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Abstract
With the increasing popularity of APIs, ensuring their secu-
rity has become a crucial concern. However, existing security
testing methods for RESTful APIs usually lack targeted ap-
proaches to identify and detect security vulnerabilities. In
this paper, we propose VOAPI2, a vulnerability-oriented API
inspection framework designed to directly expose vulnera-
bilities in RESTful APIs, based on our observation that the
type of vulnerability hidden in an API interface is strongly
associated with its functionality. By leveraging this insight,
we first track commonly used strings as keywords to iden-
tify APIs’ functionality. Then, we generate a stateful and
suitable request sequence to inspect the candidate API func-
tion within a targeted payload. Finally, we verify whether
vulnerabilities exist or not through feedback-based testing.
Our experiments on real-world APIs demonstrate the effec-
tiveness of our approach, with significant improvements in
vulnerability detection compared to state-of-the-art methods.
VOAPI2 discovered 7 zero-day and 19 disclosed bugs on
seven real-world RESTful APIs, and 23 of them have been
assigned CVE IDs. Our findings highlight the importance of
considering APIs’ functionality when discovering their bugs,
and our method provides a practical and efficient solution for
securing RESTful APIs.

1 Introduction

Application Programming Interfaces (APIs), as the contract
between information providers and information users, are
gaining immense popularity as they effectively facilitate com-
munication and data exchange between diverse web appli-
cations. It also enables businesses to harness their data and
services well to support innovative scenarios and broaden
their impact. Currently, it has been widely used and spanned
across various scenarios, such as cloud services [1,2], content
management systems (CMS) [3–6], and Internet of Things
(IoT) [7, 8] devices. Among different architectural styles for

*Co-leading authors. BCorresponding author.

API development, REST [9] (REpresentational State Trans-
fer) has emerged as a widely embraced approach, with APIs
adhering to this style commonly known as RESTful APIs.

Unfortunately, numerous security issues [10, 11] have
arisen in APIs in recent years, resulting in significant repercus-
sions for providers and users. For instance, a vulnerability [10]
in a Facebook API interface exposed millions of users’ private
information. As we see, API security has become a critical
concern, especially for service providers. Meanwhile, APIs
have increasingly become a focal point for attackers, making
them a common target in various services. Hence, proactively
identifying and addressing API flaws is vital in safeguarding
services and their users. Detecting vulnerabilities early on is
an essential strategy to ensure the protection of these systems.

Currently, API testing has gained significant popularity
as a solution to enhance API security, and a considerable
amount of research has been conducted in this field. However,
existing testing methods for RESTful APIs often encounter
limitations when it comes to identifying security vulnerabili-
ties, especially in black-box testing scenarios [12–17]. These
methods heavily rely on the API’s status feedback, which
means they may not detect certain logical vulnerabilities (e.g.,
SSRF) that do not affect the normal functioning of APIs. On
the other hand, white-box testing methods [17–21] require
source code security audits, which can be time-consuming,
inefficient, and prone to generating false positives. Gray-box
testing methods [22, 23] require access to the internal state of
API execution, offering a more comprehensive view. Never-
theless, the diverse code frameworks used in API implemen-
tations present a challenge in developing a unified detection
approach. Furthermore, testing methods tailored to specific ar-
chitectures [24] have limited scope and are difficult to extend
beyond their original application scenarios.

In addition, several other methods [12, 15, 16, 25–32] have
been proposed that leverage OpenAPI1 specifications to en-

1OpenAPI [33] (i.e., Swagger) stands as the most widely used specifica-
tion for describing RESTful API interfaces. A Swagger-based specification
outlines the usage guidelines for RESTful APIs, including the types of service
requests accepted, the expected response format, and other relevant details.
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able unified testing of APIs. These methods include functional
testing [12, 15, 16, 25–29, 34], compliance testing [30], and
security testing [31, 32]. Parts of these approaches [26–29]
utilize OpenAPI specifications to parse HTTP requests and
generate fuzzing test cases that adhere to syntax rules. Con-
versely, some methods [12, 15, 16, 25, 34] use OpenAPI spec-
ifications to infer the dependencies between requests and
generate test messages that align with the API interaction
context. This enables effective testing of API functionality, as
well as the identification of exceptions and specific security
vulnerabilities.

Despite the emergence of various testing approaches, it
is noteworthy that most of these methods do not effectively
utilize the specific characteristics of security vulnerabilities
to implement vulnerability-targeted testing strategies. Instead,
they primarily rely on the detection of “500 Internal Server Er-
rors” as an indication of capturing bugs within API interfaces.
Consequently, this approach leads to limited visibility and low
testing efficiency. For example, when dealing with a large-
scale API project similar in scale to GitLab, RESTler [12], on
average, requires more than 5 hours to perform a comprehen-
sive test. Furthermore, the security vulnerabilities uncovered
by these tools, such as RestTestGen [16], represent only a
small fraction of these bugs, with the majority being func-
tional issues that primarily impact the reliability of APIs.

Based on our analysis of publicly disclosed API vulnera-
bilities in recent years, we observed that there exists a clear
correlation between different API security vulnerabilities and
the functionality of APIs. For instance, file upload interfaces
can pose a risk of malware uploads, while proxy interfaces
may harbor SSRF vulnerabilities. Building upon this obser-
vation, we propose the core concept of our method, which
involves identifying API functions associated with vulnera-
bilities within API specifications and conducting targeted
security testing on those functions. This approach aims to
achieve vulnerability-oriented API inspection, thereby fa-
cilitating the effective discovery of bugs across a wide range
of APIs.

There are three challenges in realizing vulnerability-
oriented API inspection in practice. The first challenge is effi-
ciently differentiating between various functional interfaces
in an API and identifying functions that may have security
vulnerabilities. The second challenge is effectively generating
valid test cases based on different function interfaces and cor-
responding security vulnerability types. The last challenge is
generating test sequences that comply with protocol states, in-
corporating the related test cases, and successfully executing
the function interfaces.

To address these challenges, we propose VOAPI2, a
Vulnerability-Oriented API Inspection framework designed
to directly expose vulnerabilities in RESTful APIs. Our ap-
proach begins by identifying semantic keywords associated
with potentially weak functions within the API specification.
It then integrates a suitable corpus and employs a stateful

request sequence that aligns with the execution context of
the corresponding functions. By utilizing inspection payloads
tailored to different vulnerability types, we can effectively
assess these candidate functions for potential vulnerabilities.

We evaluated our tool on 7 real-world RESTful APIs, which
resulted in the discovery of 7 zero-day vulnerabilities and 19
disclosed bugs. Out of these vulnerabilities, 23 have been ver-
ified and acknowledged by the respective vendors, and have
been assigned CVE IDs. The experiment results demonstrate
that VOAPI2 surpasses the state-of-the-art methods by a sig-
nificant margin, not only in terms of the number of identified
bugs but also in terms of detection efficiency.

In summary, we make the following contributions:

• We propose and implement a novel method, VOAPI2, to
automatically reveal the vulnerability of RESTful APIs. It
can perform vulnerability-oriented testing based on API
specifications to effectively capture defects in RESTful
APIs, and output the corresponding PoC. We will release
the source code as well as the experiment data at https:
//github.com/NSSL-SJTU/VoAPI2.

• We evaluated our tool with several state-of-the-art methods.
The experiment results demonstrate that VOAPI2 surpasses
all these methods by a significant margin, not only in terms
of the number of identified bugs but also in terms of detec-
tion efficiency.

• We conducted an evaluation of VOAPI2 on 7 real-world
RESTful APIs, and VOAPI2 identified 26 vulnerabilities,
including 7 previously-unknown and 19 known security
bugs. All zero-day bugs have been reported to vendors and
fixed; four of them have been assigned CVE IDs.

2 Problem and Approach Overview

In this section, we first provide the background of vulnerabili-
ties in RESTful API. Then, we present a motivation example,
and our method to detect the hidden vulnerability in the sam-
ple. At last, we discuss the associated challenges and present
an overview of our solution.

2.1 Vulnerability of RESTful API
REST, short for REpresentational State Transfer, is a widely
adopted software architecture style for network applications.
It is commonly utilized within the context of HTTP, and an
API adhering to this style is referred to as a RESTful API.
While existing tools are available for testing REST APIs,
many of them primarily focus on assessing the reliability
of these APIs rather than specifically targeting potential se-
curity vulnerabilities. However, similar to web applications,
REST APIs are also vulnerable to various security threats, as
demonstrated by the presence of such vulnerabilities in the
CVE database. These vulnerabilities encompass issues like
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1 /Images/Remote:
2 get:
3 operationId: GetRemoteImage
4 parameters:
5 description: The image url.
6 in: query
7 name: imageUrl
8 required: true
9 schema:

10 description: The image url.
11 format: uri
12 type: string
13 responses:
14 "200":
15 content:
16 image/*:
17 schema:
18 format: binary
19 type: string
20 description: Remote image returned.
21 "404":
22 content:
23 # omitted
24 description: Remote image not found.
25 summary: Gets a remote image.
26 tags:
27 - RemoteImage

Figure 1: Specification of an API endpoint.

Server-Side Request Forgery, Unrestricted File Upload, OS
Command Injection, Path Traversal, and more.
Motivation Example. OpenAPI, formerly known as Swag-
ger, provides a specification for describing RESTful APIs.
Typically, the specification document is presented in JSON or
YAML format and encompasses the resources and operations
of the RESTful API. It comprises a collection of Schema Ob-
jects, which encompass various elements such as API service
endpoints (commonly referred to as paths), CRUD operations
(such as GET, POST, PUT and DELETE) performed on an endpoint,
input parameters, and expected responses. Each schema object
follows a predefined structure with corresponding parame-
ter types. Users can leverage the specification to generate
valid API operations and communicate with API services by
presenting them as HTTP requests.

Figure 1 illustrates a simplified fragment of the OpenAPI
specification for Jellyfin [3], an open-source media man-
agement system. This fragment specifies an API endpoint,
/Images/Remote, which supports a single CRUD operation,
GET. It defines the input parameters and expected response
for this endpoint. Specifically, the input parameter is named
“imageUrl” (Line 7), which is required and used to specify
the URL of the image (Line 10). The corresponding schema
(Line 9) designates the parameter type as a string (Line 12).
The response section includes the HTTP status code and
response message (Line 13). Furthermore, this example in-
cludes a “summary” field (Line 25), which typically provides a
brief description of the API’s functionality (similar to the
“description” field). Additionally, there is a “tags” field

Internal ServiceAttacker
REST APIs

/Images/Ratings

/Images/Remote

/Items

/Items/Filter

…

Figure 2: Exploitation process of CVE-2021-29490.

(Line 26) that offers category tags to classify the API.
In Jellyfin (version 10.7.3 and earlier), there exists a

Server-Side Request Forgery (SSRF) vulnerability (CVE-
2021-29490 [35]) in the aforementioned API endpoint. Ex-
ploiting this vulnerability requires the attacker to send a GET
request to the /Images/Remote API with testing payloads (e.g.,
http://LAN_IP/ssrf) in the query parameter “imageUrl”.
The root cause of this vulnerability is the lack of filtering
for the remote resource address specified by the “imageUrl”
parameter in the backend of the API service. This oversight
allows attackers to freely access internal resources by sending
an HTTP request (i.e., the testing payload) from the Jellyfin
server, as depicted in Figure 2.

As we see, the vulnerability in the motivation sample is
closely related to the functionality of the corresponding API
endpoint. Specifically, the SSRF bug typically arises in the
API path responsible for retrieving a remote resource. As
demonstrated in this example, the purpose of this API end-
point is to fetch a remote image, as indicated in its summary
(Line 25). The parameter “imageUrl” is utilized to specify the
address of the resource (Line 5). Consequently, if the back-
end of this API interface fails to rigorously validate input
parameters, it may result in an SSRF vulnerability.

2.2 Observation and Our Method

Current security testing methods for APIs suffer from two
primary efficiency issues and most of them cannot detect the
vulnerability hidden in the motivation sample. Firstly, they
are time-consuming. For example, RESTler [12] required over
five hours to test four groups of API interfaces in the open-
source code management software GitLab, with the longest ef-
fective request sequence length tested remaining at just three.
This inefficiency can be attributed to testing tools needing
to traverse all interfaces indiscriminately, rather than focus-
ing on a specific API interface in-depth. Secondly, existing
testing tools heavily rely on service status feedback from
API endpoints to gauge testing effectiveness, resulting in the
identification of mostly service-disrupting bugs. For instance,
RESTler discovered 28 bugs causing GitLab [36] service un-
availability, while RestCT [25] identified eight similar issues
in Bing Maps [37] and GitLab.
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Table 1: Statistical Data of Known APIs’ Vulnerabilities. Here we list the disclosed API bugs of six common types that we
collected from the CVE database. #Bug indicates the number of disclosed bugs. #Ratio indicates the proportion of common
functionality in all vulnerable functions.

CWE ID Vulnerability Type #Bug Functionality Summary of Vulnerable APIs #Ratio Keywords

CWE-434 Unrestricted Upload of File 42 Most of them focus on uploading. 83%(35/42) “upload”,“submit”,“import”, etc.

CWE-918 Server-Side Request Forgery 21
Most of them need to request a remote source,
like Proxy interfaces. 81%(17/21) “remote”,“proxy”,“URL”, etc.

CWE-22 Path Traversal 31
They are responsible for handling file through
a "Path" variable. 52%(16/31) “path”,“dir”,“file”, etc.

CWE-78 OS Command Injection 55
Most of them are used to set configurations
through commands executed in OS shell. 40%(22/55) “CMD”,“command”,“system”, etc.

CWE-89 SQL Injection 70 They are responsible for handling SQL database. 53%(37/70) “SQL”,“database”,“select”, etc.
CWE-79 Cross-site Scripting 55 They present front-end pages that show text. 35%(19/55) “display”,“content”,“view”, etc.

Furthermore, these testing methods often lack a targeted
strategy and approach based on specific security vulnerabil-
ities. Instead, they primarily rely on detecting generic bugs
through feedback such as “500 Internal Server Errors” from
API endpoints. Consequently, this leads to an indiscriminate
and inefficient testing approach, with the majority of detected
bugs being functional issues rather than genuine security vul-
nerabilities.

Observation. According to the motivation sample, we ob-
serve that we can assess the functionality of APIs by exam-
ining certain feature strings commonly used to define API
features in the specification, such as the presence of remote
in the current example. Meanwhile, the keyword remote is
also strongly associated with the type of vulnerability (SSRF).
To validate our observation that the category of vulnerability
present in an API interface is strongly linked to the func-
tionality of that interface via some keywords, we gathered
data from the CVE database on the most common types of
revealed API vulnerabilities (e.g., Unrestricted Upload and
SSRF) and selected vulnerabilities that had been disclosed in
CVE records with specific details, such as the exact location
of the bug within the API interface.

Based on our collected data2, we first conduct a word fre-
quency analysis on the API paths and parameters of API
interfaces according to these vulnerabilities’ CVE descrip-
tions. Then, combining with expert knowledge (analyze the
root cause of these vulnerabilities), we extract high-frequency
words that also reflect the functionality of these vulnerable
APIs, such as "upload" and "submit," and mapped these for
the functionalities (e.g., File Upload function) and vulner-
abilities (e.g., Unrestricted Upload of File). Finally, we try
to construct a mapping from the vulnerability type to the
corresponding function functionality and its feature strings
frequently applied in context.

Our analysis results are presented in Table 1, which shows
that, on average, 57% of vulnerable API interfaces affected

2All the vulnerability context information and keywords gathered during
this construction process can be found at the link: https://github.com/N
SSL-SJTU/VoAPI2/CVE-Information.xlsx.

by a specific type of bug belonged to the same functional-
ity. These findings confirm the validity of our intuition for
these common vulnerabilities. Additionally, we identified
a group of commonly used strings in specific functionality
as keywords. For example, in an upload interface, we may
observe frequently used strings such as “upload”, “submit”,
and “import” which can be used as keywords to identify cor-
responding interfaces from API specifications and support
subsequent bug detection, as shown in Table 1. It is also im-
portant to note that these six types of vulnerabilities are the
mainstream of web vulnerabilities, collectively accounting
for over 70% of the total [38].

Our Method. Building upon our observation and verifica-
tion result, we propose the core concept of our method, which
involves identifying API functions associated with vulnera-
bilities within API specifications and conducting targeted
security testing on those functions. This approach aims to
achieve vulnerability-oriented API inspection, thereby facili-
tating the effective discovery of bugs across a wide range of
RESTful APIs. Different from the previous method, it con-
siders the API functionality when identifying and testing for
vulnerabilities.

2.3 Challenges and Our Approach

There are three challenges in realizing vulnerability-oriented
API inspection in practice.
C1: How to efficiently differentiate between various func-
tional interfaces in an API and identify functions that may
have security vulnerabilities? API documentations usually
contain a large number of APIs, but only a small portion of
them may have security vulnerabilities. Hence, it is crucial to
employ a method that can identify candidate APIs, enabling
us to enhance testing efficiency and minimize ineffective test
requests.
C2: How to generate test case sequences that comply with pro-
tocol states and trigger the vulnerable functional interfaces?
API invocations are state-based and often require a series of
pre-request actions (request sequences) to fulfill the execution

742    33rd USENIX Security Symposium USENIX Association

https://github.com/NSSL-SJTU/VoAPI2/CVE-Information.xlsx
https://github.com/NSSL-SJTU/VoAPI2/CVE-Information.xlsx


Specification
Parser

Specification
Parser

Expert AnalysisExpert AnalysisCVE & NVDCVE & NVD Expert AnalysisCVE & NVD

Path 
Keywords

Path 
Keywords

Param 
Keywords

Param 
Keywords

Path 
Keywords

Param 
Keywords

Build 

Step 2: Candidate Interface Extraction Step 3: Test Sequence Generation

API Specification

/account
/account/email
…
/avatars/favicon
/avatars/image
…
/functions
…

Test Sequence Generator

Parameter 
Values 

Generation

Parameter 
Values 

Generation

Reverse 
Sequence 

Construction

Reverse 
Sequence 

Construction

Test Sequence Generator

Parameter 
Values 

Generation

Reverse 
Sequence 

Construction

Candidate APIs

1. /avatars/favicon
tagged_param: url

2. /avatars/image
tagged_param: url

…

Candidate APIs

1. /avatars/favicon
tagged_param: url

2. /avatars/image
tagged_param: url

…

Function Vulnerability 
Mapper

Function Vulnerability 
Mapper

Step 4: Feedback-based Test

Test Case 
Generator

Vulnerability Verifier

Step 1: Specification Analysis

PoC

Validation 
Server

Test Case 
Sender

API 
Application

① Send③
 V

erificatio
n④

 F
ee

d
b

ac
k

B
u

g？Validation 
Server

Test Case 
Sender

API 
Application

① Send③
 V

erificatio
n④

 F
ee

d
b

ac
k

B
u

g？

② Response

Validation 
Server

Test Case 
Sender

API 
Application

① Send③
 V

erificatio
n④

 F
ee

d
b

ac
k

B
u

g？

② Response

Figure 3: System Architecture of VOAPI2. VOAPI2 first analyzes the API specification and identifies semantic keywords
associated with potentially weak functions within the API specification. It then integrates a suitable corpus and employs a stateful
request sequence that aligns with the execution context of the corresponding functions. By utilizing inspection payloads tailored
to different vulnerability types, VOAPI2 can effectively assess these candidate functions for potential vulnerabilities.

dependencies of the API, such as providing required input
parameters, in order to ensure the proper execution of the API.
Making standalone API calls is usually considered invalid.

C3: How to effectively generate valid test cases based on
different functional interfaces and corresponding security vul-
nerability types? (1) Different types of vulnerabilities have
distinct principles and require different detection methods. (2)
Overly complex test messages can significantly increase the
cost of testing while compromising efficiency and accuracy.
(3) Verifying the presence of vulnerabilities may necessitate
additional triggering requests. Therefore, the design of test
messages and checkers should strive to encompass a compre-
hensive range of real-world scenarios.

To solve these challenges, we design VOAPI2 to detect
various vulnerabilities in REST APIs effectively. To solve the
first challenge, we identify and extract the relevant functional
APIs from the API specifications by utilizing semantic key-
words (e.g., path keywords and parameter keywords). With a
focus on vulnerability analysis, we identify potential vulnera-
bility types and their possible locations within these functional
APIs. And then, we employ reverse sequence construction
and parameter values generation methods, which is expanding
on the techniques used in RESTler and RestCT, to generate
test requests that adhere to the protocol’s state transitions.
This ensures the proper context for executing the candidate
APIs. At last, to address different vulnerability types, we cre-
ate specific test corpora. By combining the test sequences
developed for candidate APIs and the marked potential vul-
nerability locations, we incorporate tailored test data into the
corresponding parameters, resulting in comprehensive test
cases. The presence of potential vulnerabilities in candidate
APIs is assessed by the feedback received from the backend
checker, enabling timely adjustments to the testing strategy
when necessary.

3 Design

Overview. As shown in Figure 3, our approach begins by
identifying semantic keywords associated with potentially
weak functions within the API specification. It then integrates
a suitable corpus and employs a stateful request sequence that
aligns with the execution context of the corresponding func-
tions. By utilizing inspection payloads tailored to different
vulnerability types, we can effectively assess these candidate
functions for potential vulnerabilities.

3.1 Semantic Keyword Collection
VOAPI2 utilizes semantic keywords to identify APIs that
exhibit specific functionalities. As shown in Table 1, APIs
related to file uploads are often vulnerable to arbitrary file
uploads. The functionality of an API is typically indicated
by its access path, as demonstrated by /Images/Remote in
Figure 1. On the other hand, the parameters of an API provide
specific details about its intended function. For instance, a file
upload API is likely to include the keyword “upload” in its
access path, while the parameters are expected to involve the
keyword “file”.

In this part, we follow a two-step process to extract API
access path and parameter keywords. First, we collected 544
vulnerabilities related to APIs with publicly available detailed
descriptions from sources such as CVE [39] and NVD [40] to
build a dataset. We then clustered these vulnerabilities based
on their CWE (Common Weakness Enumeration) IDs and
ranked the CWE IDs according to the number of vulnerabili-
ties they encompassed. We selected the six clusters of CWE
IDs with the highest proportion. Using this dataset as a foun-
dation, we analyzed the types of API functions associated
with these CWE IDs and created mappings between the CWE
ID and the corresponding API functionality. Specifically, we
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Table 2: Keywords of API paths and parameters. Here we
list the mappings between Vulnerability Type and API Type
as well as the corresponding number of keywords collected
in the Semantic Keyword Collection module.

Vulnerability Type #Keywords API TypeAPI path API parameter

SSRF 10 22 Resource Request APIs
Unrestricted Upload 12 8 File Upload APIs

Path Traversal 12 3 Path Processing APIs
Command Injection 12 7 System Configuration APIs

SQL Injection 11 4 Database Operation APIs
XSS 15 12 Text Display APIs

analyzed vulnerabilities within these six CWE clusters and
obtained functional descriptions for the vulnerable APIs from
various sources, including source code, API documentation
comments, and vulnerability descriptions. We conducted word
frequency analysis and leveraged expert experience to identify
the frequently occurring API functionalities within these six
CWE clusters. Finally, we established the mappings as shown
in Table 2 (i.e., Vulnerability Type and API Type).

Next, we conducted a statistical analysis of the words found
in the API access paths and parameters, and gathered two dis-
tinct clusters of semantic keywords: one for API paths and
another for parameters. In detail, we extracted the paths and
parameters from each vulnerable API in the dataset. We then
performed word frequency analysis on these paths and param-
eters, and sought input from human experts to identify the
keyword collections. By incorporating the additional insights
and expertise from the experts, we refined and expanded the
existing keyword collections. This process allowed us to es-
tablish meaningful connections between the keywords, the
corresponding API functionalities, and the vulnerability types.
These strings serve as semantic keywords that reflect the func-
tion of the respective category. The number of each type’s
keywords is listed in Table 2.

3.2 Candidate Interface Extraction
In this module, we analyze the API specification to identify
interface functions that may potentially have vulnerabilities by
searching for semantic keywords in the API documentation.
The process involves the following steps. Firstly, VOAPI2

utilizes the RESTler Compile Module to analyze the API
specification and generate a grammar file (shown in Listing 1).
This grammar file contains information about parameters,
responses, and the dependencies between individual requests.

And then, VOAPI2 parses grammar files based on the
following three patterns: (1) the API access path is identi-
fied by locating the string “Endpoint:”; (2) the API request
method is identified by locating the string “method:”; (3)
The API parameters are identified by finding the line above
the restler_fuzzable_string and checking if they are sur-
rounded by parentheses “()”. Taking the grammar file in

1 # Endpoint: /Images/Remote , method: Get
2 request = requests.Request([
3 primitives.restler_static_string("GET "),
4 primitives.restler_basepath(""),
5 primitives.restler_static_string("/"),
6 primitives.restler_static_string("Images"),
7 primitives.restler_static_string("/"),
8 primitives.restler_static_string("Remote"),
9 primitives.restler_static_string("?"),

10 primitives.restler_static_string("imageUrl="),
11 primitives.restler_fuzzable_string("fuzzstring", quoted=

False),
12 primitives.restler_static_string(" HTTP/1.1\r\n"),
13 primitives.restler_static_string("Accept: application/

json\r\n"),
14 primitives.restler_static_string("Host: localhost\r\n"),
15 primitives.restler_refreshable_authentication_token("

authentication_token_tag"),
16 primitives.restler_static_string("\r\n"),
17 ],
18 requestId="/Images/Remote"
19 )

Listing 1: Sample of Candidate Interface Extraction.

Listing 1 as an example, we obtained the API access path
/Images/Remote (Line 1), the API request method Get (Line
1) and the unique parameter of this API imageUrl (Line 10).

By applying these patterns, VOAPI2 is able to extract rel-
evant information from the grammar file and help identify
the API functions that are associated with potential vulner-
abilities. VOAPI2 utilizes the semantic keywords generated
by the previous module to check for their presence in the
paths and parameters of a given API. Based on this analy-
sis, VOAPI2 categorizes the API functions and assigns them
potential vulnerability types (one or more). Our statistical
analysis of past API vulnerabilities indicates that all parame-
ters could be vulnerable when an API includes path keywords
but lacks parameter keywords. As a result, we employ the fol-
lowing strategy to extract and classify API functions: (1) APIs
that solely consist of path keywords without any parameter
keywords are identified as candidate APIs, and all parameters
of these APIs are marked as test parameters; (2) APIs that
contain parameter keywords are also recognized as Candidate
APIs, but only the parameters corresponding to the parameter
keywords are designated as test parameters.

The extracted candidate APIs are categorized into corre-
sponding functional categories based on the keywords, and
potential vulnerability types are mapped, which guides the
selection of testing corpus and methods. VOAPI2 categorizes
the candidate API functions and their corresponding potential
vulnerability types as shown in Table 2.

3.3 Test Sequence Generation

This module is designed to create a sequence of API requests
that accurately reflect the state transitions of the API under
testing. Since API calls often depend on the current state, a
single request is often inadequate to thoroughly test an API.
To address this, VOAPI2 employs reverse sequence construc-
tion techniques to identify other APIs that one candidate API
depends on, thereby forming a series of requests that precisely
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Algorithm 1 Reverse Sequence Construction Algorithm
1: function GENERATE_SEQUENCE(candidate_api)
2: S← candidate_api
3: i← -1
4: while True do
5: producers← FIND_PRODUCERS(S[i])
6: for producer ∈ producers do
7: if IS_VALID_PRODUCER(producer, S) && not

IS_DUPLICATE(producer, S) then
8: S.INSERT(0, producer)
9: if S[i] == S[0] then

10: Break
11: else
12: i = i−1
13: return S

capture the state transitions of the API being tested.

3.3.1 Reverse Sequence Construction

We list the reverse sequence construction algorithm
in Algorithm 1 and illustrate the algorithm by using
GET /database/collections/{collectionId}/documents

/{documentId}, an API of Appwrite [5]. It initializes a
sequence set S with the candidate API (candidate_api) and
proceeds to reverse-traverse the set S, starting from the end
(S[-1] is candidate_api). This process involves identifying
all producer APIs of the candidate API. For example, for
the sample API, it searches the responses field in the API
documentation for potential producers. It uses string fuzzy
matching to match the producers of the parameters (i.e.,
collectionId, documentId) of candidate_api. Among these
producer APIs, only those that meet the producer-consumer
relationship, CRUD semantic constraints and resource
hierarchy constraints (we explain the three key definitions
and their corresponding constraints used in this algorithm in
the following segments.) are retained and appended to the
front end of the sequence set S (Line 6-8). The algorithm
then continues the reverse-traversal process, identifying the
producers of the preceding API until it reaches the beginning
of the sequence S (Line 9-10).

Producer-Consumer Relationship. In the context of the
API testing framework, the Producer-Consumer Relationship
refers to a rule that governs the execution order of API
requests based on their input parameters. If the input
parameter of request A, which can be located in the Path,
Query, Header, Form, or Body, is derived from the response
description of request B using heuristic string matching,
then request B must be executed before request A. In other
words, request B acts as the producer of the input parameter
for request A. In cases where the same input parameter
corresponds to multiple producers with the same path but
different request methods, a priority system is used to select
and add a single producer to the producer set. The priority is
determined as follows: POST takes precedence over PUT, GET,
and PATCH. For the sample API, its all potential producers

contains:
P1=“GET /account” (P represents Producer),
Pn1=“GET /database/collections”,
Pn2=“POST /database/collections”,
Pn3=“GET /database/collections/{collectionId}”,
Pn4 =“POST /database/collections/{collectionId}/documents”,
and so on. And according to the strategy of the priority
system, the producer Pn1 will be removed because it shares
the same path as Pn2 but has a lower priority.

CRUD Semantics. CRUD is an acronym that stands for
CREATE, READ, UPDATE, and DELETE. According to the CRUD
semantics, a resource (and all its sub-resources) should not
be accessed before its creation or after its deletion. In reverse
sequence construction, the CRUD semantic constraints only
apply to a pair of producers and consumers. For example,
because the consumer’s request method is GET, if there is a
producer with a request method of DELETE, we need to remove
it from the producer set.

Resource Hierarchy. In RESTful APIs, the hierarchical
relationships between resources are indicated by the for-
ward slash “/” in the URLs of the resources. For example,
/user/{id} is a direct sub-resource of /user, whereas there
is no direct relationship between /user and /team. We need
to remove producers that do not satisfy the resource hierarchy
relationship. For example, the producer P1 that does not have
a resource relationship with candidate_api will be removed.

After applying these three constraints to filter out
invalid producers from the producer set, we are left with
three valid producers: “POST /database/collections”,
“GET /database/collections/{collectionId}”, “POST
/database/collections/{collectionId}/documents”.

3.3.2 Parameter Values Generation

In order to create a concrete request, each input-parameter,
such as imageUrl (Line 7) in Figure 1, in the sequence needs
to be assigned a value domain. VOAPI2 utilizes one of the
following strategies to determine the value domain for each
input-parameter based on RestCT [25]:

• CONSUMER. This strategy uses the resources from the
producer’s response message (i.e., http response message
for one request). If an input-parameter p corresponds to
a resource in the producer’s response message, then the
resource is used as the value domain for p during runtime.

• SPECIFICATION. This strategy uses the values described
in the API specification. If an input-parameter p has an
enum or default field, then the corresponding value is di-
rectly used as the value domain for p. Otherwise, the strat-
egy searches for all input parameters with the same name as
p and selects sample values at random from their example
fields to use as the value domain for p.

• FORMAT. This strategy uses the values from the preset
formatting dictionary. If an input-parameter p’s name can
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Table 3: Sample Testing Corpus for Different API Types.
API Type Sample in Testing Corpus

Resource Request API http://IP:PORT/ssrf/{0}
File Upload API evil files (evil.jsp, evil.asp, evil.php, etc)

Path Processing API /etc/passwd; C://Windows//win.ini
System Configuration API curl http://IP:PORT/command/{0}

Database Operation API 1" or "1"="1; SQLMap
Text Display API <img src=‘http://IP:PORT/xss/{0}’>

be matched to a preset formatting dictionary, then the cor-
responding value is used as the value domain for p. The
VOAPI2 preset formatting dictionary is mainly designed
for parameters that have specific formatting requirements,
such as email (which requires a valid email format) and
password (which requires a length of at least 8 characters).

• SUCCESS. This strategy uses the values from the previous
successful requests (identified by a 200 HTTP status code).
If an input-parameter p has the same name as an input-
parameter from a previous successful request, then the value
for that input-parameter is used as the value domain for p.
If the value for the same input-parameter was generated
using the RANDOM strategy, then the value is mutated
to increase the diversity of test inputs and avoid creating
duplicates.

• RANDOM. This strategy generates a random value to use
as the value domain for an input-parameter p if none of the
above strategies can determine a value domain for p.

VOAPI2 applies these strategies in decreasing priority until
a value domain is determined for each input-parameter.

3.4 Feedback-based Testing and Verification
This module consists of two parts: Test Case Generator and
Feedback-based Vulnerability Verifier. For each candidate
API in the test sequence, Test Case Generator generates valid
test cases with the assistance of the test sequence generation
module. These test cases are then sent to the API application
by the Feedback-based Vulnerability Verifier to detect the
presence of corresponding vulnerabilities.

3.4.1 Test Case Generator

The test case generator leverages the output of the Test Se-
quence Generator module to generate test cases that target
potential vulnerabilities in the APIs. Specifically, it gener-
ates test cases by inserting the testing corpus into the marked
testing parameter positions. For the unmarked parameters,
the values assigned by the Test Sequence Generation module
are utilized. As shown in Table 3, we collected some test
cases and built the testing corpus for different categories of
APIs. For instance, to address variations in server-side archi-
tectures, we gathered and designed malicious file upload test

cases (e.g., evil.jsp and evil.php) tailored to different pro-
gramming languages. For another example, we developed a
comprehensive set of payloads (e.g., "../"*9+"etc/passwd")
that attempt to bypass various types of path checks to explore
path traversal vulnerabilities in APIs that handle file paths.
More importantly, we design an extensible interface to scale
the test corpus. For example, in addition to employing con-
ventional SQL injection test cases (e.g., 1" or "1"="1), we
augment the Test Case Generator by integrating one existing
powerful detection tool (i.e., SQLMap [41]) to help determine
the presence of vulnerabilities with sophisticated corpus.

3.4.2 Feedback-based Vulnerability Verifier

The Feedback-based Vulnerability Verifier primarily com-
prises two key components: the Test Case Sender and the
Validation Server. The Test Case Sender is tasked with trans-
mitting test cases to the target API application and receiving
the corresponding responses. It subsequently forwards the
received response, candidate API information, and testing cor-
pus data to the Validation Server for in-depth analysis and
verification. Meanwhile, the Validation Server is responsible
for confirming the presence of vulnerabilities.

For SSRF, XSS, and Command Injection testing corpus,
when a vulnerability is present, the vulnerable behavior pro-
duced by the testing corpus prompts the API application to
send a vulnerability verification request to the Validation
Server. The Validation Server determines the existence of
the vulnerability based on whether it receives this request.
If the request is received, the Validation Server infers that
the vulnerability exists. For the remaining types of testing
corpus, the Validation Server determines the existence of vul-
nerabilities based on the verification information sent by the
Test Case Sender. For example, if the response content of
an upload API test case contains the term “success” or the
response status code is in the 2xx range, the Validation Server
concludes that the API is vulnerable to Unrestricted Upload
of File with Dangerous Type. Following this, the Validation
Server further checks if the returned information includes
the path of the uploaded file. If it does, the Validation Server
accesses the file and conducts relevant tests to determine if
the malicious file can be successfully executed.

The Validation Server provides feedback on the verification
results to the Test Case Generator. When a vulnerability is
identified, Test Case Generator proceeds to the next test case.
When Validation Server reports that no vulnerability exists,
Test Case Generator makes the following determinations. (1)
The request method in the test case is POST. (2) The testing
corpus corresponds to one of the following: SSRF, XSS, or
Command Injection testing corpus. (3) The testing request
containing the testing corpus has been executed (determined
by a 2xx response status code).

When all of these conditions are met, the Test Case Genera-
tor infers that a triggering request is required to further verify
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the existence of the vulnerability. The triggering request is
sent to further test the existence of the vulnerability. To il-
lustrate this point, consider CVE-2023-27161 as an example.
The SSRF vulnerability is located in the /Repositories API
and can be exploited by embedding a payload in the url pa-
rameter using a POST request. However, merely sending the
POST request does not trigger the vulnerability. In such cases,
an additional triggering request, specifically GET /Packages,
needs to be sent to activate the vulnerable behavior. This trig-
gers the API application to send a vulnerability verification
request to the Validation Server, which ultimately leads to the
discovery of this vulnerability.

The triggering requests consist of two types: (1) an API
with the same path and request method as GET, and (2) all
APIs that do not require parameters and have a request method
of GET. The selection of these two types of triggering requests
is not only aimed at cost savings but also based on historical
vulnerability analysis, which has shown a high correlation
between these types of APIs and triggering vulnerabilities. If
the vulnerability cannot be triggered through these requests,
it is recorded as a type of vulnerability that requires manual
triggering. By introducing a triggering mechanism, VOAPI2

can more accurately identify API vulnerabilities that require
specific triggering and improve the overall effectiveness of
vulnerability testing.

4 Implementation

We have developed a VOAPI2 prototype system based on
RESTler, which consists of 2,700 lines of Python code. The
Semantic Keyword Collection module is implemented based
on Scrapy [42] and Beautiful Soup [43]. The Candidate Inter-
face Extraction module is extended from the RESTler’s Com-
pile module to support parsing API documentation of multiple
formats. In the Test Sequence Generation module, the re-
verse sequence construction is improved based on RESTler’s
producer search and sequence construction strategy, and the
parameter values generation is extended from RestCT’s input-
parameter value rendering module. In the Feedback-based
Testing and Verification module, the test case generator is built
by modifying the test corpus of RESTler, while the feedback-
based vulnerability verifier is implemented using the socket
library and by expanding response handling. More impor-
tantly, to support various vulnerabilities (e.g., Unrestricted
Upload), we have extended the multipart_formdata primitive
in RESTler Compile. After all, the current prototype system
supports multiple API documentations adhering to OpenAPI
v2/v3 and can detect six types of API vulnerabilities.

5 Evaluation

We conduct experiments to evaluate the performance of
VOAPI2, and our evaluation targets the following questions:

RQ1 (Vulnerability Detection): How well are the vulnera-
bility identification capability (§5.2) and accuracy (§5.3) of
VOAPI2? Can VOAPI2 discover vulnerabilities in real-world
APIs? (§5.4)
RQ2 (Efficiency): Can VOAPI2 efficiently generate test
cases and explore operations, and how does it perform com-
pared with the state-of-the-art tools? (§5.5)
RQ3 (Ablation Study): How does the vulnerability-oriented
strategy of VOAPI2 affect the testing results? (§5.6)

5.1 Experiment Setup

Compared Tools. We compared our prototype system with
several popular vulnerability scanners and state-of-the-art
tools in RESTful API testing. It is important to note that these
tools are designed for different purposes. First, vulnerability
scanners are primarily used to evaluate web applications. Fur-
thermore, these selected vulnerability scanners must support
API testing by sending mutated requests to these endpoints
and reporting potential vulnerabilities based on the response
results. On the other hand, RESTful API testing tools aim to
generate better API test cases and discover more bugs (i.e.,
500 Internal Server Error). However, they are not designed to
reveal in-depth vulnerabilities. We focus on different aspects
of VOAPI2 and compare them with corresponding tools to
answer the questions we are concerned about, for example,
whether our method can find more bugs than vulnerability
scanners. Finally, we select the following two vulnerability
scanners and three RESTful API testing tools:

• Zed Attack Proxy (ZAP) [44] is an open-source black-box
web vulnerability scanner developed by OWASP, primarily
used for web vulnerability assessment and penetration test-
ing. We leverage ZAP’s resolver to parse API specifications
and inspect API services directly.

• Astra [45] is a scanner specifically designed for vulnerabil-
ity scanning of RESTful APIs, testing various vulnerabil-
ities by loading payloads into parameters, HTTP headers,
and other locations.

• RESTler [12] is an open-source black-box RESTful API
testing tool developed by Microsoft. It generates stateful
test cases by inferring producer-consumer dependencies
between operations and feedback at runtime.

• RestTestGen [16] uses data dependencies between opera-
tions to generate test cases and deploy two distinct oracles
to test RESTful API, that test cases can reveal implementa-
tion defects.

• MINER [46] uses length-oriented strategies to generate
sequence templates and a neural network model to predict
key request parameters and provide appropriate parame-
ter values to get a long sequence request in RESTful API
testing.
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Table 4: Benchmark Applications. #Endpoint represents
the number of endpoints in each Application. #Download
represents the number that each application is downloaded in
the Docker hub [47].

Applications #Endpoint Version Description #Download

GitLab 358 8.17.0 Code Repository 100M+
Jellyfin 405 10.7.1 CMS 100M+

Appwrite 95 0.9.3 CMS 5M+
Microcks 44 1.17.1 CMS 600K+
Casdoor 121 1.13.0 CMS 20K+

Gitea 325 1.16.7 Code Repository 20K+
Rbaskets 22 1.2.3 Web Service 10K+

Evaluation Benchmarks. We use the following three criteria
to select real-world RESTful API applications as our bench-
mark for evaluation. (1) Having a complete API specification
document that can serve as input for all comparative testing
tools. (2) The application should have APIs covering multiple
orders of magnitude, ranging from small to large-scale. (3)
The application should be open-source and widely used in
different scenarios. Table 4 illustrates the seven applications
we have chosen as our testing subjects. Based on the number
of API endpoints, Rbaskets [48], and Microcks [6] are cate-
gorized as small-scale API applications, while Appwrite [5]
and Casdoor [4] belong to medium-scale API applications.
Gitea [49], Jellyfin [3] and GitLab [36], on the other hand, are
considered large-scale API applications. All of these applica-
tions are easily deployable and supply API services well.
Evaluation Settings. For the target services, we install them
with a basic configuration to ensure the proper functioning of
their API services. Moreover, we employ the default settings
for all compared tools and run each with a maximum time
limit (i.e., 5 hours). After each round of testing, we restore the
service environment to ensure the consistency of the target
service. We conduct all experiments on a server with 4 CPU
cores, 8 GB RAM, and the Ubuntu 20.04 LTS operating sys-
tem, which provides adequate resources for conducting the
experiments. In papers such as RESTler, a bug is identified by
the reception of a 500 HTTP status code following the exe-
cution of a request sequence. However, it’s important to note
that 5xx errors typically refer to server errors during request
processing, and not all 5xx errors are necessarily related to se-
curity vulnerabilities, such as Denial of Service (DoS). Hence,
in our paper, we classify a genuine security vulnerability as a
bug, distinct from a mere 5xx error.

5.2 Vulnerability Detection (RQ1)
VOAPI2 identified 26 vulnerabilities, including 7 previously
unknown and 19 known security bugs, across seven API ap-
plications, encompassing six different types of vulnerabilities.
All zero-day bugs have been reported to vendors and fixed;
four of them have been assigned CVE IDs. In comparison, the

two vulnerability scanning tools discovered fewer vulnerabili-
ties. The three RESTful API testing tools primarily uncovered
bugs that resulted in HTTP 500 errors, with a tiny proportion
being security vulnerabilities, as shown in Figure 4. It can be
observed that VOAPI2 detected vulnerabilities in all seven
applications, with the highest number and variety of vulner-
abilities. In contrast, the vulnerability scanning tools (i.e.,
ZAP and Astra) did not detect any vulnerabilities in Gitea,
Rbaskets and GitLab. The capabilities of these two tools were
similar, with slight differences observed only in the Appwrite.
A comparison reveals that VOAPI2 has the strongest ability
to identify vulnerabilities compared to ZAP and Astra, par-
ticularly in SSRF and XSS vulnerabilities. The other three
RESTful API tools discovered only a small number of security
vulnerabilities in four applications (i.e., Appwrite, Jellyfin,
Microcks and GitLab), and they required manual payload in-
sertion to validate the security vulnerabilities associated with
the identified HTTP 500 errors.

The three RESTful API testing tools were able to discover
multiple bugs that resulted in HTTP 500 errors when detect-
ing targets, as shown in Table 5. The average proportion of
vulnerabilities among the HTTP 500 errors discovered by the
other three tools is very low. Through manual analysis, we
determined that the percentage of vulnerabilities triggered by
these errors is only 5.4% (RESTler), 3% (MINER), and 2.5%
(RestTestGen), respectively. Because paths with security vul-
nerabilities may not necessarily result in internal errors in
real-world API applications. The mentioned tools randomly
modify parameters’ syntax format and content, leading to
back-end parameter parsing issues rather than posing a sig-
nificant security threat. Additionally, incorporating payloads
for all types of vulnerabilities without distinguishing the API
functionalities would result in low efficiency, as observed
in our subsequent ablation experiments (§5.6). Meanwhile,
VOAPI2 found fewer instances of HTTP 500 errors, mainly
due to the targeted nature of VOAPI2 testing, with fewer API
paths being tested, which can be observed from the number of
messages. Moreover, VOAPI2 strives to generate messages
that comply with grammatical rules to trigger API behavior
and successfully execute the payload that confirms the bug.

We collected a summary of all the security vulnerabili-
ties discovered by various tools, including the vulnerability
type, vulnerability position, vulnerable endpoint, and vulnera-
ble parameters, as shown in Table 6. It can be observed that
vulnerability-oriented testing methods allow VOAPI2 to dis-
cover corresponding types of security vulnerabilities in APIs
with different functionalities. More importantly, VOAPI2

has discovered the highest number of vulnerabilities and the
widest range of vulnerability types compared to other tools.
Specifically, VOAPI2 has identified four types of vulnerabili-
ties, 100% higher than the average of other tools. Meanwhile,
VOAPI2 found 26 vulnerabilities, which was 420% more than
the average of other tools.

Among these vulnerabilities, our tool uniquely uncovers
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Figure 4: The vulnerabilities and their types uncovered by different tools on evaluation benchmarks .

Table 5: Compared with three RESTful API testing tools. #500 means the number of HTTP 500 errors found by tools. #Packet
means the number of all packets sent in testing. #Ratio is equal to total #500 divided by total #Packet.

Compare Appwrite Casdoor Gitea Jellyfin Microcks Rbaskets GitLab #Ratio#500 #Packet Time #500 #Packet Time #500 #Packet Time #500 #Packet Time #500 #Packet Time #500 #Packet Time #500 #Packet Time

RESTler 5 88,558 5h 0 165,470 5h 1 297,419 5h 54 2,175 12m07s 19 67,128 5h 0 20,435 5h 32 105,931 5h 0.015%
MINER 4 64,944 5h 0 104,352 5h 1 31,668 5h 68 23,002 5h 13 143,830 5h 0 17,422 5h 13 48,267 5h 0.023%

RestTestGen 1 9,030 19m49s 0 16,340 34m13s 2 58,200 4h37m 63 71,440 4h43m 15 7,340 8m5s 0 2,140 1m32s 41 57,550 1h52m 0.055%
RestTestGen+V 1 6,334 12m42s 0 8,920 13m09s 0 32,550 1h28m 55 48,740 3h57m 11 4,246 5m51s 0 1,550 1m03s 36 43,110 1h33m 0.071%

VOAPI2 1 2,123 1m51s 0 6,987 6m27s 0 9,137 7m05s 23 13,578 10m53s 2 509 24s 0 238 13s 3 1,558 5m03s 0.085%

14 bugs that elude detection by other tools. Based on our anal-
ysis, this phenomenon can be attributed to twofold factors.
First, in the case of RESTful API testing tools (e.g., RESTler),
they often lack a comprehensive testing corpus required for
verifying various types of vulnerabilities (e.g., SSRF) within
their corresponding endpoints. Thus, these tools often fail
to detect a vulnerability if it does not lead to a HTTP 500 er-
ror. Second, scanning tools (e.g., ZAP) face challenges in
constructing an appropriate sequence encompassing multi-
ple requests that align with the data dependencies existing
among API endpoints. Thus, these tools fail to identify the re-
spective vulnerabilities (e.g., XSS) concealed behind intricate
interactions, as exemplified in §5.4.

5.3 Accuracy (RQ1)

We further analyzed the accuracy of VOAPI2 and vulnerabil-
ity scanners. All alerts were manually verified to determine if
they were true vulnerabilities, thereby identifying false pos-
itives (FP). The false discovery rate (FDR = FP/(FP+TP))
was calculated and presented in Table 7. It can be observed
that VOAPI2 has lower false positive rates compared to the
scanners, which can be attributed to VOAPI2’s vulnerability-
oriented strategy and more accurate vulnerability validation
strategy.

For XSS vulnerabilities, ZAP and Astra conduct tests on
all APIs and determine the existence of an XSS vulnera-
bility solely based on the presence of the XSS payload in
the response. However, a significant number of these APIs
do not contain display functions. Consequently, the payload
would not be displayed on any particular page, which re-
sults in a high incidence of false positives. Correspondingly,
the vulnerability-oriented testing strategy helps VOAPI2 find
more API paths related to XSS, which leads to a lower false

positive rate.
For path traversal vulnerabilities, ZAP lacks further vali-

dation. It solely bases its determination of a vulnerability’s
existence on whether the test request returns a 2xx status code.
On the other hand, VOAPI2 goes a step further by analyzing
the response content, checking for the presence of content
corresponding to the test payload to confirm the existence
of the vulnerability. For instance, when the test payload is
"/etc/passwd", VOAPI2 will match the response content for
characteristic strings (e.g., root) to validate the vulnerability.

In terms of VOAPI2, false positives may occur when check-
ing a particular XSS (i.e., stored XSS) and the implicit unre-
stricted upload vulnerability. In these scenarios, we need to
trigger vulnerability manually and check whether vulnerabil-
ity exists or not. Moreover, we thoroughly discuss the root
causes and the corresponding improvement ways in §6.

5.4 Real-world Vulnerabilities (RQ1)

We applied VOAPI2 to discover security vulnerabilities in
real API applications and found various vulnerabilities. As
shown in Table 6, we identified more types of vulnerabilities
compared to scanning tools, especially on XSS and SSRF.
The main reason is that our method can generate effective
request sequences that access multiple endpoints in proper
order, allowing us to trigger deeper vulnerabilities.
Case Study: XSS. The XSS vulnerability (CVE-2022-
2925) was discovered in the Appwrite application. As
shown in Figure 5, this bug exists in five API end-
points (/teams, /users, /functions, /database/collections,
/teams/{teamId}/memberships), and the vulnerable argu-
ments in these endpoints are "name" marked in blue color.
In our experiments, both ZAP and Astra face significant
difficulties. While they may encounter problems in gen-
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Table 6: RESTful API vulnerabilities identified by all tools. For Producer, " indicates this API endpoint has a producer,
while % indicates it doesn’t have; For 0-day, " indicates that this vulnerability is a zero-day vulnerability while % indicates it is
not; For Vulnerability Identification Tools, " indicates that this tool can identify the vulnerability, " indicates only this tool
can identify the vulnerability, while % indicates it cannot.

Application Version Path Parameter Type Producer 0-day Bug-IDs Vulnerability Identification Tools
VOAPI2 RESTler RestTestGen MINER ZAP Astra

0.9.3 /avatars/favicon url SSRF % " CVE-2023-27159 " % % % " "

0.9.3 /avatars/image url SSRF % " CVE-2023-27159 " % " % " "

0.9.3 /teams name XSS % % CVE-2022-2925 " % % % % "

0.9.3 /teams/{teamId}/memberships name XSS " % CVE-2022-2925 " % % % % %

0.9.3 /database/collections name XSS % % CVE-2022-2925 " % % % % %

0.9.3 /functions name XSS % % CVE-2022-2925 " % % % % %

Appwrite

0.9.3 /usrs name XSS % % CVE-2022-2925 " % % % % %

Rbaskets 1.2.3 /api/baskets/{name} forward_url SSRF % " CVE-2023-27163 " % % % % %

10.7.1 /Images/Remote imageUrl SSRF % % CVE-2021-29490 " " % " " "

10.7.1 /Items/RemoteSearch/Image imageUrl SSRF % % CVE-2021-29490 " % % % " "

10.7.1 /Items/{itemId}/RemoteImages/Download imageUrl SSRF " % CVE-2021-29490 " % % % % %

10.7.1 /Repositories Url SSRF % " CVE-2023-27161 " % % % % %

10.7.1 /Playlists name XSS % % CVE-2023-23636 " % % % % %

10.7.1 /Repositories name XSS % % CVE-2022-35910 " % % % % %

10.7.1 /Collections name XSS % % CVE-2023-23635 " " % % % %

Jellyfin

10.7.1 /Startup/User Name XSS % " 1 unassigned " % % % % %

1.13.0 /api/get-organizations field SQL Injection % % CVE-2022-24124 " % % % " "
Casdoor 1.13.0 /api/upload-resource fullFilePath Unrestricted Upload % % CVE-2022-38638 " % % % % %

1.17.1 /jobs repositoryUrl SSRF % " 1 unassigned " " " " % %
Microcks 1.17.1 /artifact/download url SSRF % " 1 unassigned " " % " " "

1.16.7 /repos/{owner}/{repo}/contents/{filepath} content Unrestricted Upload " % CVE-2022-1928 " % % % % %
Gitea 1.16.7 /repos/{owner}/{repo}/hooks url SSRF " % CVE-2018-15192 " % % % % %

8.17.0 /v3/hooks url SSRF % % CVE-2018-8801 " " % % % %

8.17.0 /v3/projects import_url SSRF % % CVE-2022-0249 " " % % % %

8.17.0 /v3/projects/{id}/deploy_keys title XSS " % CVE-2022-2230 " % % % % %GitLab

8.17.0 /v3/projects/{id}/milestone title XSS " % CVE-2022-1190 " % " % % %

Table 7: FDR identified by different tools.
Appwrite Rbaskets Jellyfin Casdoor Microcks Gitea GitLab FP Rate

VOAPI2 4/11 1/2 5/13 2/4 1/3 3/5 3/7 42.22%
ZAP 6/8 2/2 9/11 5/6 7/8 5/5 2/2 85.71%
Astra 5/8 0/0 4/6 3/4 2/3 1/1 1/1 69.57%

erating appropriate parameter values for some APIs, the
more critical issue is their inherent inability to request
/teams/{teamId}/memberships (Line 8). Because the pres-
ence of this XSS vulnerability on this endpoint requires ac-
cessing /teams (Line 1) with the POST method before, then
parsing the id value (Line 6) from the response, and assign-
ing it to the path parameter teamId (Line 13). Obviously,
ZAP and Astra cannot infer this data dependency and con-
struct a suitable sequence that includes these requests. In
contrast, VOAPI2 can extract the context in which the target
API endpoint operates and generate similar request sequences
to discover such vulnerabilities.

5.5 Efficiency (RQ2)

We check the efficiency of VOAPI2 in two respects: (1)
whether VOAPI2 can efficiently generate request sequences

1. /teams:     
2. POST:
3. RequestBody:
4. name
5. responses:
6. $id:
7. description: Team ID. 
8. /teams/{teamId}/memberships:  
9. POST:

10. parameters:
11. description: Team unique ID.
12. in: path
13. name: teamId
14. RequestBody:
15. name

16. /databases/collections:
18. POST:
19. RequestBody:
20. name
21. /users:
22. POST:
23. RequestBody:
24. name
25. /functions:
26. POST:
27. RequestBody:
28. name

Figure 5: XSS vulnerabilities in Appwrite.

for testing API endpoints, compared with state-of-the-art
RESTful testing methods (e.g., RestTestGen); (2) whether
VOAPI2 is more efficient than web scanners (e.g., ZAP) in
finding vulnerabilities.

Operation Coverage. In this experiment, we used VOAPI2’s
Test Sequence Generation (TSG) module to generate a request
sequence for each endpoint. We selected three approaches to
compare the API’s operation coverage with TSG. If a tool
is able to generate at least one valid request sequence for an
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Figure 6: Compared with RESTful API testing tools on coverage.

Table 8: Compared with scanners on testing time consume.
Appwrite Casdoor Gitea Jellyfin Microcks Rbaskets GitLab #Total

ASTRA 4:30m 18:07m 40:32m 103:28m 8:02m 4:34m 56:16m 235:19m
ZAP 10:23m 22:02m 51:27m 88:02m 10:22m 7:57m 182:41m 372:54m

ZAP+V 6:39m 8:05m 16:33m 6:11m 1:31m 0:40m 24:07m 63:46m
VOAPI2 1:51m 6:27m 7:05m 10:53m 0:24m 0:13m 5:03m 31:05m

API endpoint that results in a 2xx status code response, we
consider that endpoint to be covered.

Figure 6 exhibits our experimental results, which evidently
demonstrates that TSG performs better than the current state-
of-the-art RESTful testing tools in terms of generating valid
request sequence for target API endpoint. More specifically,
TSG achieves the highest endpoint coverage on Appwrite,
Gitea, Microcks, Rbaskets and GitLab. Specifically, the aver-
age coverage of TSG on these products can reach 62.7%,
which is more than RESTler’s 37.3%, MINER’s 44.0%,
RestTestGen’s 58.8%. We attribute TSG’s outstanding per-
formance to its superior ability to construct dependencies for
target API endpoints compared to other tools. For the sample
API in §3.3.1, we found that none of the tools except VOAPI2

can construct the correct dependency relation for this API.
Compared With Web Scanners. Table 8 shows time con-
sumed by the web vulnerability scanners and VOAPI2. The
test time of VOAPI2 is much less than the other two tools.
Specifically, it took VOAPI2 31min05s to test the seven prod-
ucts, while Astra took 235min19s, and ZAP took 372min54s.
This is because of VOAPI2’s vulnerability-oriented strategy,
which just tests candidate API endpoint within targeted pay-
loads based on the feature of its path and parameters, greatly
enhancing testing efficiency. In contrast, tools like ZAP and
Astra test parameters and paths indiscriminately within all
payloads, resulting in significantly longer testing times.

5.6 Ablation Study (RQ3)

To investigate how the vulnerability-oriented strategy of
VOAPI2 impacts the result of testing, we perform an ablation
study. Thus, we remove the Candidate Interface Extraction

(§3.2) module from VOAPI2 to ensure all API paths and
parameters are checked with equal priority. We refer to this
modified tool as VOAPI2-V, which serves as a benchmark for
comparative analysis against VOAPI2.

In testing, no new vulnerabilities were found by VOAPI2-
V. Table 9 shows the time VOAPI2 and VOAPI2-V need
to expose each vulnerability. Obviously, VOAPI2-V takes
several orders of magnitude more time, because VOAPI2-V
must indiscriminately check every endpoint of API. When a
potentially vulnerable path is located near the end of the spec-
ification document, VOAPI2-V takes much longer to reach it.
For example, in the case revealed in /Startup/User of Jellyfin,
VOAPI2 found this vulnerability on this API in 10min30s,
while VOAPI2-V takes 495min28s. This is because VOAPI2

can aim this endpoint directly from a large number of APIs,
while VOAPI2-V must test all APIs sequentially. Further-
more, VOAPI2-V tests every parameter of the API using all
available test payloads, which consumes a significant amount
of time. In contrast, VOAPI2 selects targeted payloads for
testing the portion parameters marked with directed strategy,
which saves a lot of time.

Furthermore, we integrate the keyword shortlisting process
into existing tools (i.e., RestTestGen and ZAP). Specifically,
these tools are now only applied to candidate APIs extracted
from VOAPI2. The integrated models resulting from this
integration are named RestTestGen+V and ZAP+V. In order
to compare the performance of these models, we conduct
experiments focusing on efficiency and bug discovery.

In terms of test efficiency, ZAP+V inspects solely the API
endpoints that are filtered by keywords. As a result, the testing
time is significantly reduced compared to the original ZAP,
as showcased in Table 8. This highlights the effectiveness of
keyword lists when used with ZAP. On the other hand, for
RestTestGen+V, we expanded the testing scope to include not
only the API endpoints filtered by keywords but also those
that have data dependencies with them. The testing results
presented in Table 5 demonstrate that these integrated mod-
els exhibit lower time consumption and send fewer packets
compared to their respective original tools.
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Table 9: Compared with VOAPI2-V on time consume.

Application Bug-IDs Path Time-to-Exposure
VOAPI2 VOAPI2-V

Appwrite

CVE-2023-27159 /avatars/favicon 2.81s 1min31s
CVE-2023-27159 /avatars/image 2.90s 1min39s
CVE-2022-2925 /teams 53.42s 26min30s
CVE-2022-2925 .../memberships 1min03s 34min36s
CVE-2022-2925 /database/collections 15.28s 17min18s
CVE-2022-2925 /functions 1min39s 60min16s
CVE-2022-2925 /users 1min30s 48min8s

Rbaskets CVE-2023-27163 /api/baskets/{name} 2.08s 38s

CVE-2021-29490 /Images/Remote 5.79s 225min46s
CVE-2021-29490 /Items/.../Image 7.26s 246min29s
CVE-2021-29490 /Items/.../Download 6.68s 228min13s
CVE-2023-27161 /Repositories 10.24s 322min38s
CVE-2023-23636 /Playlists 9min09s 368min04s
CVE-2022-35910 /Repositories 8min57s 322min47s
CVE-2023-23635 /Collections 8min25s 35min11s

Jellyfin

1 unassigned /Startup/User 10min30s 495min28s

Casdoor CVE-2022-24124 /api/get-organizations 5min04s 43min28s
CVE-2022-38638 /api/upload-resource 2min33s 75min50s

Microcks 1 unassigned /jobs 1.90s 11min19s
1 unassigned /artifact/download 2min06 90min55s

Gitea CVE-2022-1928 /repos/.../{filepath} 3.61s 94min41s
CVE-2018-15192 /repos/.../hooks 2.49s 36min05s

GitLab

CVE-2018-8801 /v3/hooks 1min12s 236min05s
CVE-2022-0249 /v3/projects 1min17s 20min17s
CVE-2022-2230 /v3/.../deploy_keys 1min49s 53min33s
CVE-2022-1190 /v3/.../milestone 2min36s 145min41s

Regarding bug discovery, RestTestGen+V identified fewer
HTTP 500 errors, as indicated in Table 5. This can be attributed
to the fact that the number of candidate APIs is significantly
smaller than the original APIs, and our vulnerability-oriented
strategies are not specifically designed to detect HTTP 500

errors. Furthermore, RestTestGen+V lacks a suitable test cor-
pus that is necessary to trigger potential vulnerabilities in
the selected APIs. Therefore, it cannot benefit from keyword
shortlisting. Similarly, ZAP+V does not discover more vulner-
abilities than ZAP because it is unable to construct a suitable
sequence comprising valid requests to satisfy dependencies
among candidate APIs.

In conclusion, although keyword selection can enhance
testing efficiency, it does not lead to better effectiveness when
directly applied to traditional RESTful API testing tools and
vulnerability scanners.

6 Discussion

In this section, we discuss the limitations of VOAPI2 and
explore the improvement direction in the future.
Scale Ability of Bug Verification. The current state of
feedback-based vulnerability verification is limited by the
concise validation methods based on the testing corpus for
different bugs. That brings false positives when a bug must be
triggered interactively, like the stored XSS and implicit upload
bug we mentioned before (§5.3). Consequently, VOAPI2 may

1. /storage/files
2.   post:
3.     description: Create a new file. 
4.     operationId: storageCreateFile
5.     requestBody:
6.       content:
7.         multipart/form-data:
8.         schema:
9.           properties:
10.              file:
11.                description: Binary file.
12.                type: string
------------------ Omitted -----------------

post

Can’t execute!

visit

webshell

Figure 7: False positive of unrestricted upload.

fail to judge these vulnerabilities correctly and require manual
efforts. To address this issue, we plan to design an extensible
interface of the Feedback-based Vulnerability Verifier (§3.4.2)
for specific vulnerabilities. Furthermore, we can continuously
extend vulnerability verification methods, for example, to
heuristically generate upload paths based on the context of
implicit unrestricted upload of dangerous files, thereby en-
abling VOAPI2 to discover vulnerabilities more generally
and automatically.
Manual Effort. In identifying and validating vulnerabilities,
VOAPI2 requires human intervention in two scenarios: im-
plicit unrestricted upload vulnerabilities and stored Cross-Site
Scripting (XSS).

In the case of unrestricted upload vulnerabilities, VOAPI2

submits a malicious file to check whether the bug exists or not.
If the server’s response omits the file’s access path, VOAPI2

is unable to automatically retrieve this path, which hinders
further tests to assess whether the file can be executed. We
present an example of a false positive of unrestricted upload in
Figure 7. It can be seen that VOAPI2 automatically deduces
that the arbitrary file upload API interface permits unrestricted
uploads of malicious files. However, it lacks the prior knowl-
edge necessary to automatically retrieve the unique access
paths of these uploaded files, such as identifying the location
of the file access interface or how to obtain random file IDs
like "651506441776a". This prior knowledge is not standard-
ized and tends to vary across different API services, making
automatic retrieval of access paths a complex challenge. As
a result, manual intervention is currently necessary to visit
relevant pages, identify the page containing the file access
interface, and manually test whether the server can parse the
malicious file. If the server restricts the parsing of such ma-
licious files, the upload vulnerability remains untriggered,
leading to a false positive.

In terms of stored XSS (also known as persistent XSS),
VOAPI2 takes a POST request path as a potential XSS vul-
nerability after getting a response packet with a 2xx status
code, which also contains an XSS payload. However, similar
to the challenges unrestricted upload checking faces, VOAPI2

cannot automatically determine which storage page stores
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XSS payloads. Thus, this XSS payload can only be triggered
by manually browsing the relevant pages guided by expert
knowledge. If the XSS behavior is not triggered even after
browsing all relevant pages, it is considered a false positive.
Support More Specifications. Currently, VOAPI2 only sup-
ports OpenAPI-formatted API specifications as input, while
many applications do not provide such documentation and in-
stead offer API usage instructions in other files (e.g., HTML).
In order to expand VOAPI2’s capabilities, we propose to use
machine learning or natural language processing methods to
identify and extract API information from these usage instruc-
tions. Finally, VOAPI2 can inspect more API applications.
Machine Learning Method. VOAPI2 classifies API inter-
faces based on statistics of vulnerability characteristics and
human expertise. Although it is a reliable method to sup-
port our prototype system in discovering real-world security
vulnerabilities, we believe there is a trend for artificial intelli-
gence technology to replace these expert experiences in the
future. For example, advances in natural language processing
(e.g., large language model) have demonstrated powerful text
analysis capabilities, promising to audit API documents for
interface classification more effectively.

7 Related Work

RESTful API Security. The security operations teams
of popular API services can discover attacks against their
services. The Facebook team [10] identified that attackers
could exploit authorization vulnerabilities in a specific API
endpoint, allowing third-party applications to access users’
private photos. The Twitter team [11] discovered that at-
tackers could utilize a specific API endpoint that associates
phone numbers with account names to systematically launch
widespread attacks and infer the target users’ phone numbers
and account names. Researchers note that there are typically
two categories of bugs in RESTful APIs, including that result
in service unavailability and those related to web security [50].
The former is often caused by syntactically incorrect parame-
ters in API request data, leading to the backend being unable
to process them and resulting in HTTP 500 errors. Most of
these bugs typically indicate that the server is unable to han-
dle the current request properly. The latter category arises due
to similarities between the backend processing of RESTful
APIs and traditional web services, resulting in web bugs when
requests are mishandled.
RESTful Service Testing Methods. Regarding the poten-
tial bugs in RESTful services, researchers have proposed
numerous automated testing methods that can generate se-
quence requests, assess various endpoints of the API, and
determine if there are any issues based on the service’s re-
sponses. RESTler [12] is a stateful API black-box testing tech-
nique that generates stateful test cases by inferring producer-
consumer dependencies between different API endpoints, al-

lowing it to reach the "deep" states of the target API service.
RestTestGen [16] utilizes data dependencies between oper-
ations to generate test cases, while RESTest [15] considers
dependencies among parameters and generates test cases that
satisfy specified dependency relationships using constraint
solving and random input generation. MINER [46] uses a
neural network model to predict critical request parameters.
However, the aforementioned black-box testing tools all fo-
cus on better parsing API specifications, generating request
sequences that comply with the API interface protocol state,
and generating effective test cases that cover more API func-
tionalities. They aim at the usability of API functions based
on whether the API service returns HTTP 500 errors but do not
specifically target security vulnerabilities.
Penetration Techniques. Due to the close similarity in im-
plementation between the backend of RESTful APIs and tra-
ditional web services, researchers aim to expand web penetra-
tion techniques to conduct vulnerability detection in RESTful
APIs. Zed Attack Proxy (ZAP) [10] is primarily used for web
vulnerability assessment and penetration testing. Its current
OpenAPI extension supports parsing API specifications, en-
abling web vulnerability testing for API services. Astra [45]
is a tool specifically designed to scan vulnerabilities in REST-
ful APIs. It verifies common web vulnerabilities by injecting
payloads into parameters, HTTP headers, and other locations.
However, these tools have significant limitations that they lack
the ability to interpret the state of the API protocol. They can
only generate requests for individual API endpoints, limiting
the scope to test each endpoint separately and preventing the
detection of vulnerabilities in API services composed of mul-
tiple endpoints. NAUTILUS [50] incorporates comment poli-
cies into API specifications to handle operation relationships
and parameter generation, resulting in meaningful sequences
of operations and the discovery of corresponding API security
vulnerabilities. However, due to its oversight of vulnerabil-
ity characteristics, NAUTILUS focuses on a limited range of
vulnerability types, mainly handling injection vulnerabilities.

8 Conclusion

In summary, we propose VOAPI2, a novel inspection frame-
work, to apply a vulnerability-oriented strategy to inspect
RESTful APIs. Based on the insight that the type of vulnera-
bility hidden in an API interface is strongly associated with
its functionality, VOAPI2 can directly expose vulnerabilities
in RESTful APIs. We first track commonly used strings as
keywords to identify APIs’ functionality. Then, we generate a
stateful and suitable request sequence to inspect the candidate
API function within a targeted payload. Finally, we verify
whether vulnerabilities exist or not through feedback-based
testing. Our evaluation result shows that VOAPI2 demon-
strates higher efficiency and effectiveness in bug discovery
than state-of-the-art tools, including RESTful API testing and
penetration methods.

USENIX Association 33rd USENIX Security Symposium    753



Acknowledgments

We thank the anonymous reviewers of this work for their
helpful feedback. This research was supported, in part, by
National Natural Science Foundation of China under Grant
No. 62372297, Science and Technology Commission of
Shanghai Municipality Research Program under Grant No.
20511102002, National Radio and Television Administration
Laboratory Program (TXX20220001ZSB002).

References

[1] Amazon. AWS. https://aws.amazon.com/.

[2] Microsoft. Azure. https://azure.microsoft.com/
en-us/.

[3] Jellyfin. https://jellyfin.org/.

[4] Casdoor. https://casdoor.org/.

[5] Appwrite. https://appwrite.io/.

[6] Microcks. https://microcks.io/.

[7] CVE-2021-3044. https://nvd.nist.gov/vuln/de
tail/CVE-2021-3044.

[8] CVE-2019-12643. https://nvd.nist.gov/vuln/de
tail/CVE-2019-12643.

[9] Representational state transfer. https://en.wikiped
ia.org/wiki/Representational_state_transfe
r.

[10] Tomer Bar. Notifying our Developer Ecosystem about a
Photo API Bug. https://developers.facebook.co
m/blog/post/2018/12/14/notifying-our-devel
oper-ecosystem-about-a-photo-api-bug/, 2018.

[11] Twitter. An Incident Impacting Your Account Identity.
https://privacy.twitter.com/en/blog/2020/a
n-incident-impacting-your-account-identity,
2020.

[12] Vaggelis Atlidakis, Patrice Godefroid, and Marina Pol-
ishchuk. RESTler: Stateful REST API Fuzzing. In
2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pages 748–758, Montreal,
QC, Canada, 2019. IEEE.

[13] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and
Jordi Cabot. Automatic generation of test cases for
REST APIs: a specification-based approach. In Interna-
tional Enterprise Distributed Object Computing Confer-
ence, pages 181–190, 2018.

[14] Stefan Karlsson, Adnan Čaušević, and Daniel Sund-
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