é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Dancer in the Dark: Synthesizing and Evaluating
Polyglots for Blind Cross-Site Scripting

Robin Kirchner, Technische Universitdt Braunschweig; Jonas Méller, Technische
Universitdt Berlin; Marius Musch and David Klein, Technische Universitdt
Braunschweig; Konrad Rieck, Technische Universitdt Berlin; Martin Johns,

Technische Universitét Braunschweig

https://www.usenix.org/conference/usenixsecurity24/presentation/kirchner

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

-+ . = ——

Dancer in the Dark:
Synthesizing and Evaluating Polyglots for Blind Cross-Site Scripting

Robin Kirchner*', Jonas Moller#¥, Marius Musch’, David Klein, Konrad Rieck#, Martin Johns®

T Technische Universitiit Braunschweig, Germany
+ Technische Universitdt Berlin, Germany

{robin.kirchner, m.musch, david.klein, m.johns}@tu-braunschweig.de
{jonas.moeller. 1, rieck}@tu-berlin.de

Abstract

Cross-Site Scripting (XSS) is a prevalent and well known
security problem in web applications. Numerous methods to
automatically analyze and detect these vulnerabilities exist.
However, all of these methods require that either code or feed-
back from the application is available to guide the detection
process. In larger web applications, inputs can propagate from
a frontend to an internal backend that provides no feedback to
the outside. None of the previous approaches are applicable
in this scenario, known as blind XSS (BXSS). In this paper,
we address this problem and present the first comprehensive
study on BXSS. As no feedback channel exists, we verify the
presence of vulnerabilities through blind code execution. For
this purpose, we develop a method for synthesizing polyglots,
small XSS payloads that execute in all common injection con-
texts. Seven of these polyglots are already sufficient to cover
a state-of-the-art XSS testbed. In a validation on real-world
client-side vulnerabilities, we show that their XSS detection
rate is on par with existing taint tracking approaches. Based
on these polyglots, we conduct a study of BXSS vulnerabil-
ities on the Tranco Top 100,000 websites. We discover 20
vulnerabilities in 18 web-based backend systems. These find-
ings demonstrate the efficacy of our detection approach and
point at a largely unexplored attack surface in web security.

1 Introduction

Web applications are ubiquitous—so are their security prob-
lems. In particular, the vulnerability class of Cross-Site Script-
ing (XSS) remains one of the major security issues on the
Web. Over the past decade, XSS has been studied extensively,
with a focus on approaches to detect these flaws in exist-
ing applications. This detection relies on the identification
of insecure data flows from attacker-controlled inputs into
security-sensitive sinks. The actual techniques to pursue this
goal vary, but they all rely on the availability of observable
evidence of such data flows. This can be as simple as the

*Corresponding author

re-identification of an input string in the application’s HTML,
in the case of manual bug hunting, and as sophisticated as
fully automatic taint analysis.

This poses a problem for an often overlooked component of
large web applications: the backend. Similar to the use of web
technologies in its public frontend, the same application often
employs web interfaces for its internal backends. These inter-
faces, inaccessible from the public internet behind a firewall,
serve various internal application functions, including admin-
istration of the application, usage analysis, and back-office
tasks such as supply chain management and accounting.

Not different from public web applications, internal web
tools are also susceptible to security problems in general and
XSS in particular. As these backend systems process data
generated by the application’s public counterpart, there is a
high likelihood of data from potentially malicious, attacker-
supplied inputs flowing into the backend’s web code. This
situation opens the door for XSS attacks on internal applica-
tion components. However, current XSS detection techniques
fall short in finding such flaws, as no evidence of problematic
data flows can be obtained. All effects of the public-to-internal
flows remain within the constraints of the internal systems.
Testing tools operating from the outside are literally “blind”
to any side effects caused by injection attempts.

In this paper, we present the first comprehensive study on
Blind Cross-Site Scripting (BXSS) vulnerabilities. As by defi-
nition no direct channels from the affected system-under-test
and the testing approach exist, the only option to verify the
presence of a BXSS vulnerability is the injection and execu-
tion of JavaScript code. To this end, we present a method for
synthesizing polyglots: XSS payloads specifically designed
for a multitude of injection contexts. More specifically, we
use Monte Carlo tree search (MCTS) to synthesize a small
set of seven polyglots, capable of executing code in all test
cases of a state-of-the-art XSS testbed (see Section 3).

However, good performance on an artificial testbed does
not necessarily result in similar properties in real-world set-
tings. For this reason, we validate the generated polyglots on
a set of recently uncovered client-side XSS vulnerabilities

USENIX Association

33rd USENIX Security Symposium 6723

found in the Tranco Top 10,000 websites. To do so, we com-
pare the polyglots’ capability to uncover vulnerabilities with
the currently established state-of-the-art method of precise
payload generation [4, 19, 22, 26, 42, 43]. In this experiment
our blind polyglots prove to be highly competitive with pre-
cise exploit generation, through triggering 147 vulnerabilities
compared to 145 found by the precise payload generation.
Furthermore, the generated polyglots vastly outperform the
well-known, manually crafted “Ultimate Polyglot” [11] (see
Section 4 for details).

Finally, we present the—to the best of our knowledge—first
study on BXSS in the wild. We conduct a large-scale analysis
of the Tranco Top 100,000 websites using our generated poly-
glots as testing payloads, uncovering 20 instances of BXSS
problems in internal systems. This study demonstrates that
our testing approach is well suited to detect BXSS vulnerabil-
ities in real-world websites, as well as, the existence of this
vulnerability class (see Section 5) on popular websites.

Contribution. In summary, we make the following contri-
butions in this paper:

* We propose a method for automatically synthesizing
a small set of XSS polyglots using Monte Carlo tree
search, covering all currently known injection contexts.

* We show that the polyglots synthesized by our method
achieve comparable performance to state-of-the-art vul-
nerability detection for client-side XSS.

* We design a methodology to detect backend XSS auto-
matically and use it to conduct a large-scale evaluation
on the 100,000 most popular websites, finding 20 BXSS
vulnerabilities in 18 backend systems.

2 Blind Cross-Site Scripting

Cross-Site Scripting (XSS) is a notorious class of vulnera-
bilities, consistently earning a place in the OWASP Top 10
as one of the most critical web security risks [29-31]. These
vulnerabilities are rooted in the representation of web content,
which only loosely separates data from markup and enables
an attacker to manipulate a website or even execute code
through malicious inputs deliberately breaking this separa-
tion. Therefore, special care has to be taken when inserting
user-controlled data into web content.

This problem of XSS is further exacerbated by the wealth of
representations available for describing web content. For ex-
ample, HTML documents can be interspersed with resources
spanning various languages, such as Cascading Style Sheets
(CSS), JavaScript code, Scalable Vector Graphics (SVG) and
even mathematical expressions (MathML). As a result, XSS
vulnerabilities can arise in any of these formats if user-
controlled data is inserted without sanitization.

However, this mishmash of languages also imposes require-
ments on any attack exploiting XSS vulnerabilities. As each

language defines its own syntactic and semantic rules, an at-
tack payload has to be tailored to the exact location where
it is inserted in the document. In the following, we refer to
this location as the injection context. Similarly, protection
mechanisms need to be context aware to correctly assess what
constitutes dangerous input for a specific injection context.
This makes it challenging to defend against XSS [37, 48].

To illustrate the role of the injection context, let us consider
the running example in Figure 1. The code snippet contains
three lines, each highlighting a different injection context:
inside of an HTML a tag @, as a URI in the src attribute in
the iframe element @, and as a double-quoted string inside a
JavaScript code context ®. Input injected at each of these three
points is processed by a different parser, namely the HTML,
the URI and the JavaScript parser, respectively. Consequently,
each of these injection contexts and their many variations
require substantially different attack payloads tailored for the
syntactic and semantic rules of said parser and context.

In order to successfully achieve code execution within one
of these injection contexts, one needs to craft a payload that
either directly calls a JavaScript function or moves into a
parsing state where this is possible. Especially the URI case
highlights how not only the current parser state, but also the
directly preceding ones are relevant for success. For example,
the src attribute of the iframe at @ is directly exploitable
with a JavaScript URI, unlike the src of an img tag. Instead,
we would have to move to a different parsing state first by
trying to break out of the surrounding quotes.

1 @
2 <iframe src='@®'></iframe>

3 <script>if (x == "®") { ... }</script>

Figure 1: Code segments depicting injections in three different
contexts: In HTML @, in a URI @, and in JavaScript code ©.

Therefore, to craft an XSS payload an attacker has to de-
duce the injection context first. This is usually done by either
manual testing, where the tester analyzes the website’s code,
or automatic payload generation in the presence of perfect in-
formation. The latter, in particular, received a lot of attention
from researchers applying faint tracking techniques to un-
cover these vulnerabilities [19, 22, 26, 41, 42]. In short, these
approaches use a modified browser to mark all data entered
via user-controlled sources as tainted. This taint information
is then propagated through the browser until it enters a sink
functionality, which potentially results in code execution.

While the detection of reflected XSS vulnerabilities has
been thoroughly studied, the server-side stored XSS variant,
i.e., when the payload is not directly executed and instead first
stored on the server, is still a hard-to-detect XSS type [13].
The main challenge with this variant is that it requires rea-
soning about intra-page dependencies: The page where the
payload is inserted to be subsequently stored somewhere,

6724 33rd USENIX Security Symposium

USENIX Association

________ Web Application | Meb App_ _Backend
=N Ry B
H Database H = , : =|
FE i Hwww CoE
www www 5 Y
A ¢ A e
D Y .
(E1 . ﬁglr Victim
Attacker Victim

(@ (b)

Figure 2: Attack flows of stored XSS (a) and blind XSS (b)
vulnerabilities. Only the stored XSS scenario allows the at-
tacker to inspect the injection context to adapt their exploit.

might only be indirectly related to the page where the ex-
ploit actually triggers after it is read from storage. However,
as long as these two sides are publicly accessible, a manual
tester or automated system can still incrementally adjust the
stored attack payloads to explore the server-side processing
and finally derive a working exploit.

One particularly challenging variation of stored XSS is the
so-called blind XSS (BXSS) vulnerability, where even this
context information is no longer available.

2.1 The BXSS Attack Scenario

As part of the deployment of larger web applications, there
are often further web-based backends involved beyond what
is accessible for visitors from the Internet. Typical use cases
for such intranet web applications are administration, mon-
itoring, visitor statistics, and back office tasks. While these
applications are usually protected by a firewall from direct
outside attacks, they can still be susceptible to XSS attacks
if malicious inputs reach these internal sites. For example, a
monitoring system might read web server access logs from the
public part of the website and display all Referer headers on
an internal webpage, allowing insights into visitor behavior.
However, if these attacker-controlled header values are not
properly sanitized, they could result in XSS on that internal
page. Due to their purpose, the consequences of successful
attacks on these internal pages can be especially high, as these
pages are only visited by privileged users and might allow ad-
ministrative actions. Moreover, these backend systems might
not be part of the application’s threat model and therefore
might have received less security attention.

The main challenge in this scenario from the attacker’s per-
spective is that they have no information where their payloads
might end up, hence the name blind XSS. Without any feed-
back that allows them to identify the injection context in the
backend’s markup, dedicated XSS payload creation through
means such as taint tracking is impossible. Even worse, only
a successful attack provides information on the vulnerability
and allows to exfiltrate information about the backend. All

unsuccessful attack attempts provide no information to an
attacker who is totally in dark about in which context the
malicious payloads is injected, whether it has been adapted,
or if simply nobody visited the backend system to trigger it.

Figure 2 further illustrates this crucial difference: As Fig-
ure 2a shows, the attacker can access the vulnerable page,
learn about the injection context and adapt their payload ac-
cordingly in the stored XSS case. However, they have no way
of inspecting the admin panel in the backend in the blind XSS
case depicted in Figure 2b. Due to these challenges and to the
best of our knowledge, blind XSS has not yet been system-
atically studied and no automated approach to uncover these
vulnerabilities exists, so far.

Threat model. We consider the following threat model:
The attacker interacts with a publicly accessible website that
might or might not be indirectly connected to an internal web-
site via a storage mechanism, such as a database, log file or
internal web service. The attacker has no knowledge about
any internal webpages, the used storage technology, or data
transformations steps in between. There is no feedback unless
the attack is successful. The attacker’s goal is to achieve code
execution via XSS in the context of an internal web applica-
tion of the website’s backend, once visited by a person with
access or an automated system with a full browser. All other
payload entry points besides publicly accessible websites,
such as phishing emails, are out of scope for this work.

2.2 XSS Polyglots

Ideally, we would overcome this challenge of not having a
feedback by creating a universal XSS payload that triggers
in all contexts. As previously described, we need to consider
several different parsers for this, as our payload could end up
inside any of them. A construct that is valid input in multiple
formats and/or languages is a so-called polyglot [23]. For
example, GIFAR is a technique to create a file that is both a
valid GIF image and a valid Java Archive (JAR) [5].

In the context of this paper, polyglot refers to an XSS ex-
ploit that is able to execute in multiple injection contexts, such
as HTML and JavaScript code. Moreover, payload refers to
the part of the exploit that is actually executed, e.g., alert ()
or import (). Coming back to our example in Figure | and
assuming we want to execute the payload alert () for demon-
stration, the three different injection contexts require different
conditions for the payload to be executed.

For the HTML context inside the anchor tag in injec-
tion @, we first need to close that tag and then need
to insert an element that executes code, e.g., like this:
<script>alert () </script>.l On the other hand, the
second injection context expects a URL @. While we could try
to break out of the surrounding quotation marks, this might not
be possible due to sanitization. One solution is to instead use

The dangling will be ignored by the browser.

USENIX Association

33rd USENIX Security Symposium 6725

a JavaScript URI, e.g., by supplying javascript:alert ().
Finally, the injection context in JS code @ requires us to break
out of the quotes and close all expected parentheses to make
sure that the code does not break, e.g., ") {}alert ();//. The
two trailing slashes are important to comment out the rest of
the line to avoid a syntax error.

For this simple example, we can still come up with
a polyglot by carefully combining all three exploits
by hand: javascript:alert()//"){}alert();//
<script>alert () </script>. For case @, this just puts a
lot of “garbage text” into the anchor text before closing the
tag and executing the script. For case @, this is interpreted as
a URI with valid JavaScript code and a long trailing comment.
Finally, for injection @, this puts the URI in the string, closes
the if-branch and executes our payload, while ignoring the
rest due to the second // comment.

However, this polyglot just covers three contexts and there
are a lot of variations where it would not work properly. For
example, injection @ could also happen in the href attribute,
with either single or double quotes, or might be inserted via
innerHTML where the script tags do not execute but event
handlers do [49]. As another example, ® would result in a
syntax error when the code has an else branch, as our inserted
alert would break the i f-else construct. Covering all these
common variations of all contexts results in an explosion of
possible combinations, making manual polyglot construction
extremely tedious, if not impossible.

//Read from a stored object without injection into the source
document.location = someObj.redirectLocation;
//Directly injected into the source code of a
var foo = @;

.Js file

Figure 3: Two injection contexts that are mutually exclusive,
i.e., can not be solved by the same XSS polyglot.

As an additional complication, some injection contexts are
mutually exclusive. Figure 3 shows one example of such a
case: The first injection context is only possible to solve by
exploits starting with javascript: as such a JavaScript URI
does not trigger an actual navigation, but instead executes
the subsequent code in the context of the current document.
Starting with anything else will either fail, as escaping from
the statement is impossible without a direct reflection into
the source code, or cause a navigation away from the website
that was the target of the attack. On the other hand, there
are also injection contexts that do not allow javascript:
at the very beginning, e.g., the injection context in Figure 3
at position @, as the colon produces a syntax error on the
right side of the variable assignment. [llustrated by these two
examples, mutually exclusive injection contexts thwart efforts
to construct one universal XSS polyglot. On the other hand,

full coverage could be achieved with one payload per context.

However, we aim at creating a small set of polyglots while still

covering the entire state-of-the-art testbed. From a tester’s
perspective, this results in less required tests and less system
log noise. From a researcher’s view, it means less submissions
and thus less noise and reduced load for systems-under-test.

2.3 Research Questions

Constructing a set of powerful polyglots is key to the analysis
of blind XSS, as it makes it possible to successfully trigger
vulnerabilities without feedback. While previous work has
focused on manually engineering polyglots [11, 27, 45], we
argue that an automated process is inevitable here to han-
dle the amount of injection contexts. This leads us to the
following research questions that structure our work:

RQI: Is it possible to automatically create a set of XSS poly-
glots that are capable of covering all common injection
contexts in combination?

RQ2: Do these synthesized polyglots scale up to real-world
settings and how do they compare with existing XSS
detection approaches?

RQ3: Can these polyglots be employed to perform a large-

scale analysis of blind XSS and indicate vulnerabilities

in web application backends?

To address these research questions, we conduct a series
of experiments: In Section 3, we introduce a method for syn-
thesizing polyglots using concepts from game theory (RQ1).
In Section 4, we assess the real-world performance of these
polyglots, comparing them to traditional approaches (RQ2).
Finally, in Section 5, we perform a large-scale study to detect
BXSS vulnerabilities in the wild (RQ3).

3 Synthesizing Polyglots

The generation of a polyglot is a challenging task. Unlike
attack payloads designed for a single environment, we are
faced with multiple programming languages and contexts.
Although a polyglot is basically just a string of characters,
conceptually it is a chimera made up of terminal symbols
from different grammars. Some of these characters are even
ambiguous and only parsed correctly when the respective
injection context is known. To cope with this complexity and
ambiguity, we develop an automated approach that phrases
the synthesis of a polyglot as a discrete optimization problem.
The objective is to find a string that maximizes the number of
exploitable injection contexts on a given testbed, regardless
of the underlying languages and grammars.

This optimization has several constraints: First, evaluating
a polyglot on the testbed involves running an entire browser,
including HTML parser and JavaScript engine. Second, dur-
ing the polyglot evaluation, we receive only binary feedback
indicating success or failure, making gradient-based optimiza-
tion unfeasible. Lastly, as discussed in Section 2.2, some test

6726 33rd USENIX Security Symposium

USENIX Association

cases are mutually exclusive. Therefore, we must identify a
set of polyglots that collectively solve the testbed.

3.1 Monte Carlo Tree Search

Interestingly, the described optimization problem can be cast
into a game in which a player iteratively modifies a polyglot
to exploit as many contexts as possible. In this game, moves
correspond to changes of the polyglot, while its reward is
determined by the number of exploited contexts. Different
algorithms exist for solving such games, ranging from simple
search strategies to reinforcement learning [35].

For our analysis, we focus on the concept of Monte Carlo
tree search (MCTS) [6] that is known to find strong moves in
round-based games, such as Chess and Go [38]. The genera-
tion of polyglots, however, is agnostic to this algorithm and
thus we present a comparison of MCTS with other strategies
for solving the underlying game in Appendix C.

Technically, MCTS simulates multiple games to conclusion
to gather knowledge about promising game states. To keep
track of the performance, MCTS constructs a game tree in
which each node corresponds to a polyglot and contains two
attributes: a visit and a win counter. The algorithm explores a
path in this tree using four steps:

1. Selection: Starting from the root node of the game tree,
an unexplored child or the most-promising child node is
selected until a leaf node is reached.

2. Expansion: If the selected leaf node is non-terminal, the
game tree is expanded by generating the child nodes of
the leaf node.

3. Playout: Starting from the leaf node, random nodes are
explored until a terminal node is reached. This is equiva-
lent to performing random moves until the game ends.

4. Backpropagation: On the path back to the root, the visit
counter is incremented by one and the win counter is
updated according to the result of the simulated game.

During the selection phase, MCTS balances exploitation
(selecting moves that were successful in the past) and explo-
ration (gathering knowledge about unexplored areas). To rank

each child i, we use the upper confidence bound % +4/ %’N'
where w; is the number of wins, #; is the number of visits and
N; is the number of visits of the parent node. If a child has not
been explored before, i.e., n; = 0, it takes precedence.

3.2 Synthesizing Polyglots with MCTS

To reduce the extensive search space, we incorporate expert
knowledge into the construction of the game tree: Instead
of operating on all characters, we generate polyglots only
from a set of tokens, such as < and script. We refine these
tokens with simple rules that prevent invalid combinations
form appearing, such as svg appended to iframe. As a result

of this reduction, MCTS omits moves that are impossible to
yield reasonable polyglots. The resulting token set consists
of HTML literals, HTML tag names, HTML event handler
content attribute, and other HTML tokens. The complete list
including the rules can be found in our companion repository.

Starting from an empty string, MCTS iteratively appends
tokens to it to expand the game tree and measure the poly-
glot’s reward. Unlike conventional games, however, this game
has no clear end state, since polyglots can be arbitrary long.
We therefore set a fixed limit of 400 characters, after which
we stop appending tokens to the polyglot. Since this fixed
length condition might lead to superfluous tokens, we employ
a minimization strategy afterwards (see Section 3.4).

To evaluate a polyglot during search, we implement a fast,
manually created testbed covering 27 common XSS injec-
tion contexts using Puppeteer (13.1.3) based on Chromium
(98.0.4758.0). The complete testbed is included in our com-
panion repository. In the regular MCTS backpropagation,
each polyglot would be assigned a score used to update the
win counters on its path. Since we evaluate the polyglot on
multiple test cases simultaneously, however, we receive a list
of scores on each playout. Instead of saving only one score,
we thus save the entire list and sum it up, once we need the
total score w; for a particular node in the tree. As a result, we
can keep track of the individual tests solved by a particular
polyglot during construction. This gives us more flexibility:
When some test cases have already been covered, we can
exclude them from the score calculation in later runs.

The final synthesis of one polyglot is shown in Algorithm 1:
Starting from the root node, we use MCTS to explore the
game tree for N rounds until we fix the first move, i.e., select
the first token of the polyglot. With the first token in place,
we repeat the process N times and select the second token.
We continuously start the game from a deeper root node until
the depth limit D is reached. At the end, the polyglot with the
highest score is returned.

Input: root, start node for generation
Input: D, maximum depth of the root node
Input: N, iterations until a move is chosen
Output: polyglot string
bestPolyglot, bestScore « null, 0
fori < 1toDdo
for j < 1 to N do
leaf < select(root)
expand(leaf)
polyglot, score < playout(leaf)
backpropagate(leaf, score)
if score > bestScore then
‘ bestScore, bestPolyglot < score, polyglot
end

© ® N L AW N =

o

1 end

12 root < choose_best(root)
13 end

14 return bestPolyglot

Algorithm 1: Generating a polyglot

USENIX Association

33rd USENIX Security Symposium 6727

D (ESEEEEEEEEEE =N SIS EEEEEEEEEE N L - I ESEEEEEEEEEEE TN CEEEE @ EE (EECEE OEE SEEEEEEEEEEEEEE
7 * 46/111
s 6 . 31/111
= O >0 3 55/111
>4 2 82/111
S 3 *000 38/111
A2 one 65/111
1 |momoooone * * 89/111
* 88/111
T T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100 110
Test cases

Figure 4: Composition of our minimal polyglot set solving all 111 test cases of our testbed. Squares (m) indicates solved tests.
The top row (D) visualizes the overall difficulty of each test case, calculated from the total ratio of polyglots we generated that
solve this test i.e., difficult tests with fewer solutions are red (m), while the color of more frequently solved tests gradually shifts
to yellow (7). The numbered rows show the performance of our polyglot set. Diamonds (4) are placed instead of squares, where
only one polyglot in the set solves a test. For comparison, the bottom row (*) shows the performance of the Ultimate polyglot.

At best, our approach would generate a single polyglot to
“rule them all”, that is, solve all provided test cases. How-
ever, our analysis reveals that depending on the test cases,
this might not be possible. For example, as discussed in Sec-
tion 2.2, some injection contexts are mutually exclusive and
a polyglot providing proper execution of JavaScript code in
both cannot exist. As a remedy, we develop a strategy for
combining multiple polyglots into a set.

In particular, after one polyglot is created, we remove the
test cases it solves and start over the search process of MCTS.
As result, by design, we seek a complementing polyglot that
focuses only on those cases the previous one cannot solve. We
continue generating new polyglots using Algorithm 1, until
all tests have been covered or a maximum number of tries is
reached. Finally, we obtain a set of polyglots that solves the
entire testbed of the synthesis process.

3.3 Selecting a Final Polyglot Set

While we synthesize polyglots on a fast testbed, we use a
larger testbed to determine the quality of the generated poly-
glots. For this purpose, we set up a local instance of the
Google Firing Range (GFR) [15], which is a state-of-the-
art XSS testbed [3]. We manually choose a subset of GFR
tests for our scope, based on the following criteria: First, we
exclude non XSS-related test cases. Second, in cooperation
with Google, we obtain a list of GFR tests that have a known
solution which we manually confirm. We further exclude
tests exceeding our scope, namely exploits relying on specific
frameworks and those requiring a specific encoding. Tests that
aggressively block special characters with an error page, e.g.,
any request that contains < or >, are also excluded. While solu-
tions for these tests exist, their solution needs to be so narrow
that they are no longer a polyglot and thus also out-of-scope.
We confirmed all solutions and verified that an applicable solu-
tion exists for our requirements. A detailed list of the excluded
tests and the specific reasons can be found in Appendix D.
After generating 4000 polyglots over multiple runs from
different seeds, we utilize a greedy min-set cover approach

to select a minimal subset that solves all GFR test cases. We
build this minimal set by adding the polyglot to the set that
solves the most tests yet unsolved by the set, until no addi-
tional solutions can be added. Our final set of polyglots that
is used in our study consists of 7 instances. Thus, we answer
RQ1 and show that it is possible to automatically create a
set of XSS polyglots that cover common injection contexts.
To compare the efficacy of our final polyglot set with a pub-
licly available polyglot, we chose the best polyglot from the
blog posts mentioned in Section 2.3—the Ultimate XSS Poly-
glot [11]—as our reference. Now, to display the composition
of our polyglot set, Figure 4 visualizes our evaluation results
for each polyglot on the 111 test cases. We give an indication
of the difficulty of synthesizing a solution for each test by
assigning a color to each of them. The number of polyglots
from our full set that successfully solve a test, determines
its difficulty. Tests for which we synthesized fewer solutions
tend to be more challenging and are depicted in red. In con-
trast, the color of easier tests, i.e., those with more solutions,
gradually shifts to yellow. The numbered rows below corre-
spond to each polyglot of our final set, while the bottom row
displays the Ultimate polyglot’s score. Indicated by diamond
symbols in the corresponding rows, each polyglot in the final
set contributes at least one unique solution, e.g., polyglot 4
is the only in the set solving test 36. The plot shows that
our polyglots cover all test cases, ranging from 31 to 89 tests
covered by each individual polyglot. The Ultimate polyglot
works surprisingly well and manages to cover 88 tests. How-
ever, our automatic polyglot set creation outperforms manual
engineering, as our generation process can target gaps left by
previously synthesized polyglots.

3.4 Minimizing Polyglots

Since our generation uses a termination criterion that sets a
fixed minimum length for a polyglot, it is possible that some
tokens in the polyglot are superfluous. In general, this would
not constitute a problem, but some websites have length con-
straints to the inputs in their backend. To make sure that

6728 33rd USENIX Security Symposium

USENIX Association

such obstacles do not obstruct our polyglots, we minimize
the lengths of our final polyglots. The objective is to find
the smallest polyglot with equivalent test results on the GFR
testbed. The minimization is done automatically and at token
level, i.e., we first deconstruct each polyglot into its tokens.
Since each token could be removed independently, there are
2V minimization candidates where N is the number of tokens
in the polyglot. Instead of testing all 2" options, we build our
minimization strategy on a single assumption: If removing
a token changes the test results, then all minimizations in
which that token is removed are invalid. Although there might
be edge cases, where this does not hold true, this drastically
reduces the search space as we can first test each token sep-
arately. Our polyglot minimization then involves iteratively
removing combinations of tokens until no more tokens can
be removed without altering the evaluation result. Overall,
in every polyglot (except for one), some unnecessary tokens
have been identified and removed. For the other polyglots we
achieve a reduction between 6% and 24%.

4 Validation on Real-World Websites

While our test bed and the Google Firing Range cover a wide
range of XSS vectors, they can only serve as an artificial eval-
uation that is not necessarily representative of the polyglots’
ability to discover vulnerabilities in real-world code. Thus, in
this chapter we set out to validate how well our XSS payloads
perform on actual websites with non-trivial codebases and
to compare them to state-of-the-art techniques for detecting
XSS that leverage targeted exploit generation.

More precisely, we evaluate our XSS polyglots on a set
of recently found real-world client-side XSS (CXSS) vul-
nerabilities. CXSS has several advantages in the context of
our experiments: While exposing the same characteristics as
other classes of XSS, especially in respect to injection points
and syntactical restrictions, it allows precise exploit payload
generation, thanks to the availability of full data-flow infor-
mation [22, 26, 42] (see Sec. 4.1 for details). Furthermore,
research experiments utilizing CXSS offer the invaluable ben-
efit that the complete exploitation attempt is conducted solely
on the client-side. Hence, potential negative side effects on
the real world websites can reliably be prevented.

4.1 Targeted XSS Exploit Generation

As the baseline for the prevalence of CXSS vulnerabilities,
we re-use a state-of-the-art taint tracking engine [36] and the
associated exploit generation by Bensalim et al. [4]. In the
following, we give a short overview of their approach, using
the code in Figure 5 as an illustrative example throughout.
In general, the idea is to browse the web with a modified
taint browser while constantly monitoring and analyzing all
data flows. Once the taint browser detects a data flow that is

1 let d = document.getElementById("..");
2 let href = decodeURIComponent (window.location.href);
3 d.innerHTML = '';

Figure 5: A typical Client-Side XSS vulnerability.

potentially susceptible to CXSS it has the following informa-
tion available: The source (here location.href), the sink
(here . innerHTML), what characters from the source ended
up in the sink, as well as the whole string entering the sink.

With this information, the exploit generation strategy works
as follows: The first step is to generate the so called break-
Out sequence, which aims to close the current context (here
the double quoted href attribute) and put the parser into a
state where we can insert a XSS payload. Several HTML
tags, such as iframe or textarea prevent code execution of
their children. So the breakOut will close those tags as well.
Next, a context specific payload is generated, this is based on
the sink function, as innerHTML requires a different payload
than, e.g., eval (). The payload generated by the exploit gen-
erator for innerHTML is . If this
report function is called, we know that the generated exploit
was successful. However, with remaining markup from the
original <a> tag, we must first create a breakln sequence. Its
purpose is to “consume” the leftover characters , ensuring the
parser proceeds without errors. While this step is usually un-
necessary in the HTML context due to the parser’s leniency, it
becomes critical in the JavaScript context. A suitable breakln
would be to comment out the remainder of the document.

Finally, these three parts (breakOut, generated payload and
breakln) are concatenated and inserted into the URL at the
appropriate position. For our running example, the insertion
point would be to simply append the generated exploit in the
fragment of the URL. Therefore, and in contrast to our poly-
glots, each exploit generated with this approach is designed
to work for one specific data flow on one website only.

4.2 Validation Experiment Setup

To compare the performance of different approaches on real-
world websites, we surveyed the top 10,000 domains accord-
ing to the Tranco list [20] as of Dec. 15, 2022, available at
https://tranco-list.eu/1list/W95V9. For each success-
fully visited site, we queued up to 10 subpages, enabling us
to capture vulnerable data flows that might not be apparent
on the landing page. All relevant data flows for CXSS were
stored in a database, and we concurrently visited the gener-
ated exploit URLs to validate them. The exploit validation
is done with legacy URL encoding, consistent with previous
works [19, 22, 26, 41]. For each URL generated by the exploit
generator, we systematically replaced the targeted exploit with
each of our 7 synthesized polyglots. Subsequently, we used
our crawler to visit these URLSs, flagging the exploit as suc-

USENIX Association

33rd USENIX Security Symposium 6729

https://tranco-list.eu/list/W95V9

Procise

Exploits ’ Manual

(145) [109 | 18 Polyglot
U X ./ (20)

Synthesized Polyglots (147)

Figure 6: Euler diagram of the performance of the three dif-
ferent XSS detection approaches on the Tranco Top-10,000.

cessful if the callback function was triggered. To assess the
effectiveness of our synthesized polyglots in comparison to
publicly available ones, we subjected the Ultimate XSS Poly-
glot to the same treatment, like in Section 3.3. The Ultimate
polyglot, like our polyglots, operated without the additional
information provided by the taint tracking browser, distin-
guishing it from precisely generated tainting exploits.

4.3 Comparison of XSS Detection Rates

In total, we generated exploit URLs for 1010 of the visited
websites due to potentially security sensitive data flows. We
then applied each of the three approaches to see if they can
achieve JavaScript execution. Thereby, we were able to suc-
cessfully validate vulnerable data flows on a total of 165
websites, resulting in XSS. Figure 6 depicts the results of
how our synthesized polyglots perform compared to both the
perfect-knowledge exploit generation strategy, as well as the
ultimate polyglot from prior work, thus answering RQ2. As
the figure shows, on 127 out of the 165 websites both our
polyglots and the exploit generation were successful. At the
same time, it also highlights that both approaches have their
advantages as not a single one was able to discover all exploits.
However, the ultimate polyglot had the worst performance
by far, as it only worked on a fraction of the websites overall
while not finding any additional exploits that were not already
covered by the other approaches.

We then proceeded to manually investigated the successful
exploits exclusively solved by either of the approaches. Ex-
amples of data flows where the polyglots did not work as well
as the generated exploits were highly specific edge cases such
as the one shown in Figure 7, the root cause behind 83% of
the websites where the polyglots were unsuccessful but the
precise exploit generation succeeded. While this looks like a
simple XSS vulnerability that the polyglots should be able to
solve, it is important to note that the dynamically created div
is never added to the DOM. This prevents triggers that rely
on the onload event handler to fire. Another reason for the
polyglots failing to trigger results from the general concept
of a polyglot (see Section 2.2). To be valid code in several

contexts, they contain syntactic elements of several program-
ming languages. Application code trying to parse the tainted
data can break, causing the vulnerable code paths to never
be executed at all. Take the polyglot from Section 2.2 as an
example. If data.split ("':") [0] is called on it, it extracts
everything in front of the double colon, e.g., to retrieve a field
from a complex data structure. For said polyglot this returns
javascript, a harmless string. The precise exploit genera-
tion never adds non HTML characters such as double colons,
and as such its payload would be included in the extracted
text. However, their rich syntactic structure is a positive in
other cases, because they are able to evade broken sanitizing
routines. One common mistake for input sanitization is mis-
understanding the replace semantics and only replacing the
first occurrence of the needle by mistake according to Klein
et al. [19]. Due to containing several code execution trig-
gers, our polyglots are able to evade such a faulty sanitization
routine whereas the generated exploit does not.

function read_href (url) {
var div = window.document.createElement ('div"');
div.innerHTML = '';
return div.firstChild.href;

}

read_href (window.location.href); // somewhere else

Figure 7: Problematic data flow not solved by our polyglots.

After demonstrating our polyglots’ exceptional perfor-
mance in detecting CXSS flaws on real websites, we investi-
gate their suitability to discover blind XSS in the next section.

S Blind XSS in the Wild

So far, we have demonstrated how to synthesize polyglots
and have found that their effectiveness in identifying reflected
XSS is comparable to existing approaches. In this section, we
design and conduct the first large-scale study of blind XSS
in the wild. Our study is based on the synthesized polyglots.
Hence, it demonstrates their unique advantage in uncovering
BXSS vulnerabilities. Additionally, we show the importance
of using a set of polyglots instead of a single one.

We are aware of our responsibility to conduct this study
in an ethical manner and, in accordance with the Menlo re-
port [18], we designed it to prevent harm. Most importantly,
if a polyglot should trigger, it will only connect back to in-
form us about its execution. These benign tests allow us to
measure the scope of the problem and warn website owners
to close security vulnerabilities before they can be exploited.
We consulted our funding project’s institutional review board
(IRB) which concluded that the potential gain for system secu-
rity predominates potential extra work for website operators.
Further technical details are found in Section 5.4.

6730 33rd USENIX Security Symposium

USENIX Association

5.1 Polyglot Preparation and Monitoring

A polyglot triggers all vulnerabilities it can cover. However,
due to the nature of blind XSS we cannot directly observe
when this happens in a backend. Hence, we design the poly-
glots to notify our monitoring server if they are executed due
to a vulnerability. We outsource this notification mechanism
into a remote notification script instead of embedding the
required functionality into the polyglots for multiple reasons.
To begin with, using a replaceable remote script makes poly-
glot synthesis easier, as we only have to optimize on import
mechanisms as our polyglots’ core functionality. Addition-
ally, testing is sped up, as the imported code can be easily
replaced without syntactically changing the polyglots. In con-
trast, embedding the required notification functionality would
introduce additional characters to the polyglots which would
increase their length and extend the required character set
which in turn may trigger additional input filters potentially
reducing the polyglots effectiveness in the field. Finally, using
a remote script enables us to render polyglots ineffective by
stopping to serve the notification script, e.g., once the study
concludes after a certain period.

To achieve traceability from polyglot submission to indi-
vidual vulnerabilities we assign each submission a unique
12-character ID. This ID encodes how (URL, form, or
header) which polyglot was submitted to and on what
(backend) page it ended up being executed. This ID is
embedded in the URL a polyglot’s import functionality
takes, e.g., JavaScript import statements or the src at-
tributes. Exemplarily, a polyglot requests the notification
script from our monitoring server upon execution, e.g., via
import ('https://<ID>.<monitor_host>/s.js"). The
monitoring server can then extract the ID from the requested
script’s URL and embed it into the notification script before
returning it. The script in turn includes this ID in the feedback
ping it returns back to our monitoring server when executed.
Using this submission ID, a backend vulnerability can be
linked to a specific submission on a particular website.

Notification Script The notification script (Appendix A)
returns information required for accurate detection and effec-
tive disclosure of a blind XSS vulnerability. When executed,
the script returns the document’s title, its URL, excluding
query and fragment, as well as the JavaScript user agent and
platform. It encodes the information, the submission ID, and
the current timestamp in the URL of an HTTP request bound
to our monitoring server. Upon receipt of such a request, we
indirectly receive the IP address of the sender, which we re-
quire for the disclosure process. Section 5.4 further discusses
the usage and implications of the collected data.

5.2 Polyglot Transmission

There are three general ways to transmit our synthesized poly-
glots to the websites we visit, where they can get passed to
backend systems: headers, URLs, and forms. In the following,
we will briefly outline considerations for each of them.

HTTP Headers. To test backend logging applications, we
submit polyglots in four request headers. The Referer header,
often containing the previously visited URL, is valuable
for analytics and tracking [24]. Similarly, the User-Agent
header aids analytics, by revealing browser and platform us-
age patterns. Polyglots in the Cookie header may get logged
for failed authentication. Additionally, we utilize the less-
known Warning header, particularly warning code 199, used
to transmit loggable information [25]. Despite its deprecation,
all major browsers still support it. We employ HTTP GET
requests to transmit each header, embedding the polyglots
as either direct values or in suitable contexts like Cookie:
test=<polyglot>. To identify which header triggers feed-
back, we individually send each polyglot ro the landing pages
via a GET request for each header mentioned.

HTTP URLs. Similarly to headers, URL submissions via
the query and path are issued for each website with each
polyglot. For every landing page visit, we append an ar-
tificial subpath, followed by the polyglot as another sub-
path, e.g., http(s)://domain.com/<path>/<polyglot>.
Analogically, in query submission, we employ an arti-
ficial query key with the polyglot as its value, e.g.,
http(s)://domain.com?<query>=<polyglot>. We use
artificial paths and query keys, because our goal is not to
find reflected and stored XSS flaws in existing functionality.
Instead, our aim is to transmit our payloads to web-based
backend systems with potential blind XSS vulnerabilities.
Moreover, we perform this action only once on the landing
page, avoiding excessive warnings for website operators.

HTML Forms. Finally, we also analyze the HTML code
for each page that we visit and extract all contained HTML
forms. For each form, we first check if the allowed length of
each input given by the maxlength attribute is enough for
our longest polyglot. Moreover, we have measures in place
to prevent duplicate form submissions. On par with previous
work [28], a form is considered new if at least one value
differs from previous forms: (a) its innerHTML representation
(excluding default values and whitespace), or (b) the form’s
target domain. For all the remaining unique forms, we fill all
inputs with one polyglot at a time and submit the form.

5.3 Identifying Blind XSS

Generally, we expect a mix of automated business logic tools,
and manually operated monitoring and administration plat-
forms to trigger our polyglots. The former may react to our
submissions instantly, while the latter may be bound to human

USENIX Association

33rd USENIX Security Symposium 6731

interaction and thus only trigger sporadically. Therefore, we
give each submission a time frame of 2 months during which
we monitor it. In the following, we explain our approach to
confirm that triggered polyglots are of the blind XSS type.

We define three cascading filter steps to narrow down our
findings to blind XSS and thus discarding reflected and stored
XSS on the way: (1) Feedback pings have to come from an IP
address different to our crawler’s IP, otherwise we triggered a
reflected XSS. (2) The URL where we submitted our polyglot
has to differ from the URL where it triggers, otherwise we
found a trivial stored XSS where the attacker could have
adjusted their payload in this non-blind setting. (3) The URL
where the polyglot triggers may not be publicly accessible,
only then we have discovered a blind XSS vulnerability with
no way for the attacker to learn about the injection context.
Otherwise, we found a non-trivial stored XSS, where the two
URLs differ and their connection needs to be discovered first,
but both are nevertheless publicly available.

To test this, our monitoring server initiates an additional
confirmation step for each newly reported BXSS candidate
URI immediately after receiving a feedback ping. In this
step, the server conducts an extra visit to the reported URI
to assess its public accessibility. At this stage, our filter (3)
confirms invalid or local URIs, as well as private IP addresses
as BXSS instances where our polyglot reached and executed
in a backend system. However, even if the page did load,
some cases may still qualify as BXSS. For instance, we en-
countered public pages that required authentication to access
their content. Since the identification of login pages is hard to
automate [9, 17], we manually investigated and labeled these
websites as either BXSS or false positives.

5.4 Ethical Considerations

Conducting server-side studies requires careful ethical con-
sideration. To this end, we followed best practices outlined
in the Menlo report [18], and aimed at uncovering real-world
BXSS scenarios while ensuring minimal impact on operators
and users. We decided on a large-scale study without the op-
erators’ consent. This is a difficult and controversial decision
that requires a thorough investigation of the potential harms
and risks. We discussed this decision in detail with our IRB
and received approval. Nevertheless, we recognize the weight
of this decision and the potential for alternative options, the
advantages and disadvantages of which we discuss below.

Alternative study designs. Auditing open-source appli-
cations for BXSS vulnerabilities offers a first choice. This
method comes with no ethical issues but its results are limited
by the proprietary nature of production code and the unpre-
dictable configurations of live websites.

Analyzing simulated backends in a lab environment of-
fers another choice. While ethically unproblematic within
a confined environment, accurately mirroring the nuances

of real-world backends poses challenges, often necessitating
insights from active operators on their particular setups.

Real-world studies, especially a small-scale study with
prior operator consent, emerge as another solution, allowing
operators to take precautionary measures to minimize harm.
Given the—at the time of our study—unknown prevalence of
BXSS and indications of its rarity [2, 8, 13, 34], we decided to
discard this study design. However, an appropriate selection
of operators might provide representative results.

We chose the final option, conducting a large-scale study
of the top-ranked website without acquiring operator consent.
While offering a direct and unbiased approach to a repre-
sentative analysis of the subject, it is important to note that
this strategy is ethically problematic, even if tests are ex-
tremely carefully designed. We remark that the other alter-
natives would also be applicable with different compromises
between ethical implications and gained insights. In general,
we recommend thoroughly considering different study de-
signs and additionally engaging with an IRB upfront. Thus
far, our study has incurred no reported damages or problems,
attesting to the effectiveness of our design in preventing harm.
Our results revealed 20 vulnerabilities among the top 100,000
websites underlining our initial assumption of the rarity of
BXSS. Nonetheless, it is imperative to stress that any retro-
spective analysis does clearly not provide justification for the
decisions made in a study.

It is crucial to highlight that conducting studies without
proper consent or assuming consent from non-responsive par-
ties is not ethically sound. Our research should thus not be
viewed as a template for similar studies. Based on our discus-
sions with the IRB, we believe that our work represents a good
compromise in this regard. However, we acknowledge that
alternative study designs could have been employed to miti-
gate the risk of harm more effectively, though at a higher risk
of reduced insights. Scientific work often navigates complex
terrains, demanding thoughtful balancing of conflicting inter-
ests. We selected—to the best of our knowledge and belief—a
suitable balance, which is certainly not without debate.

Side effects. All test requests contain minimal JavaScript
payloads that do not affect the global namespace of the sur-
rounding application ensuring that no unintended side effects
on legitimate code occur. In the rare cases where the ini-
tial polyglot succeeds, a second script is retrieved from our
servers for data collection. This two-step process enables us
to deactivate the notification script for specific IDs or entirely
at any time, serving as an additional mitigation strategy.

As aresult, a test polyglot can only trigger on vulnerable
pages, ensuring that non-vulnerable web applications, which
constitute the vast majority, receive only the polyglot without
any unintended behavior or side effects. However, for vulner-
able websites, a notification function is essential to initiate
disclosure to the affected parties and improve their security.
Otherwise, our blind XSS tests would remain “blind”.

6732 33rd USENIX Security Symposium

USENIX Association

Information collected. In alignment with user privacy our
notification script (Section 5.1) only returns information that
we use for accurate recognition and effective reporting of
blind XSS executions in backends. We verify instances of
BXSS using the IP address and partial backend URL. As part
of the disclosure process, we can provide operators with both
pieces of information, plus the user agent and platform strings.
The user agent information offers operators an advantage in
assessing the potential impact of our reported vulnerability,
as they help to distinguish between manual and automated
operations. Finally, we utilize the backend path in conjunc-
tion with the page’s title as indicators of shared root-cause
components, allowing us to additionally report our findings
directly to the developers of these components.

Candidate selection. In our candidate selection process,
we adhere to the “fairness” principle outlined in the Menlo
report by considering the top 100k Tranco domains. With
focus solely on blind XSS, we use a canary test to filter out
websites, like guest books, that mirror user inputs, avoiding
stored and reflected XSS triggers. This test populates new
forms with random tokens, subsequently checking the HTTP
response and page’s HTML for them. To reduce load on
targets, we test each site’s functionality only once, ensuring
unique submissions by checking for existing duplicate header,
URL, or form submissions, detailed in Section 5.2.

Transparency. For transparency and to facilitate an opt-out
procedure, our monitoring host offers information. Our noti-
fication script’s URLs’ landing page details the project, the
data we collect, and contact information for potential with-
drawal from the study. Through this channel we received two
notifications from one Internet services company regarding
suspicious traffic from our IP. We addressed this by excluding
the respective domains from subsequent visits.

Though informing thousands of operators in advance is not
scalable, we ensured a vulnerability notification was sent to
the technical contacts of all affected websites. This ensures
that the underlying defects are fixed and thus exploitation
is no longer possible. Consequently, our study’s benefits in
improving website security outweigh potential negatives, like
polyglots causing a manual investigation.

Design implications. Although these ethical measures can-
not completely eliminate the risk of a polyglot leading to a
technical failure on one of the websites, we argue that the
gained insights about blind XSS and the notification of all
affected sites jointly outweigh this risk and make our study a
valuable contribution for improving web security.

When designing our methodology, we chose to directly
collect paths and titles to identify shared root-cause compo-
nents. For instance, Table 1 indicates a common tool shared
by backends D and F, discerned through paths. Backends B, D
and F even explicitly mention such a tool’s name in their title.
We used that information to inform the respective vendors,

as the vulnerability could have its root cause in a commonly
used software component.

We recognize that our data collection methods, though
designed with great care, are not without the risk of inad-
vertently capturing sensitive information in certain parts of
our collected data. Specifically, titles and paths of websites
could, in theory, contain credentials, authentication tokens, or
other confidential data. It is widely recognized in the field of
web development and design that embedding personal data in
these fields is untypical and against best practices [cf. 32, 33].
Nonetheless, this remains a significant concern.

Our decision to collect this data was driven by the intent to
notify operators of vulnerabilities in their systems, a necessary
step we believed was essential for our study. We recognize
the potential pitfalls and admit that a more privacy-centered
strategy could have been employed.

Our large-scale study was conducted without requesting
consent. However, we could sometimes obtain informed con-
sent for certain aspects of the study. Inspired by Utz et al. [46],
we suggest an alternative approach for future research. In de-
tail, we could have abstained from collecting the backend’s
title and path in our initial vulnerability tests. Then during
the vulnerability disclosure, where we anticipated a limited
but uncertain number of affected websites, we could have
procured further information from them. If successful, we
could obtain permission to gather additional data, i.e., website
titles, in a follow-up experiment, or directly ask about the uti-
lized software components. Such a two-fold approach would
have enabled us to obtain informed consent from vulnerable
entities while still learning about shared components.

Yet, this method is not without flaws. Our study found
a generally limited response rate, consistent with prior re-
search [44]. Hence, this approach poses the risk of missing
insights into shared root causes if no responses are received.
Nevertheless, future research might explore and evaluate this
approach to determine its suitability in different contexts.

5.5 Large-Scale Crawling Study

To answer our last research question from Section 2.3 (RQ3),
we perform a large-scale study on the top 100,000 domains
according to the Tranco list [20] as of Oct. 9, 2022, available at
https://tranco-list.eu/list/824JV. We use a crawler
based on the Chrome DevTools Protocol [12] to instrument
Chromium 105.0.5195.102 in headless mode. For websites
permitted by their robots.txt, our crawler explores same-site
and listed-domain links up to a depth of 5 or 30 subpages per
root domain, with random link selection when needed. Each
page receives a 60s load window; failure leads to flagging, and
the crawler proceeds to another page. Dynamic pages receive
3 seconds post-load event for pending network requests.

We conducted our study over the course of 20 days using
60 parallel crawler instances on Ubuntu 20.04.5 LTS. Our
monitoring was online during this time to allow observing

USENIX Association

33rd USENIX Security Symposium 6733

https://tranco-list.eu/list/824JV

each submission for at least 2 months. Of the 1,676,812 vis-
ited pages, approximately 7.4% failed to load. Regarding the
failures, about 56.1% returned an HTTP error status code.
22.7% of errors can be attributed to network or DNS resolu-
tion errors. Further 15.7% of aborted pages tried redirecting
outside of the top 100k domains, which we consider out of
scope, or to an previously visited domain.The remaining 5.5%
are various errors e.g., timeouts when loading the page.

Our ethical considerations regarding deduplication and ca-
nary reduced the amount of HTML forms used for submitting
our polyglots. Collectively, these measures halved the amount
of candidate forms, leaving 46.54% of identified candidates.
After respecting each input’s given maxlength attribute, we
submitted a total of 170k forms, along with around 1.9M
header and 954k URL submissions, equally distributed be-
tween query and path submissions.

5.6 Uncovered BXSS Vulnerabilities

Our submissions triggered 20 different BXSS vulnerabilities
on 18 websites. In this section, we present our findings and
discuss the uncovered blind XSS cases. Moreover, we also
discuss the efficacy of our polyglots and probing mechanisms.

Vulnerable Backends. Regarding the given time frame and
considering our initial filter (1) from Section 5.3, we received
feedback pings from 28 unique domains. After discarding
stored XSS candidates with the second filter (2), we are left
with 21 potential backend domains. Of these 21 candidates,
the automated part of our final filter (3) confirmed 8 of them
to be internal websites and thus BXSS, as their URLs were
unreachable e.g., because they were either private IPs, file
URIs, local resources, or dotless hostnames [16]. Manual in-
vestigation of the remaining 13 reachable URLs confirmed
that 10 of them show clear signs of blind XSS: For once, 6
of them were login-protected pages requiring credentials or
session cookies. Another case was a web interface for a local
Web Socket server that doubles as an informative website if
no connection to the Web Socket port can be established, so
our crawler flagged it as a public website. Interestingly, the
remaining 3 confirmed candidates are, to our understanding,
erroneously publicly available backend pages. Strong indica-
tors that the pages’ availability is unintended are on the one
hand that they make protection-worthy data publicly avail-
able, including other visitors’ IP addresses and headers, and
on the other hand that their parent pages are in contrast access-
protected. Ultimately, we count these 10 discussed findings
towards blind XSS, resulting in a total of 18 BXSS-vulnerable
websites. This demonstrates the polyglots’ proficiency at un-
covering blind XSS vulnerabilities in the backends of real
websites, thus answering RQ3.

The remaining three candidates were manually excluded
and labeled as not in scope for BXSS, because the tested web-
site and its backend themselves were not vulnerable to our
submissions, yet, we received feedback pings attributable to

the polyglots submitted to these websites. In all three cases,
our notification script triggered in online web tools with no
apparent relation to the website we tested, so we refer to this
class of findings as 3"-party XSS. In each case, the submitted
headers were posted to evidently vulnerable online tools hours
to days after we sent our submissions. These tools include an
online user-agent parser, an online XML editor and beautifier
tool, as well as an online URL decoder / encoder. We man-
ually confirmed the three reflected XSS vulnerabilities and
excluded them from our blind XSS results.

We disclosed our findings with all affected parties, includ-
ing the previously mentioned 3™-party web tools. Subse-
quently, we received responses in about 19% of the cases,
surpassing the access-rate reported in a recent notification
study [44]. Notably, the responses we received were entirely
positive, with all respondents showing an effort to fix the issue
we brought to their attention. Moreover, we were approached
by two parties requesting us to retest their fixed website, em-
phasizing the need for blind XSS testing strategies.

Backend Details. At this point, we discovered 18 vulnera-
ble backends. Table | aggregates the BXSS vulnerabilities we
uncovered, showing that our findings represent websites from
a wide variety of Tranco ranks, popular and less popular. To
preserve anonymity, we pseudonymized each domain in the
table and shortened path and title for brevity. In many cases,
the combination of path and title are sufficient to derive the
backend tools’ purposes: We observe a mix of administration
tools for maintenance, management, and monitoring, as well
as tools for infrastructure or business logic. In three instances,
B, D, and F, a platform name could be directly derived from
the document title. In the first case, we discovered an inter-
nal deployment of the frequently used log monitoring and
reporting platform Splunk 8.2.3 and its official utility app
Lookup Editor with our polyglots. The other two turned out to
be NetWitness Platform, a popular security information and
event management tool. We contacted both vendors to share
details of our findings. Similar paths and titles indicate that
the same software is used in the respective backends of two
website pairs: D, F and I, K. While the sites do not necessarily
have to be connected, the location derived from their pings’
IP addresses indicate proximity in both cases.

BXSS Vulnerabilities. We count the backends based on the
number of affected websites. Since one backend can poten-
tially have multiple BXSS vulnerabilities, we further distin-
guish between data flows originating from header, URL, and
forms. Figure 8 illustrates which submission type discovered
which backend. When looking at the three groups—URL,
header, and form submissions—the majority (89%) of the
backends were triggered by only one submission type. Since
the two remaining backends we discovered, I and L, were
triggered by both URL and header submissions, we count a
total of 20 blind XSS vulnerabilities on 18 websites.

6734 33rd USENIX Security Symposium

USENIX Association

Table 1: BXSS Findings—the 18 backends with the corresponding website’s rank, shortened path and title.

Rank | Backend Backend Path Backend Title
90-100k | A o /admin/index.php "Welcome to service maintenance, admin!"(*)
1020k | B o /ja-JP/app/lookup_editor/lookup_edit "Lookup Edit | Splunk 8.2.3"
40-50k | C e} /intranet/tmp/integrity-BL-KILL.html
90-100k | D X /investigate/events "Investigate - NetWitness Platform"
3040k E X /last_one_day_-_blocked_events-_[timestamp].csv.html
60-70k | F X /investigate/events "Investigate - NetWitness Platform"
40-50k | G e /global_administrator.aspx "Administrator”
20-30k | H X /ajax/tst.php
0-10k I X /alabama_daily_blocks_harding__sa.[timestamp].csv.html
90-100k | J O /pagestats/toonstats.php
90-100k | K X /alabama_daily_blocks_harding__sa.[timestamp].csv.html
60-70k | L © /admin_area/visit/v2.php "Visitor Status - Daily Visitor Search | vista"(*)
80-90k | M o / "Simple WebSocket Server - GW Socket"
90-100k | N e /Oxu_x_admin/user_getip.asp "China News Encyclopedia background management"(*)
70-80k O e /_admin/count/ip_count.asp "Access Statistics"(*)
50-60k | P O /recent-referrers/ "Referrers from past 2 days — [site]"
60-70k | Q x blank
70-80k | R X /Murl_fetcher_data/f78a3c¢[... 1042f01.html

O Backend URI is publicly available.

Submission Triggers. Generally speaking, we observed re-
action times from submission to feedback ping ranging from a
few seconds for automatic processes up to 10 days for human
interaction, with a median of around 6 hours. Regarding the
geo location of machines where our polyglots triggered, we
received pings from IP addresses across the world, namely
Asia, Europe, America, and Africa.

C)O & 6
Header (10) -

X ——
I EEE URL (9)

SR ,
< & . ffffffff EE Form (1)

FGHIJKLMNOPQR
BXSS-vulnerable backends (18)
Figure 8: Submission types that caused a polyglot to execute
in one of the 18 vulnerable backends.

Next, we further investigate each submission type in Fig-
ure 8. When distinguishing between query and path submis-
sions, we found two cases (C and D) where both types trig-
gered in a backend. To clarify, we do not count these as sep-
arate vulnerabilities, since these likely follow the same data
flow. Interestingly, most other URL submissions that trig-
gered blind XSS were due to polyglots embedded in the path.
The three headers mainly triggered the respective backend
alone, with the Referer header as the most common trigger.
Finally, in only one specific case (L), BXSS in a backend was
triggered by query, User-Agent, and Referer simultaneously.

Moreover, the figure also shows that HTTP header submis-
sions, with 10 cases, uncovered the most BXSS vulnerabil-
ities, followed by URL submissions with 9 vulnerabilities.
Notably, forms triggered the least BXSS instances with only
one occurrence. Potential reasons for this might be the lower

© Backend URI is public, but requires authentication.

x Backend URI is unreachable. (*) Title translated.

amount of form submissions we sent compared to headers and
URLSs, as well as forms being an expected input vector that
may have received more attention regarding sanitization and
encoding of data flowing into backends. Despite being the
commonly used attack vector [4, 19, 22, 26, 42, 43], URLs
still overperform as delivery type for BXSS payloads.

Polyglot Performance. As highlighted in Section 4.3, man-
ually created polyglots may excel in a controlled lab envi-
ronment but not necessarily demonstrate comparable perfor-
mance in a real-world setting. Figure 9 displays the efficacy
of our seven polyglots in discovering blind XSS vulnerabil-
ities. It shows that all polyglots contributed to our study’s
findings, with more than half of them exclusively triggering
certain individual vulnerabilities. Thus, justifying our divide-
and-conquer approach based on complementing polyglots.
Overall, polyglot 4 was most successful regarding the number
of backends triggered, as well as in the number of backends
that only polyglot 4 was able to trigger, followed by polyglot
1, and 7 as the top-performing polyglots. Looking back at
Figure 4 it is interesting to see that the polyglot that was most
successful in the wild is not our best on the GFR. Overall, this
both highlights the need for a set of polyglots, as well as the
need for a real-world evaluation in the wild.

1 . 10
L2 7/
Z3 4
Y ¥ . 12
£5 e N
6 I 6 Header ~ WEEE Form
7 /7, 3 ™= URL 777 Sole trig.
T T T T T T
0 2 4 6 8 10 12

Backends triggered

Figure 9: Backends triggered by the submission types.
Hatched vulnerabilities were only triggered by one polyglot.

USENIX Association

33rd USENIX Security Symposium 6735

6 Related Work

In the following, we discuss how publications in the area of
XSS detection and polyglots relate to our work.

Stored XSS. While reflected XSS has been extensively stud-
ied by prior work [e.g. 4, 19, 22, 26, 39, 40, 42, 43], few tried
to tackle the detection of stored XSS dynamically, i.e., without
access to the server-side source code. In 2014, Duchene et al.
[10] presented KameleonFuzz, a technique to fuzz web ap-
plications guided by a genetic algorithm and a taint tracking
engine. In 2015, Parvez et al. [34] analyzed the effective-
ness of black-box web application scanners to detect stored
vulnerabilities and found that while outperforming previous
scanners [2, 8], the overall detection capabilities were still
quite lacking at that time. Later in 2019, Steffens et al. [41]
expanded taint tracking techniques to also find Stored Client-
Side XSS vulnerabilities, i.e., flows from Web Storage and
cookies to dangerous sinks. Moreover, Eriksson et al. [13] pre-
sented BlackWidow in 2021, which can discover intra-page
dependencies during black-box crawling and thus uncover
Stored Server-Side XSS vulnerabilities.

ML and XSS. Recently, the use of machine learning (ML),
particularly reinforcement learning (RL), has gained traction
in aiding XSS vulnerability detection. In 2021, Caturano et al.
[7] demonstrated RL’s utility in assisting human penetration
testers in uncovering reflected XSS vulnerabilities. In 2022,
Lee et al. [21] introduced a fully automatic RL approach, al-
beit limited to reflected XSS. Additionally, Foley and Maffeis
[14] applied hierarchical RL to generate XSS payloads that
evade the current context and bypass sanitization.

In summary, the dynamic XSS detection approaches dis-
cussed earlier share common characteristics. They either rely
on full information, employing taint tracking, are limited to
Client-side XSS, or require traversing the whole web applica-
tion to identify intra-page dependencies relying on a feedback
loop to guide exploitation. In contrast, our polyglot-based ap-
proach can detect vulnerabilities blindly, without prior knowl-
edge or direct interactions with the vulnerable page.

XSS Polyglots. Some earlier work has also explored the
application of polyglots and related techniques in the web
context. In 2009, Barth et al. [1] presented a PDF chameleon,
which is a PostScript document that also contains some
HTML, that led to XSS due to the browser’s content sniff-
ing algorithm. In 2013, Magazinius et al. [23] generalized
previous attacks such as the chameleon and the GIFAR [5]
attack under the term polyglot, and presented further attacks
using PDF polyglots along with a small-scale study on 100
websites. Additionally, various blog posts regarding universal
XSS polyglots exist [11, 27, 45]. High performance of the
manually created Ultimate polyglot [11] on the GFR led us
to include it in our baseline (see Figure 4). Mutation-based
genetic algorithms [27] constitute an interesting generation
approach. However, initial experiments showed subpar results
of the published polyglots in respect to the GFR compared

to the Ultimate polyglot. This led us to not further pursue
this method. Ultimately, these blog posts lack systematic eval-
uation of their polyglots and, to the best of our knowledge,
none of the previous publications studied the application of
polyglots in the context of blind XSS vulnerability detection.

7 Conclusion

Our analysis sheds light on a web security problem that has
stayed in the dark, so far. While detecting and preventing XSS
vulnerabilities in front end code has been a prime topic of
research, little attention has been paid to analyzing these is-
sues in backends, largely due to a lack of appropriate tools for
blind security testing. Our approach to synthesizing polyglots
fills this gap and provides the basis for the first large-scale
study of XSS vulnerabilities in backend code in the Web.

The generation of polyglots, however, is not only a tool
for research. Our synthesis approach is flexible. It can be nar-
rowed down to specific vulnerabilities as well as expanded
by supplementing additional test cases. As a result, it pro-
vides a new and versatile instrument for web security that
cannot only help investigate public-to-internal flows in back-
ends but ultimately serve as a “Swiss-army-knife” for general
vulnerability assessment of web applications.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
valuable suggestions and comments on this paper. Further-
more, we would like to thank Tobias Jost, Vladislav Mladenov,
and the remaining NDS team at Ruhr-Universitidt Bochum
for their technical support, as well as Sebastian Lekies for his
support with the GFR, and Angela Sasse for her guidance in
our study design. We gratefully acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy — EXC
2092 CASA -390781972, the German Federal Ministry of
Education and Research (BMBF) under the project IVAN
(16KIS1168), the European Research Council (ERC) under
the consolidator grant MALFOY (101043410) as well as from
the European Union’s Horizon 2020 research and innovation
programme under project TESTABLE, grant agreement No
101019206.

Availability

We have made our code publicly available in our companion
GitHub repository at https://github.com/polyxss/bxss,
encouraging further research on polyglot synthesis.

6736 33rd USENIX Security Symposium

USENIX Association

https://github.com/polyxss/bxss

References

[1]

[2

—

[3]

[4

=

[5

=

[6]

[7

—

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Adam Barth, Juan Caballero, and Dawn Song. Secure Content Sniffing
for Web Browsers, or how to stop papers from reviewing themselves.
In Proc. of IEEE Symposium on Security and Privacy, 2009.

Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of
the art: Automated black-box web application vulnerability testing. In
Proc. of IEEE Symposium on Security and Privacy, 2010.

Enrico Bazzoli, Claudio Criscione, Federico Maggi, and Stefano
Zanero. XSS PEEKER: Dissecting the XSS exploitation techniques
and fuzzing mechanisms of blackbox web application scanners. In ICT
Systems Security and Privacy Protection, 2016.

Souphiane Bensalim, David Klein, Thomas Barber, and Martin Johns.
Talking about my generation: Targeted DOM-based XSS exploit gener-
ation using dynamic data flow analysis. In Proc. of European Workshop
on System Security (EUROSEC), 2021.

Ron Brandis. Exploring below the surface of the GIFAR Iceberg. an
EWA Australia information security whitepaper. Electronic Warfare
Associates-Australia, 2009.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A Survey of Monte
Carlo Tree Search Methods. In IEEE Transactions on Computational
Intelligence and Al in Games (T-CIAIG), 2012.

Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. Dis-
covering reflected cross-site scripting vulnerabilities using a multiob-
jective reinforcement learning environment. Computers & Security,
2021.

Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In Proc.
of Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2010.

Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The Cookie
Hunter: Automated Black-Box Auditing for Web Authentication and
Authorization Flaws. In Proc. of ACM Conference on Computer and
Communications Security (CCS), 2020.

Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
KameleonFuzz: evolutionary fuzzing for black-box xss detection. In
Proc. of ACM Conference on Data and Application Security and Pri-
vacy (CODASPY), 2014.

Ahmed Elsobky. Unleashing an Ultimate XSS polyglot. Online
https://github.com/0Oxsobky/HackVault/wiki/Unleashing—
an-Ultimate-XSS-Polyglot, 2018.

DevTools engineering team. Chrome DevTools Protocol. Online
https://chromedevtools.github.io/devtools-protocol/,
2023.

Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black
widow: Blackbox data-driven web scanning. In Proc. of IEEE Sympo-
sium on Security and Privacy, 2021.

Myles Foley and Sergio Maffeis. HAXSS: Hierarchical reinforcement
learning for XSS payload generation. In Proc. of International Confer-
ence on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2022.

Google. GitHub google/firing-range 0.48. Online https://github.
com/google/firing-range/tree/4£991a/, 2018.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

ICANN Security and Stability Advisory Committee. Report on Dotless
Domains. Technical report, SSAC, 2012.

Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and Marc Sleegers.
Shepherd: A Generic Approach to Automating Website Login. In
Proc. of Workshop on Measurements, Attacks, and Defenses for the
Web (MADWeb), 2020.

Erin Kenneally and David Dittrich. The Menlo report: Ethical Princi-
ples Guiding Information and Communication Technology Research.
Technical report, U.S. Department of Homeland Security, 2012.

David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, and
Martin Johns. Hand sanitizers in the wild: A large-scale study of
custom javascript sanitizer functions. In Proc. of IEEE European
Symposium on Security and Privacy (EuroS&P), 2022.

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyniski, and Wouter Joosen. Tranco: A research-oriented top
sites ranking hardened against manipulation. In Proc. of Network and
Distributed System Security Symposium (NDSS), 2019.

Soyoung Lee, Seongil Wi, and Sooel Son. Link: Black-box detection
of cross-site scripting vulnerabilities using reinforcement learning. In
Proc. of the International World Wide Web Conference (WWW), 2022.

Sebastian Lekies, Ben Stock, and Martin Johns. 25 Million Flows
Later: Large-scale detection of DOM-based XSS. In Proc. of ACM
Conference on Computer and Communications Security (CCS), 2013.

Jonas Magazinius, Billy K Rios, and Andrei Sabelfeld. Polyglots:
Crossing origins by crossing formats. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2013.

MDN web docs. Referer Header: Privacy and Security Concerns.
Online https://developer.mozilla.org/en-US/docs/Web/
Security/Referer_header:_privacy_and_security_concerns,

2022.

MDN web docs. Warning - HTTP | MDN. Online
https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Warning, 2022.

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and
Limin Jia. Riding out DOMsday: Towards detecting and preventing
DOM cross-site scripting. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2018.

Alaeddine Mesbahi. Finding superhuman XSS polyglot payloads
with Genetic Algorithms. Online https://blog.ostorlab.co/
polyglot-xss.html, 2021.

Marius Musch, Robin Kirchner, Max Boll, and Martin Johns. Server-
Side Browsers: Exploring the web’s hidden attack surface. In Proc.
of ACM Asia Conference on Computer and Communications Security
(ASIA CCS), 2022.

OWASP Foundation. OWASP Top 10— 2013. Online https://owasp.
org/www-pdf-archive/OWASP_Top_10_-_2013.pdf, 2013.

OWASP Foundation. OWASP Top Ten — 2017. Online https://www.
owasp.org/images/7/72/0WASP_Top_10-2017_(en).pdf.pdf,
2017.

OWASP Foundation. OWASP Top Ten — 2021. Online https://
owasp.org/Topl0/, 2021.

OWASP Foundation. CWE-598: Use of get request method with
sensitive query strings. Online https://cwe.mitre.org/data/
definitions/598.html, 2021.

USENIX Association

33rd USENIX Security Symposium 6737

https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot
https://github.com/0xsobky/HackVault/wiki/Unleashing-an-Ultimate-XSS-Polyglot
https://chromedevtools.github.io/devtools-protocol/
https://github.com/google/firing-range/tree/4f991a/
https://github.com/google/firing-range/tree/4f991a/
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Warning
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Warning
https://blog.ostorlab.co/polyglot-xss.html
https://blog.ostorlab.co/polyglot-xss.html
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://owasp.org/Top10/
https://owasp.org/Top10/
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/598.html

[33] OWASP Foundation. Secure product design - OWASP cheat
sheet series. Online https://cheatsheetseries.owasp.org/
cheatsheets/Secure_Product_Design_Cheat_Sheet.html,

2021.

[34] Muhammad Parvez, Pavol Zavarsky, and Nidal Khoury. Analysis of
effectiveness of black-box web application scanners in detection of
stored sql injection and stored xss vulnerabilities. In 2015 10th Inter-
national Conference for Internet Technology and Secured Transactions

(ICITST), 2015.

[35] Stuart J Russell. Artificial intelligence a modern approach. Pearson

Education, Inc., 2010.

[36] SAP. Project Foxhound.

project-foxhound, 2023.

Online https://github.com/SAP/

[37] Prateek Saxena, David Molnar, and Benjamin Livshits. SCRIPTGARD:
Automatic context-sensitive sanitization for large-scale legacy web
applications. In Proc. of ACM Conference on Computer and Communi-

cations Security (CCS), 2011.

[38] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, loannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go

with deep neural networks and tree search. Nature, 2016.

[39] Sooel Son and Vitaly Shmatikov. The Postman Always Rings Twice:
Attacking and defending postMessage in HTMLS websites. In Proc. of

Network and Distributed System Security Symposium (NDSS), 2013.
[40

Marius Steffens and Ben Stock. PMForce: Systematically analyz-
ing PostMessage handlers at scale. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2020.

[41] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t
trust the locals: Investigating the prevalence of persistent client-side
cross-site scripting in the wild. In Proc. of Network and Distributed

System Security Symposium (NDSS), 2019.

[42] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Mar-
tin Johns. From Facepalm to Brain Bender: Exploring client-side
cross-site scripting. In Proc. of ACM Conference on Computer and

Communications Security (CCS), 2015.

[43] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. How
the Web Tangled Itself: Uncovering the history of client-side web

(in)security. In Proc. of USENIX Security Symposium, 2017.
[44

Ben Stock, Giancarlo Pellegrino, Frank Li, Michael Backes, and Chris-
tian Rossow. Didn’t You Hear Me? - Towards More Successful Web
Vulnerability Notifications. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2018.

[45] Kacper Szurek. XSS polyglot. Online https://security.szurek.
pl/en/xss-polyglot/, 2019.
[46] Christine Utz, Sabrina Amft, Martin Degeling, Thorsten Holz, Sascha

Fahl, and Florian Schaub. Privacy rarely considered: Exploring consid-
erations in the adoption of third-party services by websites. In Proc. of
Privacy Enhancing Technologies Symposium (PETS), 2023.

[47

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8:279-292, 1992.

[48

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter,
Eui Shin, and Dawn Song. A systematic analysis of XSS sanitization
in web application frameworks. In Proc. of European Symposium on
Research in Computer Security (ESORICS), 2011.

[49

WHATWG. HTML Standard - 13.2.4.5 Parse state: Other parsing
state flags. Online https://html.spec.whatwg.org/multipage/
parsing.html#other-parsing-state-flags, 2023.

Appendices

A Notification Script

Figure 10 shows the self-executing notification script, which
collects minimal information about its execution environment
and transmits the information via XMLHt t pRequest to an API
endpoint of our monitoring server.

/* Written for ECMAScript 5.1. Please visit <redacted> for

— further information. Contact: <redacted> */
(function () {
/* collect minimal information */
var data = {
midne "info"
"title": document.title,

"protocol": document.location.protocol.replace(":", ""),

"domain": document.domain,

"port": document.location.port,

"pathname": document.location.pathname,
"navigator_ua": window.navigator.userAgent,
"navigator_platform": window.navigator.platform

i

/* report */

var url = "https://<redacted>/callback?";
for (var key in data) {
url += key + "=" + encodeURIComponent (datalkey]) + "&";
}
url += "timestamp=" + (new Date().getTime()).toString();
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.send();

D O;

Figure 10: Notification Script

B Data Management

Due to our notification script’s design, as detailed in Sec-
tion 5.1 and Appendix A, we received only a minimal amount
of data. Notably, the backend URL’s query and fragment were
never transmitted. We expected to receive no personally iden-
tifiable information (PII) in either the path or the title of
affected webpages. However, we prepared a data manage-
ment strategy to handle potential PII transmissions from our
notification script’s feedback pings. Our strategy entails to
manually replace potentially received PII with placeholders.
Fortunately, as shown in Table 1 neither the backend paths nor
titles contained such information. IP addresses have a distinc-
tive role, as they are indirectly received via a feedback ping
from a vulnerable backend. Initially used to validate instances
of blind XSS (Section 5.3), they later assist in meaningful
disclosure and forensic analysis. Supplying operators with
both the IP address and user agent information, facilitating
distinction between manual actions and automated processes,
helps them assess the vulnerability’s impact. Post-disclosure,
all retained IP addresses and user agents were deleted. Ul-
timately, the data this paper is based on will be archived as
scientific evidence according to our institution’s guidelines.

6738 33rd USENIX Security Symposium

USENIX Association

https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://github.com/SAP/project-foxhound
https://github.com/SAP/project-foxhound
https://security.szurek.pl/en/xss-polyglot/
https://security.szurek.pl/en/xss-polyglot/
https://html.spec.whatwg.org/multipage/parsing.html#other-parsing-state-flags
https://html.spec.whatwg.org/multipage/parsing.html#other-parsing-state-flags

C Alternative Generation Approaches

Our polyglot synthesis for BXSS with MCTS has been suc-
cessful in generating a complementary polyglot set. As our
generation approach is agnostic to this algorithm, however,
we investigate three alternative algorithms that could also
be applied to our setting for constructing polyglots: random
selection, greedy selection, and Q-learning.

Random selection — This method leverages our MCTS
implementation, as depicted in Algorithm 1, but incorporates
random selection and a random playout phase. In the selection
phase, each child is given an equal probability, and one is
selected at random. Once the end condition—specifically, the
maximum payload length—is met, the constructed polyglot
undergoes evaluation on the small testbed.

Greedy selection — This method generates a polyglot by
continuously appending the best next token. Since we cannot
know in advance which token is the best, we probe each token
by appending the respective token to the current polyglot and
evaluating the resulting polyglot on the testbed, thus imple-
menting a greedy search. If multiple tokens achieve the same
performance, we select one randomly to append. In contrast
to MCTS and random selection, the greedy method evaluates
unfinished polyglots in order to choose the next token.

Q-learning — This method builds on Q-learning [47], a
popular reinforcement learning technique. The method pop-
ulates a table of state-action pairs Q(sy,a;) to determine the
best action a; in a given state s;. Algorithm 2 shows our
Q-learning implementation. It first chooses either a random
action or the best next action and then evaluates the result-
ing state on the testbed, updates the q-values and saves the
polyglot if it performed best. For Q-learning we set the learn-
ing rate o = 0.1 and the discount factor y=0.99 as well as
the simulated annealing parameters: initial exploration proba-
bility p = 1, minimal exploration probability p,,;, = 0.01 and
exploration decay I"=0.95.

Comparative evaluation. We compare the approaches
based on the coverage they achieve on the GFR and the num-
ber of polyglots they require to reach that coverage. The ex-
periment consists of generating a set of 10 polyglots with
each algorithm, evaluating the resulting sets on the GFR and
removing polyglots from the sets that do not contribute to the
overall performance. To account for randomness, the experi-
ment is repeated 10 times for each approach.

In the generation phase, each approach iteratively generates
polyglots on the small testbed. After each iteration, we remove
tests that are covered by the polyglots. Since calls to the
testbed are computationally the most expensive component
of each algorithm, all methods are given a budget of 12.000
evaluation calls to the testbed during each iteration.

The evaluation of our comparative experiment’s results
are shown in Figure 1 1. Plot (a) aggregates the resulting set
coverage on the GFR of the 10 parallel repetitions of each

Output: polyglot string

1 Spes < null

2 Tpesr < 0

3 50 <[]

4 while evaluation budget is not exceeded do

5 for t < 0; polyglot not complete; t <t +1 do
6

;

8

if rand (0,1) < pey, then
\ a; < choose_random(s;);
end
9 else
10 ‘ a; < max, Q(s;,a)
11 end
12 See1 < s+ [ar]
13 r; < evaluate(s;+1)
14 O(sr,ar) < O(sear) +ou(ry +ymax, Q(se41,a) — O(se,ar))
15 if r; > rpey then
16 Fhest <= 1t
17 Sbest < St+1
18 end
19 p < max(T-p, pmin)
20 end
21 end

22 return Spey

Algorithm 2: Generating a polyglot with Q-learning

approach as boxplots. Plot (b) displays boxplots of the set
sizes the same approaches achieved. Generally, smaller poly-
glot set sizes are preferred because they would result in fewer
requests being sent to a system under test when testing for
client-side XSS (Section 4) or blind XSS (Section 5). While Q-
learning and greedy selection produce smaller polyglot sets,
their overall coverages on the GFR are significantly lower
than those of MCTS and random selection. We can there-
fore discard both of them as alternative polyglot synthesis
approaches. In terms of coverage, the random method per-
forms only slightly worse than MCTS on average. However,
MCTS consistently achieves a lower set size than random
selection. We believe this is the result of MCTS’s knowledge
aggregated over multiple games, which allows it to generate
more powerful polyglots.

D Google Firing Range

In Section 3.3 we discuss the construction of our compre-
hensive XSS testbed, which was derived from a subset of the
GFR [15] tests to determine the efficacy of the polyglots. This
section details which tests were excluded and why.

The GFR is structured as a crawlable list of subpages cover-
ing different categories of web vulnerabilities. Each category
produces tests from a mix of sink, source, and countermea-
sures. Due to this setup, certain combinations result in un-
solvable tests. To create our comprehensive and solvable XSS
testbed, it is essential to first filter the GFR test cases.

To begin with, we omitted all test categories unrelated to
XSS. As outlined in Table 2, the categories “Bad JavaScript
imports”, “CORS related vulnerabilities”, “Flash Injection”,
“Mixed content”, “Reverse Clickjacking”, “Vulnerable li-
braries”, “Leaked httpOnly cookie”, and “Invalid framing
configuration” are out of scope as they are not related to XSS

USENIX Association

33rd USENIX Security Symposium 6739

(a) GFR Tests Covered (b) Minimal Set Size

110 10 1

100 A 9

LU B 3
o

80 A @ % 7

70 4

60

Figure 11: MCTS, Random, Greedy and Q-learning compari-
son; each generating 10 polyglots in 10 parallel runs

vulnerabilities. Additionally, we disregarded the “Angular-
based XSSes” category given its focus on a particular frame-
work, AngularJS, which is beyond our study’s scope.

From the categories that remained relevant post our prelim-
inary filtering, Table 3 provides a list of the excluded tests
alongside reasons for their omission. For brevity, tests are
identified by their path, accessible by appending the test path
to GFR’s main URL public-firing-range.appspot.com.

Our subsequent filtering entailed the removal of tests lack-
ing solutions. Some tests became unsolvable due to the combi-
nation of sinks and countermeasures, modern browser security
features, or obsoleted features. Fortunately, we acquired a list
of solvable GFR tests from Google. After manual confirma-
tion, we removed tests without a solution. Secondly, a handful
of tests were removed for technical reasons, such as being
removed from the GFR (Stored XSS), or tests involving mul-
tiple windows. Tests with exceptionally restrictive solutions,
out-of-scope for a polyglot, were also ruled out, including
those with stringent filters, or those solvable using only a
URL. Likewise, we omitted tests exceeding our technology
boundaries, such as those using Adobe Flash, Base64, and
SVG. This leaves us with 111 tests.

The GFR tests involve various input sources, including
form submissions, URL parameters, or PostMessages. Some
demand clicks or page reloads post-input. Using Puppeteer,
our test software provides a polyglot to each relevant GFR
test through the suitable input method, meeting the post-
submission requisites. It then waits for an XSS success signal
through a specific log message. We use Puppeteer cluster to
test one polyglot on multiple tests in parallel. After a run
concludes, the polyglot’s result in each test are returned. The
implementation of our testing approach is published in our
companion repository.

Table 2: Vulnerability categories of the GFR 0.48 and their
general applicability for our blind XSS testbed

Category Scope Reasoning
1 Address DOM XSS v XSS-related
2 Angular-based XSSes X framework-specific
3 Bad JavaScript imports X non-XSS-related
4 CORS related vulnerabilities X non-XSS-related
5 DOM XSS v XSS-related
6 Escaped XSS v XSS-related
7 Flash Injection X non-XSS related
8 Mixed content X non-XSS related
9 Redirect XSS 4 XSS-related
10 Reflected XSS v XSS-related
11 Remote inclusion XSS v XSS-related
12 Reverse ClickJacking X non-XSS related
13 Tag based XSS v XSS-related
14 URL-based DOM XSS v XSS-related
15 Vulnerable libraries X non-XSS related
16 Leaked httpOnly cookie X non-XSS related
17 Invalid framing configuration X non-XSS related

v/ category is generally in scope X category is out of scope

Table 3: Excluded GFR tests from the categories in scope,
referenced by path

No solution confirmed (20)

/dom/toxicdom/postMessage/improperOriginvalidationWith
PartialStringComparison, /dom/toxicdom/postMessage/im
properOriginvalidationWithRegExp, /dom/javascripturi.html,
/escape/serverside/encodeUrl/tagname, /escape/server
side/encodeUrl/js_assignment, /escape/serverside/en
codeUrl/js_eval, /escape/serverside/escapeHtml/at
tribute_script, /escape/serverside/escapeHtml/href,
/escape/serverside/encodeUrl/href, /tags/tag, /tags/
tag/div, /tags/tag/img, /tags/tag/style, /tags/tag/iframe,
/tags/tag/div/style, /tags/tag/a/href, /tags/tag/a/style,
/tags/tag/script/src, /tags/tag/body/onload, /urldom/loca
tion/hash/script.src.partial_query

Technical reasons (5)

/dom/toxicdom/document /referrer/eval, /dom/toxicdom/
document /referrer/innerHtml, /dom/toxicdom/document /re
ferrer/documentWrite, /stored/index.html, /urldom/loca
tion/hash/window.open
Solution too narrow (12)
/dom/toxicdom/postMessage/documentirite, /reflect

ed/url/href, /reflected/url/script_src, /remoteinclude/
parameter/script, /remoteinclude/script_hash.html, /url
dom/location/hash/base.href, /urldom/location/hash/fetch
/urldom/location/hash/script.href, /urldom/loca
tion/hash/script.src, /urldom/location/hash/xhr.open
/urldom/location/hash/script.src.partial_domain, /url
dom/location/hash/script.src.partial_path

Technology out-of-scope (8)

/remoteinclude/parameter/object_raw, /remoteinclude/ob
ject_hash.html, /urldom/location/hash/embed.src, /url
dom/location/hash/object.data, /urldom/location/hash/
param.code.value, /urldom/location/hash/param.movie.value
/urldom/location/hash/param.src.value, /urldom/loca
tion/hash/param.url.value

6740 33rd USENIX Security Symposium

USENIX Association

public-firing-range.appspot.com

	Introduction
	Blind Cross-Site Scripting
	The BXSS Attack Scenario
	XSS Polyglots
	Research Questions

	Synthesizing Polyglots
	Monte Carlo Tree Search
	Synthesizing Polyglots with MCTS
	Selecting a Final Polyglot Set
	Minimizing Polyglots

	Validation on Real-World Websites
	Targeted XSS Exploit Generation
	Validation Experiment Setup
	Comparison of XSS Detection Rates

	Blind XSS in the Wild
	Polyglot Preparation and Monitoring
	Polyglot Transmission
	Identifying Blind XSS
	Ethical Considerations
	Large-Scale Crawling Study
	Uncovered BXSS Vulnerabilities

	Related Work
	Conclusion
	Appendices
	Notification Script
	Data Management
	Alternative Generation Approaches
	Google Firing Range

