
lated proof techniques. We model these as proof-of-training

(PoT) or proof-of-inference (PoI) (cf. Definitions A.6 and A.7
in Appendix A [1]). Recently, Proof-of-Learning (PoL) [44]
has emerged, aiming to provide an easier-to-generate alterna-
tive to PoT by relying only on heuristic assumptions rather
than strong cryptographic assumptions [34]. However, PoL
verification requires access to the original training data and
is computationally expensive, requiring many epochs of (re-
)training. Therefore, PoL is less attractive for our setting,
where verification must be computed under MPC.
Training & Inference. The training and inference phase
of ΠArc both provide a layer of consistency around calls to
the underlying PPML implementation (i.e., FABB.TrainT or
FABB.Predict). While the inference computation is fully deter-
ministic, training also requires randomness which we securely
sample (i.e., FRAND [10]) and commit to in order to prevent
reordering attacks [83]. Otherwise, the two phases proceed
nearly identically:
• Input Commitments (T.1/I.1). In addition to their inputs,
parties must provide a commitment to their inputs and the
protocol verifies the consistency of these commitments be-
fore proceeding. In the secure computation setting, this uses
PoC.Check which involves an (efficient) multi-party computa-
tion. In the plaintext setting, the computing parties can simply
locally recompute the commitments.
• Computation Integrity (T.2/I.2). After computing the under-
lying ML training or inference, the computing parties commit
(in the secure setting, collaboratively under MPC) to the result
and provide the result, commitment, and associated decom-
mitment randomness to the output-receiving parties. As we
later need to show that these outputs were the result of a valid
computation, the computing parties attest to the integrity of
the computation. In the secure setting, this can be achieved
via a distributed signature, as at least one of the computing
parties must be honest. In the plaintext setting, this requires a
PoT or PoI, as we cannot rely on a split-trust assumption for
integrity.
• Input Integrity (T.3/I.3). While the signature or proof tie the
result to a valid computation, they do not provide sufficient
guarantees about the inputs. Therefore, the input parties verify
their inputs were used and provide signatures to attest to this.
• Output Consistency (T.4/I.4). The output from the com-
putation is provided to the output-receiving parties (in the
plain) along with the associated receipt data. These parties
then verify that the signatures and proofs are valid, and that
the outputs (and decommitment randomness) they received
matches the commitments in the receipt.

Note that providing a plaintext inference result to the client
is essential for a useful inference service. However, one could
consider a variant of the protocol in which the model owners
only receive shares of the model, rather than the plaintext
model. While our protocol could be trivially extended to sup-
port this, this would both unnecessarily complicate the nota-
tion and would require the long-term storage of secret shares
and potentially complicated operations such as secret-share
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Figure 3: Protocol ΠArc

ΠArc is a protocol between NDH data owners DH = {DH1, . . . ,DHNDH}, NM model owners M = {M1, . . . ,MNM}, NC clients C = {C1, . . . ,CNC}, NTC

training computers TC = {TC1, . . . ,TCNTC}, NIC inference computers IC = {IC1, . . . ,ICNIC}, and NAC audit computers AC = {AC1, . . . ,ACNAC}.
ΠArc is parameterized by a learning algorithm T , a set of allowed auditing functions Faudit, a proof-of-consistency PoC as in Definition 4.1 [1],
a signature scheme SIG as in Definition A.5 [1]. Protocol parts only relevant to plaintext training are marked in olive, and those only
relevant to plaintext inference are marked in blue. In the case of plaintext training, Arc is also parameterized by a proof of training POT as
in Definition A.6 [1] and, in the case of plaintext inference, a proof of inference POI as in Definition A.7 [1]. ΠArc assumes access to an MPC
protocol represented by instances of FABB and, in the case of plaintext training or plaintext inference, a distributed randomness source FRAND.
ΠArc also assumes access to a broadcast channel FBC and an MPC protocol FABB [ID] with ID-Abort, also used by PoC internally.
Input: Each DHi holds their training dataset Di ∈ Fl×di consisting of a vector of di input feature vectors of size l. Each client C j holds a list of
prediction samples [x] where x ∈ Fl

p and a set of audit inputs which is a subset of [x].
Initialize: All parties except the clients receive signing keys from FPKI. All parties receive all corresponding verification keys from FPKI. The
parties also receive public setup parameters for PoC pppoc← PoC.Setup(1λ,d) where d is the maximum of all di and m, and (in the case of
plaintext training) pppot← POT.Setup(1λ) and (in the case of plaintext inference) pppoi← POI.Setup(1λ) .
Training: The protocol proceeds as follows with training computers TC, data owners DH and model owners M, using a new instance of FABB:
T.1 Each data owner DHi samples a random decommitment value rDi

$← R and:
• Inputs Di to FABB or sends (Di,rDi) to all TC.
• Computes a commitment to the training dataset cDi = PoC.Commit(pppoc,Di,rDi) and sends (cDi) to all TC.
• Executes PoC PoC.Check(pppoc,cDi , [[Di ]];Di,rDi) with all TC or each TC verifies that cDi = PoC.Commit(pppoc,Di,rDi) for all DHi.

T.2 Each training computer TC j:
• Samples [[rM ]], [[rJ ]], [[J ]] using FABB.RAND or all TC and M receive rM , rJ , J from FRAND.
• Invoke FABB.TrainT ([[D1 ]], . . . , [[DNDH ]], [[J ]]) to compute the model [[M ]] or compute M← T (D1, . . . ,DNDH ,J).
• Using FABB, commit to the model [[cM ]] = PoC.Commit(pppoc, [[M ]], [[rM ]]), randomness [[cJ ]] = PoC.Commit(pppoc, [[J ]], [[rJ ]]) and
open cM ,cJ to all TC, DH and M or compute cM ← PoC.Commit(pppoc,M,rM) and cJ ← PoC.Commit(pppoc,J,rJ).
• Compute [[σTC ]]← SIG.DistSign(skTC j

,cD1 ∥ . . .∥ cDNDH
∥ cM ∥ cJ) and open σTC to M, DH using FABB

or πT← POT.Prove(pppot,(cD1 , . . . ,cDNDH
,cM ,cJ);D1, . . . ,DNDH ,M,J,rD1 , . . . ,rDNDH

,rM ,rJ).
• Send (cD1 , . . . ,cDNDH

) and open [[M ]], [[rM ]] to M using FABB or send (cD1 , . . . ,cDNDH
,cM ,cJ ,πT,M,rM ,rJ ,J) to all M.

• Send (cD1 , . . . ,cDNDH
,cM ,cJ ,πT) to all data owners DH.

T.3 Each DHi checks that it received the same (cD1 , . . . ,cDNDH
,cM ,cJ ,πT) from all TC, SIG.Verify(pkTC,cD1 ∥ . . . ∥ cDNDH

∥ cM ∥ cJ ,σTC) or
POT.Verify (pppot, cD1 , . . . ,cDNDH

, cM , cJ , πT), and its cDi is contained in cD1 , . . . ,cDNDH
and aborts otherwise. Then, each computes σi

T←
SIG.Sign(skDHi

,cD1 ∥ . . .∥ cDNDH
∥ cM ∥ cJ) and sends σi

T to all M.
T.4 Each model owner Mk checks each of the following and aborts if any fail:

• Verify that the (cD1 , . . . ,cDNDH
,σTC) (and cM ,cJ ,M,rM ,rJ ,J,πT) received from each TC are consistent with each other.

• cM = PoC.Commit(pppoc,M,rM) and cJ = PoC.Commit(pppoc,J,rJ).
• The list of signatures SIG.Verify(pkDHi

,cD1 ∥ . . .∥ cDNDH
∥ cM ∥ cJ ,σ

i
T) for each DHi.

• SIG.Verify(pkTC,cD1 ∥ . . .∥ cDNDH
∥ cM ∥ cJ ,σTC) or POT.Verify (pppot, cD1 , . . . ,cDNDH

, cM , cJ , πT).
Inference: The protocol proceeds as follows between inference computers IC, client Ci and model owner Mk, using a new instance of FABB:
I.1 Ci sends c′M (identifying the requested model) to all IC, and inputs a prediction sample x to FABB or sends x to all IC, then:

• All IC ask Mk to send (c,σT,σTC or πT) where c = (cD1 , . . . ,cDNDH
,cM ,cJ) to IC, and input the model M to FABB or send M,rM to IC.

• The inference computers abort if cM ̸= c′M .
• Mk executes PoC.Check (pppoc, cM , [[M ]]; M, rM) with all IC or each IC checks cM = PoC.Commit(pppoc,M,rM) and aborts if it fails.

I.2 Each inference computer IC j:
• Computes [[y ]] by invoking FABB.Predict([[M ]], [[x ]]) or computes y←M(x).
• Samples [[rx ]], [[ry ]] using FABB.RAND or all IC and DHi receive rx, ry FRAND.
• Computes [[cx ]] = PoC.Commit(pppoc, [[x ]], [[rx ]]) and [[cy ]] = PoC.Commit(pppoc, [[y ]], [[ry ]]) and opens cx and cy to IC, Ci and Mk using
FABB or computes cx = PoC.Commit(pppoc,x,rx) and cy = PoC.Commit(pppoc,y,ry) and send (cx,cy) to Ci and Mk .
• Computes [[σIC ]]←SIG.DistSign(skIC j

,c∥cx ∥cy) & opens σIC to Ci,Mk using FABB or πI←POI.Prove(pppoi,cM ,cx,cy;M,x,y,rM ,rx,ry).
• Sends (c,σT,σTC or πT) to Ci and open ([[y ]], [[rx ]], [[ry ]]) with FABB to Ci, or send (c,σT,σTC or πT,πI,y,rx,ry) to Ci. Sends (c,πI) to Mk.

I.3 The model owner checks that it receives the same (c,cx,cy), that SIG.Verify(pkIC,c ∥ cx ∥ cy,σIC) or POI.Verify (pppoi, cM , cx, cy, πI),
aborting otherwise, and computes σI← SIG.Sign(skMk

,c∥ cx ∥ cy ∥σT ∥σTC or πT ∥σIC or πI) and sends σI to Ci.
I.4 The client C checks each of the following and aborts if any fails:

• Verify that the (c,cx,cy,σT,σTC or πT,σIC or πI,y,ry,rx) received from each TC are consistent with each other.
• SIG.Verify(pkMk

,c∥ cx ∥ cy ∥σT ∥σTC or πT ∥σIC or πI,σI) is a valid signature by pkM.
• Verify that cx = PoC.Commit(pppoc,x,rx) and cy = PoC.Commit(pppoc,y,ry).
• The list of signatures SIG.Verify(pkDHi

,c,σi
T) for each DHi, and SIG.Verify(pkIC,c∥ cx ∥ cy,σIC) or POI.Verify (pppoi, cM , cx, cy, πI).
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Figure 3: Protocol ΠArc (cont.)
Auditing: The protocol proceeds as follows on a new instance of FABB [ID] between computing parties AC, a client C j and the model owner Mk:
A.1 The client C j inputs (x,y) to FABB [ID] and broadcasts (c,cx,cy,σI,σT,σTC or πT,σIC or πI,pkMk

, faudit,aux) to all parties using FBC.
A.2 All parties check that pkMk

is a valid identity from FPKI, verify the model owner signature with SIG.Verify(pkMk
,c∥cx ∥cy ∥σT ∥σTC or πT ∥

σIC or πI,σI) and check that faudit ∈ Faudit. Otherwise, each party aborts marking C j as malicious.
A.3 Verify Audit Requester: The client C j runs PoC.Check[ID](pppoc,cx, [[x ]];x,rx),PoC.Check[ID](pppoc,cy, [[y ]];y,ry) with the audit com-

puters to prove to the AC that its inputs x and y are consistent with cx and cy. If any of the checks fail, ACi aborts marking C j as malicious.
A.4 Verify Inference: The model owner inputs the model M to FABB [ID]:

• The model owner Mk runs PoC.Check[ID](pppoc,cM , [[M ]];M,rM) with the audit computers acting as the verifiers to proof that its model
input is consistent with cM from C j. Each ACi aborts marking Mk as malicious if verification fails.
• Each audit computer computes SIG.Verify(pkIC,c∥ cx ∥ cy,σIC) or POI.Verify (pppoi, cM , cx, cy, πI).

A.5 Verify Training: Each data owner DHi inputs their dataset Di to FABB [ID].
• Each data owner DHi performs PoC.Check[ID](pppoc,cDi , [[Di ]];Di,rDi) with the audit computers acting as verifiers to proof that its input
[[Di ]] is consistent with cDi . AC j also checks SIG.Verify(pkDHi

,c,σT) for each DHi. If verification fails, AC j aborts marking Mk as malicious.
• Each audit computer computes SIG.Verify(pkTC,c,σTC) or POT.Verify (pppot, c, πT).

A.6 The audit computers compute [[o ]]← FABB [ID].Audit( faudit, [[D1 ]], . . . , [[DNDH ]], [[M ]], [[x ]], [[y ]],aux) and use FABB [ID] to open o at C j.

maintenance and re-sharing to new sets of entities [41, 65, 77],
a complexity which we aim to avoid in our design.

The receipt received by the model owners after training
comprises commitments to the training data, the training ran-
domness and the resulting model; the data owners’s signa-
tures; and either the signature from the computing parties or a
proof of training. During inference, the model owners provide
this training receipt instead of merely the model commitment.
As a result, the inference receipt is essentially an extension of
the training receipt and includes the equivalent commitments
and signatures (or proofs, where applicable) for both training
and inference. Therefore, the conciseness of the underlying
commitments (i.e., PoC) is crucial to ensuring that the over-
head imposed upon the client due to the need to store this
receipt is minimized.

Auditing During auditing, the client provides the receipt
and inputs the prediction sample and result into the MPC
computation. Meanwhile, the model owners and data own-
ers need to provide their respective inputs. The protocol first
confirms that the signatures (or proofs, where applicable) in
the receipt are valid, in reverse order, i.e., beginning with the
last signature generated at the end of inference. Then, it uses
PoC.Check to verify the consistency of the provided inputs
with the commitments in the receipt. Finally, after all checks
have passed, the protocol computes the audit function (i.e.,
FABB.Audit). Should any of the checks fail, the protocol aborts
and identifies the party at fault. During the auditing phase, we
can rely on the fact that an honest client will only ever accept
valid receipts, as the proof of computational integrity (or, in
the secure computation setting, signatures) allow them to ver-
ify that the receipt was generated correctly. At the same time,
these checks prevent the adversary from constructing a valid
malicious receipt that would incriminate an honest party. As
a result, any inconsistency between the receipt and the input
data provided to the audit phase can be uniquely attributed

to the party providing the corresponding auditing input. For
more details, we refer to the proof in Appendix B [1].

4 Proof of Consistency

In our auditing protocol ΠArc, we assume access to a Proof-
of-Consistency protocol PoC that allows a party to commit
to their (secret) inputs and later allows the parties to collab-
oratively check that a given (set of) secret shared2 values
is consistent with the provided commitment. Note that PoC
might seem related to Verifiable Secret Sharing (VSS), which
guarantees that parties receive a valid sharing of a given value.
However, this is orthogonal to our requirement of ensuring
consistency of inputs across different phases and, therefore,
different sharings of that value. In theory, the consistency
guarantees required for Arc could also be achieved straight-
forwardly by using standard commitments. However, as we
show in our evaluation, such approaches incur significant per-
formance overheads, especially during verification, making
practical deployment infeasible.

4.1 Defining Proof-of-Consistency
In the following, we provide the formal definition of PoC and
the properties it needs to achieve before discussing several
approaches based on existing literature and highlighting their
inherent limitations with regard to efficiency and succinctness.

Definition 4.1 (Proof-of-Consistency Protocol). A valid
Proof-of-Consistency is an interaction between a Prover P
and a set of N−1 Verifiers V. This protocol allows the veri-
fiers to check that a vector [[x ]] = ([[x1 ]], . . . , [[xd ]]) stored in
an ideal functionality FABB is consistent with a commitment
c to x = (x1, . . . ,xd) ∈ Fd

p. A Proof-of-Consistency is defined

2More precisely, in the representation used by FABB.

1982    33rd USENIX Security Symposium USENIX Association



as a set of protocols (PoC.Setup, PoC.Commit, PoC.Check)
where:

• PoC.Setup(1λ,d)→ pppoc: prepares public parameters pp
supporting inputs of size d.

• PoC.Commit(pppoc,x,r)→ c: An algorithm in which the
prover generates a commitment to (a vector of) inputs x
with randomness r.

• PoC.Check(pppoc,c, [[x ]];x,r)→{0,1}: A protocol where
the prover convinces the verifiers that the commitment c is
consistent with [[x ]]. Only the prover knows x and r.

A valid Proof-of-Consistency should satisfy correctness,
soundness and zero-knowledge, which we formally define
in Appendix C. In addition to the formal requirements, a
PoC instantiation should yield succinct commitments and its
protocols should be efficiently computable (specifically, re-
quire minimal MPC operations in PoC.Check) in order to be
practical for ML. Succinctness is crucial for ensuring effi-
cient communication and storage, especially when dealing
with large input sizes and resource-constrained clients. In
the following, we discuss existing approaches and how they
fall short in our setting. We refer to Appendix D in the ex-
tended version of the paper [1] for formal definitions of the
corresponding protocols.
Direct Commitments [2, 53, 78]. A straightforward ap-
proach to PoC is to use a cryptographic commitment scheme
to instantiate PoC.Setup and PoC.Commit with COM.Setup
and COM.Commit, respectively. In PoC.Check, the commit-
ment is verified with respect to the secret shared inputs
[[x ]] and decommitment [[r ]] by computing COM.Verify us-
ing FABB. This typically requires recomputing the com-
mitment under MPC, because the usual implementation
of COM.Verify is to re-compute the commitment c′ ←
COM.Commit([[x ]], [[r ]]) and checking that c′ = c. Related
work has suggested to use this protocol with commit-
ments based on a collision-resistant hash function, such as
SHA-2 [53], SHA-3 [78] and MPC-friendly constructions
such as LowMCHash-256 [2]. The advantage of this approach
lies in its succinct commitment size which is typically con-
stant. However, despite its efficient storage needs, the hash-
based approach incurs significant computational costs during
verification. This is primarily due to hashes relying on non-
linear operations, which are expensive to compute in MPC.
Homomorphic Commitments [93]. To mitigate the MPC
cost of PoC.Check, one can rely on homomorphic commit-
ments such as Pedersen commitments instantiated using an
elliptic curve group [72, 93]. Instead of calling COM.Verify
for the full input vector [[x ]], parties use the homomorphism to
compute a linear combination of commitments to individual
elements xi, trading off MPC overhead with local computa-
tion. As a result, parties only compute a single commitment
c̃′ = COM.Commit(∑i γi · [[xi ]]) with FABB in PoC.Check and
compare the result with c̃′ = ∑i γi · ci. Unfortunately, a down-

side of this approach is that commitments to individual ele-
ments must be stored, resulting in a size that is linear in |x|.
This approach results in a PoC.Check that is asymptotically
more efficient than the hash-based approach. In practice, hash-
based approaches remain more concretely efficient for very
small inputs. However, the Pedersen commitment approach
becomes more efficient already for moderate input sizes.

4.2 Arc PoC Protocol
The key insight of our efficient PoC protocol is that we do not
actually need to compute COM.Commit in order to verify that
the [[x ]] in FABB matches the input x of COM.Commit. Instead,
we propose a protocol that allows the prover P to convince the
verifiers of this fact with a polynomial identity test. Towards
this, we first define a polynomial g(B) := ∑

d
i=1 xi ·Bi, i.e., in-

terpreting the elements of x ∈ Fd
p as the coefficients of the

polynomial. The prover commits to g using a (homomorphic)
polynomial commitment scheme [49] to obtain a constant-size
commitment c. In PoC.Check, the parties then first collabora-
tively sample a point β

$←Fp and then evaluate the polynomial
at β (using FABB) by computing ρ := ∑

d
i=1[[xi ]] ·βi and open-

ing ρ. This is cheap in MPC because it only involves addition
and scaling operations on the secret shares [[x ]] which can
be executed locally. The prover, who originally committed
to x with c, can now do a polynomial commitment opening
proof to show that g(β) equals ρ. The other parties verify this
evaluation proof, which, if valid, implies that the polynomial
in FABB is (with high probability) equal to the one commit-
ted to with c. One caveat with this approach is that ρ reveals
information about x. We can overcome this by generating and
committing to a random polynomial gω at the beginning of
PoC.Check and use it to (additively) mask g. We can then
evaluate and open g(β)+gω(β) which is now indistinguish-
able from random. The prover and verifiers proceed with the
evaluation proof as before, but on the combined commitment
of g and gω, using the homomorphic property of the poly-
nomial commitment scheme. In the following, we provide a
formal definition:

Protocol 4.2 (Consistency Check). Let FABB be an instance
of an ideal MPC functionality over a field Fp, let FRAND be
an ideal functionality that returns a random element from Fp
and let x = (x1, . . . ,xd) ∈ Fd

p by the input of prover P. Let
[[x ]] = ([[x1 ]], . . . , [[xd ]]) be the input of the prover P to FABB.
Let PC be a polynomial commitment scheme as in Defini-
tion A.2 [1] that is also homomorphic as in Definition A.4 [1].
The protocol Πcc works as follows:

• CC.Setup(1λ,d)→ pp: Run pp← PC.Setup(d), where d
is the number of elements in the input.

• CC.Commit(pp,x,r)→ c: The prover computes a polyno-
mial commitment c← PC.Commit(pp,g,r) where g is de-
fined as g(z) = ∑

d
i=1 xi · zi. The prover outputs c.
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• CC.Check(pp,c, [[x ]];x,r)→{0,1}: The protocol proceeds
as follows:

1. The prover samples a masking value ω
$← Fp and com-

mitment randomness rω

$← Fp and computes a poly-
nomial commitment cω← PC.Commit(pp,gω,rω) to a
degree-0 polynomial gω(z) = ω. The prover sends cω to
all parties and inputs ω to FABB.

2. The parties invoke FRAND to obtain a random challenge
β

$← Fp.
3. The parties invoke FABB to compute

[[ρ ]] := [[ω ]]+∑
d
i=1[[xi ]] ·βi and subsequently open ρ.

4. The prover P generates a proof π← PC.Prove(pp,c+
cω,g+gω,r+ rω,β,ρ) and sends π to each verifier V.

5. Each verifier runs PC.Check(pp,c · cω,β,ρ,π). If verifi-
cation passes, they output 1, otherwise 0.

Intuitively, security follows from the fact that if the committed
polynomial is not equal to the polynomial evaluated on the
secret shares, then the prover can only open the commitment
to ρ with negligible probability. We provide a formal security
proof in Appendix C (Lemma C.1). The protocol Πcc can be
extended to provide ID-Abort, denoted as Πcc [ID], by using a
broadcast channel for the prover in Step 4 and using an MPC
protocol that provides identifiable abort (FABB [ID]).
Cost Analysis. Many polynomial commitment schemes have
a constant storage overhead independent in the input size,
resulting in each party having to store only a single, constant-
sized commitment for each input vector. Our protocol can
be instantiated with any homomorphic polynomial commit-
ment scheme and inherits the efficiency profile of the un-
derlying scheme. If instantiated with KZG polynomial com-
mitments [49], we achieve a constant storage overhead in-
dependent of the input size and a constant verification time.
Although the public setup parameters of KZG are of size
O(d), we can consider them as system parameters and reuse
them for the input of each party [49]. Hence, our protocol
only requires a storage overhead linear in the size of the in-
put and the number of parties, i.e., O(N + d). If used with
an inner-product argument-based polynomial commitment,
the commitment size could also be made constant (e.g., a
single Pedersen Vector Commitment (PVC)). However, the
verification time would be linear in the input size [11].
EC-MPC. Prior work has observed that most secret-sharing-
based MPC protocols for finite field arithmetic generalize
to arithmetic circuits involving elliptic curve points [70, 84].
Using such protocols with additional support for computa-
tions over an elliptic curve group G of order p (which we
denote as F [EC]

ABB ) when instantiating PoC offers a significant
improvement to performance. Specifically, we can acceler-
ate the execution of our PoC.Commit algorithm under secure
computation (i.e., the creation of output commitments).
Batch verification Our protocol Πcc allows the verifier to
check the integrity of the prover’s input by verifying one pair-

T M I

Data Validation
Input Checks [19, 63]  # #
Sample Attribution [39, 45, 52, 55, 81]    
Party attribution [64]    

Model Validation
Validation Sets [22] #  #
Feature Attribution [43, 62, 74] G#   
Certification [46, 53, 78] #   

Process Validation
Algorithm Verific. [36, 44, 48, 85]   #
Constraint Verific. [80]   #

Table 2: A priori and post hoc algorithms from the ML in-
terpretability and safety literature along with whether they
require the training data (T), the model (M) and the inference
(I) as input.

ing equation. However, the verifier still needs to perform this
check for each input party. We can optimize this further for
KZG commitments by leveraging their homomorphic prop-
erty [35, 49] (Definition A.4 [1]). Let c1, . . . ,cN be the set
of commitments and ρ1, . . . ,ρN the set of target evaluations
for each prover P1, . . . ,PN at a common random point β ∈ Fp
from Step 3 of the consistency check. The verifier first com-
putes a random linear combination of the commitments as
c̃ := ∑

N
i γici for a randomly sampled γ ∈ Fp, as well as the

corresponding evaluation ρ̃ =: ∑
N
i γiρi and aggregate proof

π̃ =: ∑
N
i γiπi. The verifier can then check this aggregated

commitment using PC.Check(pp, c̃,β, ρ̃, π̃). This allows the
verifier to check, in the optimistic case, only one pairing equa-
tion instead of N at the cost of a negligible statistical error.
Security follows from the fact that the aggregated polynomial
commitment c̃ will only agree with the aggregated evaluation
point ρ̃ at a random point β with negligible probability due
to the Demillo-Lipton-Schwartz-Zippel Lemma ([29]). If ver-
ification passes, this implies that all commitments open to
the correct evaluation point with overwhelming probability.
If verification fails, this must mean that at least one of the
commitments is inconsistent with high probability. In this
case, the verifier can proceed to check the commitments and
proofs individually.

5 Auditing Functions

Until now, our discussion has centered around the crypto-
graphic protocol that enables robust and secure audits of pri-
vate models. We now focus on how we realize the audit func-
tionality enabled by our framework. The algorithmic side of
auditing for ML is an active area, and alternative instantiations
that enable different properties exist or are actively being de-
veloped (see Table 2 for an overview). In our work, we focus
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on post-hoc audits, specifically accountability (sample/party
attribution), explainability (feature attribution), and robust-
ness & fairness (certification). While Arc’s design is highly
extensible with additional auditing functionalities (similar to
how we support a wide range of PPML systems), here we
focus our discussion on auditing functions currently imple-
mented in our framework. In Appendix G in the extended
version of the paper [1], we provide a more detailed descrip-
tion of each function.

5.1 Robustness & Fairness
The community has devised a range of techniques to show that
a model is robust against adversarial examples [37, 91], i.e.,
that the model is stable to small variations in the input. While
global robustness guarantees are more naturally realized as
a-priori checks, local robustness [24], which certifies that a
model consistently produces the same prediction y for all
inputs within a radius R around the original input x, naturally
suits the post-hoc auditing setting we consider. In Arc, we
adapt the algorithm proposed by Jovanovic et al. [46] for FHE
to the MPC setting. The algorithm samples n perturbed inputs
around the input x by adding Gaussian noise and obtaining
predictions for these samples. Finally, a statistical check is
conducted to assess whether the obtained prediction y remains
invariant to these perturbations with high probability. The
output of the auditing function is a boolean indicating whether
the model is locally robust with confidence 1−α. We can
extend the same technique to achieve fairness guarantees, as
there is a well-established connection between robustness and
individual fairness [32, 46, 76, 92]. It is sufficient to change
the closeness metric of the sampling procedure to generate
perturbed inputs that are close to x in terms of fairness (i.e.,
inputs that should be treated similarly have a small distance).

5.2 Accountability
We consider two flavors of accountability mechanisms that
attribute responsibility for decision made by a model: sample
attribution identifies the influence of individual data sam-
ples on a prediction, while party attribution merely provides
the relative influence of each data owner’s dataset, providing
auditability while revealing less information. A variety of
methods to identify the impact of individual data samples
exist [39, 45, 52, 55, 81], however, some (e.g., influence func-
tions [55]) require substantial computational resources (e.g.,
inverting the Hessian matrix of the loss function) which makes
them prohibitively expensive under secure computation. In
Arc, we leverage an approach using KNN-Shapley values [45],
i.e., Shapely values of a KNN classifier on the training data’s
latent space representation. As there exists a closed-form for-
mulation of the Shapley values for KNN [45], this allows
an efficient MPC realization. For party attribution, Arc uses
an efficient unlearning approach [64]. The key idea here is
that if a suspicious prediction (x,y) was (at least partially)

the result of data provided by a data owner, then excluding
that party’s data will lead to the absence (or weakening) of
the suspicious prediction. Rather than recomputing leave-out
models from scratch, we use an algorithm [64] that uses un-
learning of the data of a party from the original model [81],
which requires only a small number of training epochs until
sufficient differences are detectable.

5.3 Explainability
A wide range of methods has been proposed to explain the
predictions of complex models [62, 74, 82]. Of these, we con-
sider additive feature attribution methods [62] as particularly
suitable for privacy-preserving auditing as they provide an
attractive trade-off between leakage and utility. These meth-
ods highlight which features of a prediction sample are most
influential for the prediction, even for complex ML models.
They achieve this by approximating the target model’s be-
havior locally (around the given prediction) with a simple
and explainable (e.g., linear) model. In Arc, we leverage Ker-
nelSHAP [62] to approximate the local decision boundary
of the classifier, through a linear regression on the features.
We sample points around the prediction sample and weigh
them based on their distance to the sample as measured by
the Shapely kernel. As a result, the regression coefficients
directly correspond to the Shapley values of the features.

6 Evaluation

In this section, we evaluate the performance of Arc in the
training, inference and auditing phases for different work-
loads and auditing functions. We evaluate the overhead of our
protocol when instantiated with different approaches to the
consistency layer PoC. For training and auditing, we focus
on the MPC versions of our protocol, as these are the most
established forms of verifiable ML computation.
Implementation. Our implementation is based on MP-
SPDZ [50], a popular framework for MPC computation that
supports a variety of protocols. We extend MP-SPDZ with
protocols for share conversion and elliptic curve operations
on the pairing-friendly BLS12-377 curve [12] provided by
the libff library [23]. We use ECDSA signatures on the
secp256k1 curve [17] for which a distributed signing pro-
tocol was previously implemented in MP-SPDZ [28]. For
the evaluation proofs of the polynomial commitments, we
use the implementation of the KZG polynomial commitment
scheme [49] provided by Arkworks’ poly-commit library [4].
We perform share conversion (cf. Appendix E [1]) to con-
vert between Z264 and the scalar field FBLS12-377. The MPC
computations for ML training, inference, and auditing func-
tions are expressed in MP-SPDZ’s domain-specific language.
We rely on the higher-level ML primitives that MP-SPDZ
provides that use mixed-circuit computation. Note that we
perform exact truncation instead of probabilistic truncation
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for fixed-point multiplication because the latter has recently
been shown to be insecure [61].

To compare the performance of our consistency layer to
other approaches (cf. 4.1), we additionally implement a ver-
sion of PoC based on the SHA3-256 cryptographic hash
function denoted by PoCSHA3 that internally uses the Bristol-
fashion circuit implementation of the Keccak-f sponge func-
tion [69]. We also implement a version PoCPED based on
Cerebro [93] that uses Pedersen commitments by adapting
the open-source implementation provided by the authors. We
make the implementation of our protocol and the various
consistency layers that we evaluate available as open-source3.
Experimental Setup. We run Arc on a set of AWS
c5.9xlarge machines running Ubuntu 20.04, each equipped
with 36 vCPUs of an Intel Xeon 3.6 Ghz processor and
72 GB of RAM. For the BERT transformer model, we use
c5.24xlarge, featuring 96 vCPUs of an Intel Xeon 3.6 Ghz
processor and 192 GB of RAM, as it provides sufficient mem-
ory to fit the significantly larger model. The machines are
connected over a local area network (LAN) through a 12 Gbps
network interface with an average round-trip time (RTT) of
0.5 ms. We additionally perform our experiments in a simu-
lated wide area network (WAN) setting using the tc utility
to introduce an RTT of 80 ms and limit the bandwidth the
2 Gbps. We report the total wall clock time and the total com-
munication cost in terms of the data sent by each party. This
includes the time and bandwidth required for the online phase
and the preprocessing phase that sets up the correlated ran-
domness necessary for the MPC protocol. We also report the
storage overhead for which we apply log scaling as the over-
head varies significantly between different PoC approaches
and settings. In experiments in the WAN setting and those
involving maliciously secure protocols, we estimate the ML
training operations based on 5 and 50 batches of gradient
descent, respectively. For the BERT transformer model, we
extrapolate further due to the significant size of the model and
training data. For the related work, which has overhead linear
in the size of the input, we also extrapolate results for some
of the larger instances.

We evaluate the computational phases in the 3-party com-
putation (3PC) setting with a maliciously secure-with-abort
protocol that combines SPDZ-wise redundancy with repli-
cated secret sharing over a 64-bit ring [27]. We also evaluate
the performance of a semi-honest protocol based on replicated
secret sharing. These protocols are representative of the most
efficient MPC protocols in the malicious and semi-honest
settings for ML workloads. We apply an optimization for the
auditing phase that uses the fact that all inputs in this phase
are authenticated using commitments. This allows us to op-
timistically use a security-with-abort protocol and, only, if
the protocol aborts, restart the computation with a less effi-
cient identifiable-abort protocol with the guarantee that this

3github.com/pps-lab/arc

Storage Prover Comp. Verifier Comp.

PoCSHA3 N - d ·N (mpc)

PoCPED d ·N - d ·N (local)+N (mpc)

Ours N d (local) N (mpc)

Table 3: Asymptotic computational complexity (in big-O nota-
tion) and storage requirements of the consistency approaches
we evaluate for a computation with N input parties each with
d input elements. We differentiate between local and MPC
computation. For PoCSHA3, we consider Keccak-f operations.
For PoCPED and ours, we consider group operations.

execution uses the same inputs. We choose the 3PC setting
because it allows for the most efficient MPC protocols, favor-
ing PoCPED and PoCSHA3 whose Check relies more heavily
on MPC computation. Other settings such as 2-party com-
putation (2PC) or non-optimistically executing the auditing
would require more expensive MPC protocols, resulting in a
higher overhead for the computation. This would increase the
relative overhead of the related approaches compared to ours.
Scenarios. We evaluate four auditing functions from the
previous section, (i) Robustness, (ii) Fairness (cf. §5.1), (iii)
KNN-Shapley (cf. §5.2) and (iv) Kernel-SHAP (cf. §5.3), on
the following models and datasets.
(W1:Adult): A logistic regression model with 3k parame-
ters trained on the Adult [8] binary classification task for 10
epochs to predict whether a person’s income exceeds $50k
per year.
(W2:MNIST): A LeNet model consisting of 431K parameters,
referred to as ‘model C’ in prior work [51, 87] trained on the
MNIST image classification task [60] for 20 epochs.
(W3:CIFAR-10): A variant of AlexNet [59] as used in Fal-
con [88], comprising 3.9 million parameters trained on the
CIFAR-10 image classification task [58] for 40 epochs.
(W4:QNLI): A BERT transformer model [30] with sequence
length 128, comprising 85 million parameters, finetuned for
one epoch on 2500 samples of the Stanford Question Answer-
ing reading comprehension dataset [73, 89].

6.1 Evaluation Results
We evaluate the overhead that Arc imposes on the training,
inference and auditing phases. The main overhead of the con-
sistency layer in training and inference consists of two parts:
Verifying the inputs of the computation using PoC.Check
and, afterwards, computing the output commitments using
PoC.Commit. Other components, such as those related to the
signatures are negligible in comparison: distributed signing
takes at most 300ms for the WAN and verifying a signature
is a local operation taking 1ms. Clients only have to store
a single ECDSA signature of 64 bytes for the model owner
and each data owner, and a joint signature of 64 bytes for the
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Figure 4: Evaluation of Arc comparing the approaches relative
to a single epoch of PPML training.

inference computers and the training computers. We provide
an analysis of the asymptotic complexity of the different ap-
proaches in Table 3 and focus on the concrete performance
numbers for the rest of this section.
Training. We show the wall-clock time and bandwidth of
a single training epoch in Fig. 4, differentiating between the
overhead induced by our framework and the cost of the un-
derlying PPML training. In total, PPML training (W1:Adult)
takes 119 seconds, with consistency adding 5 seconds for ours,
545 seconds for PoCSHA3, and 570 seconds for PoCPED. For
(W2:MNIST), this is 123 minutes (+ 1.3 minutes, 2.9 hours,
or 22 hours), for (W3:CIFAR-10), 15 hours (+ 4.1 minutes,
9.8 hours, or 8 days), and for (W4:QNLI), this is 5.4 days
(+ 11 minutes, 1.1 days, or 16 weeks), in the semi-honest LAN
setting. We refer to Appendix F [1] for a full report of end-
to-end training results and further results for (W2:MNIST)
which have been omitted here due to space constraints. Note
that we do not evaluate (W4:QNLI) training in the malicious
WAN setting, as this is beyond the current state of the art
for PPML. Since the bandwidth overhead is not significantly
affected by network delays, we only present the bandwidth
results once. As storage is, additionally, also independent of
the chosen MPC protocol, we do not differentiate between
semi-honest and malicious settings for storage.

We observe that the overhead of the baseline approaches
varies significantly for training. The timing overhead induced
by PoCPED is 66-500x compared to training but only 0.1-26x
with PoCSHA3 in the LAN setting. In the WAN setting the
relative overhead further increases to at most three orders of
magnitude because of the large number of MPC round-trips
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Figure 5: The overhead of our system’s consistency protocol
relative to a single PPML inference for our three scenarios.

required to compute the operations related to hash functions
and elliptic curve operations. In comparison, our consistency
check protocol, which outperforms the related approaches
across all configurations, introduces only 0.001-1.35x over-
head in the LAN and less than 1.02x in the WAN setting. This
is because our protocol features more local computation than
MPC computation and is therefore less impacted by the slow-
down induced by network delays. Overall, we conclude that
the overhead of our approach, and also of PoCSHA3, is effec-
tively negligible in the context of PPML training. In contrast,
we observe that the PoCPED approach is infeasible for all but
the simplest models. The primary cost of PoCPED is the time
required to compute the individual Pedersen commitments
to the model parameters; the overhead during verification is
much smaller as this only involves computing a commitment
for each of the three input parties. Finally, the bandwidth
and storage required for PoCPED are significant as it needs
to commit to each input element individually. Meanwhile,
the storage overhead of our approach is independent of the
dataset and model sizes and similar to that of the hash-based
approach with 496 bytes compared to 416 bytes for PoCSHA3.
Inference. Model inference is a significantly smaller oper-
ation than training, resulting in a larger relative consistency
overhead As shown in Fig. 5, the consistency operations are
at least an order of magnitude slower than the inference itself,
even for our approach. However, in absolute numbers, the
overhead introduced by our approach is very small across all
configurations, ranging from a few seconds to a few minutes
for the large transformer model. In contrast, the overhead for
PoCSHA3 quickly becomes prohibitive for all but the smallest
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Figure 6: The overhead of Arc’s consistency layer relative to the cost of the auditing function computation in MPC for four
different auditing functions across our three scenarios.

models, already requiring over thirty hours in the WAN setting
for a single (W3:CIFAR-10) inference. PoCPED outperforms
PoCSHA3 in some cases, it induces similarly prohibitive over-
heads across all configurations.

A significant fraction, 35-66%, of the overhead in our ap-
proach is the result of the share conversion from the PPML
protocol’s computation domain Z264 to the scalar field domain
FBLS12-377. The conversion requires a bit decomposition and
re-composition for each input parameter which is expensive
and scales linearly in the input size. Although this overhead is
significant, it is small concretely, with 25 seconds in the active
security setting for (W3:CIFAR-10). In the case that lower
latency is required, the Z264 secret shares of the model can
be cached on the inference servers after a single conversion
to FBLS12-377 and verification with PoC.Check. When scaling
to larger models, PoCPED and PoCSHA3 become prohibitively
expensive concretely with a 250-6000x slowdown compared
to a single inference. As in training, we observe that the
storage required for the client receipts is comparable for our
approach and PoCSHA3, resulting in only 720 bytes and 608
bytes, respectively, per prediction. Most importantly, these are
independent of the model and training data size. Meanwhile,
PoCPED requires storage that is linear in the number of input
elements, e.g., requiring 5GB for (W3:CIFAR-10) and 11GB
for (W4:QNLI). This results in PoCPED inducing prohibitive
storage requirements for all but the simplest models.
Auditing. We present the wall-clock time and bandwidth
overhead for different auditing functions in Fig. 6. Note that
we do not evaluate auditing on (W4:QNLI) for the malicious
WAN setting, as the complexity of evaluating auditing func-
tions on such a complex model in this setting is pushing the
boundaries of what is possible with current PPML techniques.
Across all settings, Arc significantly outperforms related ap-
proaches in terms of runtime, with a storage overhead compa-
rable to the hash-based approach. As we move to larger input

sizes, for instance in the case of KNN-Shapley that considers
the full training dataset, the main cost of our approach after
share conversion is the multi-scalar multiplication (MSM)
required to compute the opening proof of the polynomial
commitment. Each prover party must compute an MSM that
is linear in the size of its input. Due to the properties of KZG,
the other parties only have to check one pairing equation per
prover, which we can further reduce to a single pairing equa-
tion due to the batch verification (c.f. §4.2). We also observe
that, for larger models, PoCPED outperforms PoCSHA3 and ap-
proaches the performance of our approach. This is primarily
because there is no need for computing and storing commit-
ments to the output during the auditing phase, sidestepping
the major weaknesses of the PoCPED approach. In fact, as
model sizes increase, the high constant overhead of the Peder-
sen commitments becomes less noticeable. However, our ap-
proach continues to outperform PoCPED both asymptotically
(cf. Table 3) and also concretely across all configurations.
In conclusion, we observe that our approach outperforms
the related work both asymptotically and concretely across
all configurations. While PoCPED and PoCSHA3 approach the
performance of our solution in some phases (for certain con-
figurations), they remain prohibitively expensive from an end-
to-end perspective. Meanwhile, we demonstrate that Arc in-
stantiated with our efficient PoC protocol is highly practical
across a wide range of settings, including scaling up to large
and complex models that push the boundary of the current
state of the art in privacy preserving machine learning.
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We refer to the extended version of the paper [1] for the
remaining appendices.

C Consistency Check

In the following, we proof that our approach (Πcc) fulfills the
properties for a Proof-of-Consistency (Definition 4.1), which
are defined below. We then provide formal definitions for the
strawman constructions discussed in §4.1. In addition, we
briefly discuss how to efficiently realize F [EC]

ABB for Pedersen
Vector Commitments.

A valid Proof-of-Consistency as in Definition 4.1 satisfies
the following properties:

• Correctness: If [[x ]] is a valid input of x to
FABB and c is a valid commitment to x computed
as PoC.Commit(pppoc,x,r) for all public parameters
pppoc ← PoC.Setup(1λ,d) and randomness r $←R , then
PoC.Check(pppoc,c, [[x ]];x,r) = 1 with overwhelming
probability.

• Soundness: If there exists no x such that FABB
holds [[x ]] and c = PoC.Commit(pppoc,x,r) for all pub-
lic parameters pppoc and for randomness r $←R , then
for all λ ∈ N, and for all polynomial-time adver-
saries A on input (auxA , [[x ]],r,c)), the probability that
PoC.Check(pppoc,c, [[x ]];x,r) = 1 is negligible in λ.

• Zero-knowledge: For every probabilistic polynomial-
time interactive machine V′ that plays the role of the
verifiers, there exists a probabilistic polynomial-time al-
gorithm S such that for any [[x ]], randomness r and c =
PoC.Commit(pppoc,x,r) the transcript of the protocol be-
tween V′ and P and the output of S on input ([[x ]], r, c) are
computationally indistinguishable.

We now prove that our protocol for input consistency satisfies
these properties.

Lemma C.1. Πcc is a Proof-of-Consistency (Definition 4.1).

Proof. The protocol Πcc in Protocol 4.2 satisfies the proper-
ties of a PoC:

• Completeness: From the correctness of the MPC protocol,
it holds that ρ = ω+∑

d
i=1 xi ·βi. Further, the opening proof

of the polynomial commitment (c · cω) also evaluates to
ρ at β due to the homomorphic property of the scheme.
The verifiers accept because of the completeness of the
polynomial commitment scheme.

• Soundness: Let ω be a random value, f̂ = f + fω be
the polynomial defined as in the protocol as f̂ (z) = ω+

∑
d
i=1 xi · zi, let [ω ] be a secret-sharing of ω and let [x ] be

a secret-sharing of x. If the verifiers do not hold a valid
secret-sharing [ω ] or [x ], then the MPC protocol in Step 3
aborts. Otherwise, the correctness of the MPC protocol
guarantees that a valid secret-sharing of [ω ] and [x ] im-
plies that ρ equals ω+∑

d
i=1 xi · βi and that f̂ (β) = ρ or

the protocol aborts. Let c′ be a polynomial commitment
such that c′ ̸= PC.Commit(pp, f̂ ,r + rω). Then, from the
polynomial binding property of the polynomial commit-
ment scheme, either c′ is a commitment to a different poly-
nomial f ′ or the verifiers reject the proof in Step 5 with
overwhelming probability. In the case that c′ is a commit-
ment to a different polynomial f ′, the verifiers only accept
PC.Check(pp,c′,β,ρ,π) if f ′ agrees with f̂ at point β be-
cause of the evaluation binding property of the polynomial
commitment. Because β was sampled uniformly at random,
from the Demillo-Lipton-Schwartz-Zippel Lemma [29], it
holds that:

Pr
[
PC.Check(pp,c′,β,ρ,π) = 1

]
≤ d

p
,

which can be made negligible by choosing a suitably large
p. Thus, the verifiers reject with overwhelming probability.

• Zero-knowledge: The simulator S works as follows: It
samples d random coefficients that define the polynomial
f and one random coefficient to define the polynomial
fω. Then, it samples a random point β

$←Fp and runs the
MPC simulator to produce the transcript for the compu-
tation of ρ. Finally, it samples r,rω

$←Fp and computes
c = PC.Commit(pp, f ,r), cω = PC.Commit(pp, fω,rω) and
π = PC.Prove(pp,c · cω, f + fω,r + rω,β,ρ) and outputs
(c,cω,π,ρ,β). The indistinguishability with the real exe-
cution follows from the fact that ρ is uniformly distributed
in Fp because of ω, the properties of the MPC protocol and
the hiding property of the polynomial commitment scheme.
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