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Abstract
Document understanding models are increasingly employed
by companies to supplant humans in processing sensitive
documents, such as invoices, tax notices, or even ID cards.
However, the robustness of such models to privacy attacks
remains vastly unexplored.

This paper presents CDMI, the first reconstruction attack
designed to extract sensitive fields from the training data of
these models. We attack LayoutLM and BROS architectures,
demonstrating that an adversary can perfectly reconstruct up
to 4.1% of the fields of the documents used for fine-tuning,
including some names, dates, and invoice amounts up to six-
digit numbers. When our reconstruction attack is combined
with a membership inference attack, our attack accuracy esca-
lates to 22.5%.

In addition, we introduce two new end-to-end metrics and
evaluate our approach under various conditions: unimodal
or bimodal data, LayoutLM or BROS backbones, four fine-
tuning tasks, and two public datasets (FUNSD and SROIE).
We also investigate the interplay between overfitting, pre-
dictive performance, and susceptibility to our attack. We
conclude with a discussion on possible defenses against our
attack and potential future research directions to construct
robust document understanding models.

1 Introduction

Document understanding models aim at processing visually
rich documents, such as handwritten forms, tax invoices or
scanned tables, where information is encoded both in textual
content and layout. Consequently, most document under-
standing models adapt a language model architecture to make
it layout-aware [25, 32, 34, 62, 80, 81]. These models have
countless real-world applications and are employed by nu-
merous companies for tasks extending from key information
extraction [34, 51, 60] to document classification [29, 57],
and question answering [53, 77].

Moreover, a range of neural network architectures have
been found vulnerable to membership inference or reconstruc-

Figure 1: A document (licensed CC BY 4.0 DEED by Huang
et al. [35]) where two fields are perfectly reconstructed by
CDMI. A model with LayoutLM architecture [81] is trained
on SROIE dataset [35]. Then, when the date or the company
is scrubbed, the adversary is able to reconstruct it.

tion attacks in multiple domains: computer vision models [23,
24, 42, 44, 76, 87], language models [8, 9, 46, 47, 50, 55, 68,
86], graph models [58, 88], and diffusion models [7], among
the most popular. Those attacks enable an adversary to obtain
information on the training data, posing a serious threat to
confidentiality (see section 2.2 and [67, 69]).

Surprisingly, despite their resemblance to language models
and vision models, we have not discovered any existing stud-
ies on the robustness of document understanding models to
such privacy attacks (at the time of writing, in October 2023).
The most related research paper we found in this domain is
by Meehan et al. [54]. However, they define a document as
a collection of sentences, excluding any layout information.
Thus, the model they target (Sentence-BERT [64]) differs
significantly from state-of-the-art document understanding
models. The reconstruction attack we present in this paper
is the first to target some of the most commonly used layout-
aware models and treat documents as multimodal data.
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1.1 Contributions
Our main contributions are as follows:

• We develop the first reconstruction attack that targets
layout-aware document understanding models: a white-
box attack named CDMI (Combinatorial Document
Model Inversion), designed to target unimodal or bi-
modal models. We employ CDMI to reconstruct fields
from the fine-tuning datasets of our models, although it
is also readily adaptable for pre-training datasets.

• We combine CDMI with existing membership inference
attacks, resulting in an end-to-end attack where the ad-
versary extracts arbitrary fields in the training dataset.

• We introduce two new end-to-end metrics to evaluate
simultaneously the reconstruction and the membership
inference attack. Our intention is to evaluate the full
extent of potential harm that an adversary could cause.

• We successfully evaluated our attack in various settings,
making it one of the few attacks capable of reconstruct-
ing non-synthetic data from an encoder-only model.
These settings include unimodal or bimodal models, with
either LayoutLM v1 [81] or BROS [32] backbone, using
four different training tasks, and two public fine-tuning
datasets: FUNSD [40] and SROIE [35].

• We demonstrate that the success of our attack is not due
to over-fitting or data duplication, and that memorization
occurs early in the training pipeline. We also prove that
both the layout and the visual modality contribute to
memorization, proving that documents should be consid-
ered as a specific data type with dedicated attacks.

2 Background and related work

2.1 Document understanding models
A document processing pipeline aims at extracting meaning-
ful information from raw document images such as scans,
pictures, or screenshots. Deep learning-based pipelines usu-
ally include two main steps [71]:

• An Optical Character Recognition (OCR) is used to ex-
tract the textual content of the document: its output
typically includes words and their associated bounding
boxes, which denote the coordinates of the four points
encompassing the word. Then, the words are fed to a to-
kenizer. It splits the words into tokens, which are smaller
pieces of text that are part of a specific vocabulary.

• These tokens and their bounding boxes are processed
by a document understanding model, which extracts
specific information from them. A model is said to be
layout-aware when it uses both the tokens and the layout
information derived from the bounding boxes [77].

The architectures we target: LayoutLM v1 and BROS
Recently, OCR-free pipelines were developed [10, 14, 27,
45]. However, our focus will be on deep learning models
specifically designed to work with an OCR, given that OCR-
free approaches are relatively new and rarely deployed in pro-
duction. The category of OCR-based models includes recent
architectures with state-of-the-art results such as LayoutLM
v1 [81], LayoutLM v2 [80], LayoutLM v3 [34], BROS [32],
LAMBERT [25], TILT [62], and DocFormer [4].

We decided to attack two different architectures: Lay-
outLM v1 and BROS, for multiple reasons. Firstly, both
architectures demonstrate strong performance and are fre-
quently used in real-world applications.1 In addition, their
pretrained weights are available under permissive licenses
(in contrast to LayoutLM v3), making them particularly suit-
able for commercial applications. Thus, "LayoutLM" will
implicitly refer to LayoutLM v1 in the following.

Transformer-based document encoders These architec-
tures are transformer-based encoder-only models, akin to
BERT [13]. They employ multiple layers of multi-headed
Transformers [74] to embed each input token in a feature
space of dimension d = 768. However, unlike BERT, these
architectures use a 2-dimensional spatial encoding to consider
the layout information provided by the bounding boxes.

In addition to the tokens and their bounding boxes, a doc-
ument understanding model can exploit the raw images of
the documents [32, 62, 81]. In the case of LayoutLM and
BROS, visual features are generated by a computer vision
model, and subsequently added to the textual embedding of
each token using Region Of Interest alignment [30]. We will
refer to these models as bimodal, in contrast to the simpler
layout-aware models which we will refer to as unimodal.

Training objectives LayoutLM and BROS encoders are
often used in a transfer learning setting. First, the encoders are
pre-trained on a very large corpus of documents, the IIT-CDPI
Test Collection 1.0 [49]. The main pre-training task is Masked
Language Modeling (MLM), where approximately 15% of
the tokens are masked, and the model is trained to reconstruct
them. Afterwards, the model is fine-tuned on a specific task
by keeping the pretrained backbone and replacing the last
layers with a new classification head specifically designed for
this task. Our attack will target these fine-tuned models.

We evaluated our attack against models fine-tuned on three
common Key Information Extraction (KIE) tasks, which were
previously employed by Hong et al. [32] to evaluate BROS:

• Entity Extraction with BIO tagging (EE-BIO): it aims at
extracting some fields of the document by classifying its
tokens as "Beginning", "Inside" or "Out" of an entity [3].

1As of October 2023, LayoutLM v1 had over 29M down-
loads: https://huggingface.co/api/models/microsoft/
layoutlm-base-uncased?expand[]=downloadsAllTime
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• Entity Extraction with SPADE tagging (EE-SPADE or
EE-SPD): it also aims at extracting some fields using the
SPADE tagging [36]. In a nutshell, the model is trained
to identify the predecessor of each token in the entities
of the document.

• Entity Linking (EL): it aims at establishing connections
between the entities using their semantic relations. We
also used SPADE tagging for this task [36].

In addition to those three tasks, we also attacked models
that were fine-tuned on the same MLM task that is utilized
during pre-training. This scenario does not correspond to
a real-world setting; however we did this to compare the
susceptibility of the KIE and the MLM tasks under the same
conditions (transfer learning with the same fine-tuning dataset,
etc.). All these tasks ultimately involve a token-level classifi-
cation task, for which we used a cross-entropy loss.

2.2 Privacy attacks
In this section, we introduce privacy attacks and review the
existing ones in the field of Natural Language Processing
(NLP). Indeed, the architectures of language models are sim-
ilar to those of document understanding models, for which
such attacks have not yet been studied.

Taxonomy Various types of attacks target the confidential-
ity of models trained on sensitive data by exploiting unin-
tended memorization of their training set. Following [50], we
distinguish three levels of privacy attacks:

• Extraction attacks: the adversary has only access to the
model, and seeks to extract as much data as feasible
from the training set. In NLP, such attacks are studied
in [8, 9, 46, 50, 68, 84, 86].

• Reconstruction attacks: the adversary has access to a
model and a context such as the prefix of a sentence, or
a document with a scrubbed field, and seeks to recon-
struct the missing parts. In NLP, attacks of this kind
include [19, 50, 54, 59].

• Membership inference attacks [69]: the adversary has
access to data samples, and attempts to predict whether
they are part of the model’s training set or not. Formally,
this is equivalent to a reconstruction attack with a fi-
nite list of candidates for the reconstruction. Notable
examples of these attacks are [47, 52, 55, 66, 70].

In this paper, we focus on reconstruction attacks. We begin
with a ground truth document, represented for now as a se-
quence of tokens dg in a vocabulary V . A field is scrubbed by
replacing it with the special token [MASK] to form d̃g. Then,
the adversary has access to d̃g and optimizes equation 1 to
reconstruct the scrubbed fields.

argmax
d∈V ∗

Pθ(d | d̃g) (1)

Here, Pθ denotes the likelihood of d being a good re-
construction of d̃g given the model’s weights θ. However,
this probability is frequently either ill-defined or intractable.
Hence, practical attacks necessitate the construction of a suit-
able proxy for Pθ (see [50] and sections 4.1 and 4.2).

Attacks against decoder-only models In the context of
extraction and reconstruction attacks in NLP, a significant
difference exists between decoder-only models and others
[37, 82]. Decoder-only models, such as the ones of the GPT
family, are trained in an auto-regressive way to generate the
next token in a sequence given its prefix. They are well-
designed to generate fluent content.

Existing attacks against such models directly use this gen-
eration ability to extract training data [8, 9, 46, 50, 84]. These
attacks reconstruct data from left to right. At step t, using the
previously reconstructed prefix sequence s̃g = c1 . . .ct−1, they
attempt to reconstruct token ct . As a result, if they directly
replace Pθ by the probability distribution calculated by the
model for the next token, equation 1 ends up being exactly
the one the model is trained to solve:

argmax
ct∈V

Pθ(ct | c1, . . . ,ct−1) (2)

Attacks against encoder-only model Encoder-only mod-
els, such as LayoutLM or BROS, are not designed to compute
a probability distribution over sentences. This makes it dif-
ficult for them to generate fluent content [26, 75]. This is a
crucial difference, because this ability is needed to reconstruct
plausible content in equation 1. However, various strategies
have been proposed to attack encoder-only models in NLP:

• Zhang et al. [86] employ an auxiliary GPT-2 model [6]
to generate content. They utilize the PPLM mechanism
[12] to increase the likelihood of generating content from
the training set of the BERT model they target [13].

• Lehman et al. [47] focus on small prompts in a clinical
context, and conclude that their attack does not signifi-
cantly expose the training data. Mireshghallah et al. [55]
enhance their attack in a membership inference setting,
adopting the energy-based interpretation of [26] instead
of Gibbs sampling to compute text fragment likelihoods.

• Carlini et al. [8] assess their attack against T5 model [63].
However, they addressed a simpler scenario where it is
not needed to generate fluent content: 15% of randomly
chosen tokens are masked and need to be reconstructed.

• Song et al. [70] and Parikh et al. [59] formulate a contin-
uous relaxation of equation 1 inspired from the work of
Jang et al. [38] for its resolution.
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• Mahloujifar et al. [52] target embedding models, exploit-
ing specific properties of these models in their attack.

• Elmahdy et al. [19] focus on canary reconstruction and
use an autoregressive proxy. They decode tokens from
left to right, with the objective of minimizing the loss of
the model. Elmahdy et al. [20] improves the approach of
[19] by using a MLM head to select candidates before
evaluating the loss of the target model.

• Meehan et al. [54] only focus on differential privacy
[1, 16–18], demonstrating theoretical privacy bounds
without implementing the attack to test these limits.

Thus, reconstructing training data from encoder-only mod-
els is a difficult task, and there is no standard method for it. To
attack real-world document understanding models, we could
not directly apply existing methods. Indeed, they either consti-
tuted membership inference attacks (which are less complex
than reconstructions) [47, 55], were only evaluated on fre-
quently repeated canaries [19, 20, 59], or were inapplicable
to our scenario [8, 52, 54, 70].

We selected and combined promising ideas from various
existing attack, improving and optimizing them for our sce-
nario. We utilized an autoregressive proxy as in [19, 20],
and leveraged an auxiliary generator to enhance the fluency
of the reconstructions as in [20, 86]. We also developed a
customized method for incorporating the loss of the target
model, which we combined with existing membership infer-
ence metrics [9]. Finally, we integrated the visual modality
in our attack to extract information memorized by the visual
encoder. This led to our hybrid attack, CDMI, the first of its
kind capable of reconstructing real documents.

Defense against privacy attacks According to [37], the
main defense techniques in a centralized setting are:

• Data sanitization [5, 11, 65, 73]. It involves removing
personal data from the training set. However, this tech-
nique is limited due to the context-dependent definition
of personal data [5]. Deduplication, which consists in
eliminating duplicate data, can also be useful as dupli-
cated data is more likely to be memorized [43].

• Differential Privacy (DP) [1, 16–18]. This training
paradigm adds noise to each gradient during the training
phase up to a certain level, to safeguard every sample
in the training set. However, the effectiveness of DP in
genuine real-world settings is disputed [15, 72].

• Regularization. Although not necessary, overfitting fa-
cilitates the memorization of training data [9, 21, 83, 85].
Hence, some mechanisms involving regularization have
been proposed [33, 56].

• Post-processing. Confidence masking and output filter-
ing can be employed during post-processing [23, 61].

3 Threat model

In this section we introduce our threat model, which defines
the assumptions we made for the development of our attack.

3.1 Adversarial capabilities and goals
We make two primary assumptions about the adversary’s
capabilities:

• White box hypothesis. The adversary is supposed to
have white-box access to the model, meaning complete
access to its architecture and weights. Concretely, our
attack is gradient-free, but because it requires computing
the token-level loss for a large number of inputs, it is
impractical in standard black-box environments. This is
why we classify it as a white-box attack.

• Scrubbed data. Given that we are developing a recon-
struction attack, we assume the adversary has access to
scrubbed data. In our context, this means that the adver-
sary can access a document (token, bounding boxes, and
the raw image) where a certain field has been masked
(tokens replaced by [MASK], and a white patch to replace
the field in the image). This implies that the adversary
knows the number of tokens in the target field. While
this is a strong supposition, it is necessary to make our
optimization in equation 1 tractable (see III.B in [50]).
Moreover, this assumption is fairly realistic for doc-
uments in which the fields adhere to strict rules (e.g.
IBANs, credit card number and expiration date, etc.).

We focus on an adversary whose goal is to reconstruct
the textual modality of documents, regardless of whether the
target model is unimodal or bimodal. Indeed, for real-world
document understanding models, sensitive information is of-
ten encoded in the textual modality. For example, for identity
theft, reconstructing the ID card number and expiration date
is significantly more valuable than the general layout of the
card, which is common knowledge.

More specifically, we distinguish two variants of our at-
tack, a one-shot one and a multi-shot one, each with slightly
different adversarial goals:

• One-shot variant. In this scenario, the adversary makes
one reconstruction attempt per field in the datasets. Here,
their objective is to maximise the similarity metrics be-
tween their reconstruction and the ground truth.

• Multi-shot variant. This setting is closer to a real-world
scenario. The adversary makes multiple attempts against
each field, and ultimately uses a membership inference
metric to filter the most plausible reconstructions, as
referenced in [9, 84]). The adversary has two objectives.
First, to generate high-quality reconstructions. Second,
to accurately retain the correct ones using the member-
ship inference metric (see section 5.3).
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3.2 The reconstruction game

Following [67, 79], we define the reconstruction game, that
serves to formalize the threat model, the information the
adversary can access, and what will be used for evaluation. It
is an adaptation of the one in Lukas et al. [50]. In addition to
the notations of table 1, we define:

• EXTRACT(d): extracts the list of fields of d that contain
personal information.

• SCRUB(d, f )→ d̃,y: scrubs a field f in a document d
by replacing it by [MASK], and returns its classification
label y (which is public information).

Our multi-shot reconstruction game is presented in algo-
rithm 1. Initially, a model is trained on a private dataset D
(lines 2–3). Then, for each document in the dataset (line
6), and for each field in this document (line 7), the field is
scrubbed and the adversary attempts na reconstructions (lines
8–12). The adversary has access to the ground truth number
of tokens k (see section 3.1). They also know D, T , and n,
which means they can train auxiliary models on the same
distribution. Then, a Membership Inference (MI) metric is
utilized to keep the best reconstruction attempt for each field
(line 13). Subsequently, the MI metric is used to sort the
fields by probability of successful reconstruction (line 16).
Finally, we evaluate the attempts, examining both their simi-
larity to their ground truth, and their order with respect to the
MI metric computed at line 16 (see section 5.3).

The one-shot reconstruction game is very similar. Since
there is only one attempt per scrubbed field, lines 9, 10, 12,
13 are removed. Furthermore, the order of the fields is not
considered during evaluation, so line 16 is removed.

With these notations, we can refine equation 1 introduced
earlier. At line 11, the adversary seeks to solve equation
3. We recall that the adversary only tries to reconstruct the
textual modality of the fields, which is why the optimization

Notation Description
T A stochastic training procedure
A A procedure denoting an adversary
V The vocabulary for the tokens
I = R3×di The RGB space of documents’ images

D∼Dn Sample n docs from a distribution D on
V ∗× I

d ∈ V ∗× I A document (sequence of tok. + image)
d̃ ∈ V ∗× I A scrubbed document derived from d
y ∈ R∗ A classification label for a document
f ∈ V ∗ A field of d containing personal info.
f̃ ∈ V ∗ A reconstruction attempt for f
k = | f | The number of tokens in f

Table 1: Notations

Algorithm 1 The multi-shot reconstruction game
1: experiment RECON_M_SHOT(D,T ,A ,n)

Sample docs and train a model
2: D∼Dn

3: θ← T (D)
4: F ← [ ]
5: F̃ ← [ ]

na reconstruction attempts on each field
6: for d ∈ D do
7: for f ∈ EXTRACT(d) do
8: d̃,y← SCRUB(d, f )
9: attempts← [ ]

10: for a ∈ [1, . . . ,na] do
11: f̃ ← A(T ,D,n,θ, d̃,y,k)
12: attempts← CONCAT(attempts, [ f̃ ])

MI to keep one attempt per field
13: f̃ ←MI_FILTER(attempts)
14: F ← CONCAT(F, [ f ])
15: F̃ ← CONCAT(F̃ , [ f̃ ])

MI to sort reconstructions by plausibility
16: F, F̃ ←MI_SORT(F, F̃)
17: EVAL(F, F̃)

is over f̃ ∈ V k and not over f̃ ∈ V k× I (see section 3.1 and
the paragraph on visual modality in section 4.1).

A(T ,D,n,θ, d̃,y,k) = argmax
f̃∈V k

Pθ( f̃ | d̃,y) (3)

3.3 Ethical considerations

This paper presents an attack that specifically targets the pri-
vacy of document understanding models. This raises ethical
considerations because such models are sometimes trained
on private data and used in real-world settings.

First, we reduce ethical concerns by only attacking models
trained on publicly-available data: LayoutLM v1 [81] and
BROS [32] are both pre-trained on the public dataset IIT-
CDIP Test Collection 1.0 [49]. Moreover, we fine-tune them
on two other public datasets, FUNSD [40] and SROIE [35].

Moreover, our attack still necessitates a substantial amount
of prior information to successfully reconstruct data. As for
every reconstruction attack, this includes access to scrubbed
data, an uncommon scenario. Consequently, while our ap-
proach may set the foundation for more efficient methods
with less information, we argue that the advantages of disclos-
ing it outweigh potential harm. Researchers and companies
training document understanding models on private data must
understand that robust attacks are very likely to exist in the
future. Therefore, it is crucial they protect access to their
trained models with the same stringency as their databases.
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Finally, we believe that disclosing our attack is important to
shed light on privacy attacks and ensure they are considered
by institutional regulators. Currently, despite the development
of attacks on numerous model types, the fact that trained mod-
els may leak personal information is frequently overlooked in
data regulation texts such as RGPD and AI Act in European
Union, APPI in Japan, CCPA in California, etc.

4 The CDMI reconstruction method

The section details the methodology employed for our re-
construction attack: CDMI (Combinatorial Document Model
Inversion). Specifically, it elaborates on three aspects: the
chosen proxy for Pθ in equation 3; how we optimize it; and
the membership inference metric we used.

In summary, our attacks proceeds as follows. First, we
approximate the probability distribution over the fields using
an autoregressive proxy, meaning that tokens will be recon-
structed from left to right within each field (see section 4.1).
To reconstruct each token, we compute and optimize a token-
level probability Ptok

θ
(see section 4.2). For this, we employ

a masked model trained on public data to select candidates.
Next, we evaluate the loss of the target model for each candi-
date, using these computations to approximate Ptok

θ
. Finally,

we sample the reconstruction from this approximate distribu-
tion. We also present two variants of our attack: the one-shot
one, and the multi-shot one, where the adversary attempts
several reconstructions against each field and selects the best
one using a membership inference metric (see section 4.3).

4.1 An autoregressive proxy
To solve equation 3, the adversary needs to choose a conve-
nient proxy for Pθ, that should correctly represent the likeli-
hood of a document being in the training set while being easy
to optimize. Adapting the methodology of [19] in NLP, we
employ an autoregressive formulation, meaning that scrubbed
tokens are sequentially reconstructed from left to right.

Equation 4 presents this autoregressive proxy, with nota-
tions derived from table 1. We recall that k, the number of
tokens in the target field, is known to the adversary (see sec-
tion 3.1). This formula employs a token-level proxy Ptok

θ
, that

represents the probability that the selection of token vt ∈ V
at step t results in a good reconstruction.

Pθ( f̃ | d̃,y) =
k

∏
t=1

Ptok
θ (vt | d̃,y,v1, . . . ,vt−1) (4)

Although encoder-only models such as LayoutLM or
BROS are not designed for such an autoregressive formula-
tion [26, 75], we used this approximation for several reasons:

• This autoregressive modeling substantially decreases the
size of the search space. Rather than V k, our optimiza-
tion problem is divided into k sub-problems in V .

• More complex methods require a significantly higher
number of model calls [26]. Considering that our at-
tack is already computation-intensive, our autoregressive
proxy serves to maintain this number to a minimum.

• The left-to-right decoding is requisite for the SPADE
[36] implementation we used. Indeed, each token is
trained to point towards its predecessor, thereby making
it significantly easier to decode if the predecessor has
already been reconstructed.

• Using an autoregressive decoding enables us to use var-
ious heuristics derived from reconstruction attacks on
decoder-only models [84].

As explained in section 2.1, our attack targets both uni-
modal (text + layout) and bimodal (text + layout + image)
models. Nevertheless, the objective of the adversary is solely
to reconstruct the textual data (see section 3.1). When attack-
ing a bimodal model, we did the following:

• To scrub bimodal data, target tokens are replaced with
[MASK] token, and a white patch masks the content of
the field in the image.

• With our autoregressive proxy, we sequentially replace
the target tokens with their reconstruction in the textual
modality.

• The visual modality remains masked throughout the en-
tire field reconstruction process. This means that the
white patch masks all tokens, and remains unchanged
even when the initial ones have already been recon-
structed in the visual modality. Indeed, the adversary
makes no attempt to reconstruct the visual modality (cf.
section 3.1), even when attacking a bimodal model.

This is why our equations only optimize on V k. The infor-
mation of the image I comes from the scrubbed document
d̃ ∈ V ∗× I .

4.2 A token-level combinatorial optimization

The computation and optimization of Ptok
θ

involves several
steps that are shown in algorithm 2 and figure 2. In essence,
we leverage an auxiliary MLM head trained on public data
to choose a list of potential tokens for reconstruction. Then,
we compute the loss of the target model for each candidate,
and select the one leading to the minimal loss. This is why
we refer to our attack as combinatorial. Unlike the contin-
uous relaxation used in NLP by [59, 70], we use discrete
optimization by testing each candidate.
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Algorithm 2 Computing and maximizing Ptok
θ

1: procedure argmaxvt∈V PTOK
θ

(vt | d̃,y,v1, . . . ,vt−1)
Getting candidates from auxiliary public MLM

2: [ gi ]1≤i≤|V |←MLMpub(d̃,v1, . . . ,vt−1)
3: [ ci ]1≤i≤Nc ← TOP(Nc, [ gi ]1≤i≤|V |).indices
4: [ gi ]1≤i≤Nc ← TOP(Nc, [ gi ]1≤i≤|V |).values

Computing target model loss
5: [ li ]1≤i≤Nc ← [ LOSS( fθ(ci,y)) ]1≤i≤Nc

Converting into likelihoods
6: [ ĝi ]1≤i≤Nc ← SOFTMAX([ gi ]1≤i≤Nc)

7: [ l̃i ]1≤i≤Nc ← 2− [ li ]i/MEDIAN([ li ]i)
8: [ l̂i ]1≤i≤Nc ← SOFTMAX([ l̃i ]1≤i≤Nc)

Aggregating
9: [ pi ]1≤i≤Nc ← [ MEAN(l̂i, ĝi) ]1≤i≤Nc

Sampling with the final likelihoods
10: vt ← SAMPLE_ONE([ pi ]1≤i≤Nc)

Details on step 1 (lines 2–4 in algo. 2, block A in fig. 2)
This step employs an auxiliary MLM head trained with T
and D. These are assumed to be public knowledge, hence
this head is referred to as PUB-MLM. The step consists in a
single forward-pass of the document in PUB-MLM, followed
by the selection of the top-Nc most plausible candidates.

This first step is needed because we empirically observed
that the token minimizing the loss of the target model is often
not the one we seek (e.g. unexpected words like "paranoia"
for a "date" field). This was not an issue for Elmahdy et
al. [19] because they attacked canaries, whose structure is
exactly known. However, for real data, we deem it necessary
to initially filter plausible tokens with a MLM head.

Moreover, a forward-pass is executed for each candidate
token during step 2. As such, selecting only a reasonable
number of candidates significantly accelerates the attack.

Details on step 2 (line 5 in algo. 2, block B in fig. 2)
For each of the Nc candidate tokens, we execute a single
forward-pass on the document, wherein the target token is
replaced by the candidate token. These forward-passes can be
arranged into one or several mini-batches depending on the
available graphical memory. The loss applied is identical to
the one used during training, which is the cross-entropy loss.
However, we did not average over the mini-batch samples: li
corresponds to the loss for candidate token ci, and to it alone.

The underlying idea is that the target model is trained to
minimize the loss during training. Therefore, we assume
that the loss is especially low for the specific token that was
processed during training.

Details on step 3 (line 6 in algo. 2, block C in fig. 2)
This step involves converting the PUB-MLM logits into like-
lihoods using a softmax function. We incorporated two
heuristics: a temperature parameter [2, 22], following the

Figure 2: Computing and maximizing Ptok
θ

to invert a token.
We first use a masked model trained on public data to select
Nc = 128 candidates (A). Then, we compute the loss of the
target model with each candidate (B), and aggregate these
losses to obtain a probability distribution over the candidates
(C, D, E). Finally, we sample the reconstructed token from this
distribution (F), and repeat this process for the next tokens.

approaches of [9, 46, 84], and a decaying temperature as in
[9], to promote the exploration of unexpected tokens only for
the first tokens of the reconstruction.

Details on step 4 (lines 7–8 in algo. 2, block D in fig. 2)
This step involves the conversion of the losses of the target
model into likelihoods. We must consider that:

• We want to minimize the loss (unlike the logits).

• We observed that the output loss usually consists in a
majority of small values (e.g. of the order of 10−5), and
some much larger outliers (e.g. of the order of 100).

We used equation 5. First, losses are normalized by their
median, attenuating the influence of the outliers. Then, we
subtract the resulting value from 2 to position the majority of
values around 1. Ultimately, a softmax function with decaying
temperature is applied, as in step 3.

[ l̂ ]1≤k≤n = SOFTMAX
1≤ j≤Nc

(
2−

l j

MEDIAN([ li ])1≤i≤Nc

)
(5)
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Details on step 5 (line 9 in algo. 2, block E in fig. 2)
In this step, we integrate the PUB-MLM likelihoods with
those of the target model. We explored two possibilities: an
arithmetic weighted mean and a geometric weighted mean.
Each of them offers distinct advantages. The arithmetic mean
guarantees that both likelihoods always have the same relative
importance, while the geometric means ensures that if one
of the two likelihoods is exceptionally low, the mean will
approach zero regardless of the other’s value. In practice, we
opted for the geometric mean due to its superior results.

Details on step 6 (line 10 in algo. 2, block F in fig. 2)
Given the final likelihoods of the tokens, the remaining step
consists of sampling one of them. This is a classical task
in text generation [31]. Consistent with the results of [46,
84], we utilize top-p sampling (also known as nucleus-η
[31]). The selection of parameter p significantly influences
the reconstructed field, and must be chosen in harmony with
the temperature of the softmax functions.

4.3 Variants of the attack
Targeting a MLM head As explained in section 2.1, we
also target models trained on the MLM task, referred to as
private MLM, unlike the PUB-MLM head which is used to
optimize the token-level proxy (see section 4.2).

The attack method differs slightly when targeting such
models, because we do not need to use another MLM as an
auxiliary model. For steps 1 and 3, we replace the PUB-MLM
head with the private MLM under attack. Then, we skip steps
2, 4 and 5, and directly utilize the likelihoods of the target
model to sample the next token.

The multi-shot variant For this variant, a membership
inference metric is employed to sort the fields by plausibility
of their reconstructions. In real-life scenarios, the adversary
would set a threshold and only keep the most plausible ones.

Various membership inference metrics have been imple-
mented in NLP [9, 46, 47, 55, 84]. Most of them rely on
comparing the likelihood of a token or a sentence with re-
spect to the target model and with respect to another model.
Yet, computing the likelihood of a sentence for encoder-only
models remains computationally intensive [37, 55]. There-
fore we use the same approximation as for the reconstruction:
computing the field likelihoods in an autoregressive manner:

• For each token vt in a field f̃ , we define its target like-
lihood as the probability pi it had during sampling at
line 10 in algorithm 2. We also define its PUB-MLM
likelihood as ĝi, computed with the auxiliary MLM.

• We define the likelihood of a field as the product of the
likelihoods of its tokens. We also use these token-level
likelihoods to define the perplexity of a field [41].

While these definitions are approximations for encoder-
only models, they offer the benefit of directly employing the
PUB-MLM likelihood ĝi which is already computed during
the attack. This circumvents the need for separate likelihood
computation with an auxiliary model, as required in [9, 55,
84], except when targeting a private MLM head (see above).
The five membership inference metrics we implement are:

• Raw perplexity: the PUB-MLM perplexity.

• Perplexity ratio: the ratio between the PUB-MLM per-
plexity and the target perplexity.

• Raw and ratio: the product of the two metrics above,
aiming at prioritizing fields that have high PUB-MLM
perplexity along with a high perplexity ratio.

• Max. token likelihood gap: the maximum difference be-
tween the private likelihood and the PUB-MLM one for
every token (inspired from "high confidence" in [84]).

• Max. token likelihood ratio: similar to above, replacing
the difference with a ratio.

5 Evaluation protocol

5.1 Datasets and training conditions
Datasets We evaluate the CDMI attack on models trained
on two datasets: FUNSD [40] and SROIE [35], which are
popular benchmarks for KIE tasks (see section 2.1). FUNSD
consists of 199 scanned forms from the tobacco industry
and includes annotations for both EE and EL tasks. We
attack the fields annotated as "Anwers". For its part, SROIE
incorporates 626 scanned receipts, only annotated for EE task.
We attack the fields containing the date, company, address,

Dataset Task Acc LayoutLM Acc BROS
Unimod Bimod Unimod Bimod

FUNSD MLM 0.545 0.545 0.546 0.546
SROIE MLM 0.540 0.538 0.541 0.539
FUNSD EE-BIO 0.762 0.746 0.820 0.817
SROIE EE-BIO 0.960 0.967 0.969 0.959
FUNSD EE-SPD 0.760 0.760 0.815 0.804
SROIE EE-SPD 0.952 0.935 0.965 0.965
FUNSD EL 0.240 0.193 0.000 0.202

Table 2: The best validation accuracy of our models. For
each of our 7 tuples (dataset, task), we trained unimodal and
bimodal models with either LayoutLM or BROS backbone.
These results are consistent with the one announced in [32].
For each of these 28 settings, we attacked both the model with
the best validation accuracy (Precision criterion, presented
here) and with the lowest validation loss (Loss criterion, pre-
sented in the appendix, see table 5).
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and total amount. For both datasets, we only retain fields
comprising between 3 and 15 tokens to disregard those that
are either meaningless or too computationally demanding.

Each of our datasets is randomly partitioned into three
non-overlapping parts (see appendix for details):

• A validation set, used to evaluate the generalization per-
formance of models during their training phase.

• A private train set, comprising half of the remaining doc-
uments, and on which the models we target are trained.

• A public train set, containing the remaining documents,
used to train auxiliary models.

Training conditions We trained models in 28 different set-
tings. For each of the 7 tuples (dataset, task) presented in
table 2, we trained unimodal and bimodal models with either
LayoutLM or BROS backbone. For each configuration, we
trained our models for many epochs (300 for MLM tasks,
150 for the others), and saved the models at each epoch. Ulti-
mately, we select the epoch we target with respect to one of
the following criteria:

• Precision: the epoch with the best validation accuracy.

• Loss: the epoch with the best validation loss.

Using these 28 configurations and these 2 criteria, we evalu-
ated both the one-shot and the multi-shot variant of our attack.
This results in 112 different attack scenarios.

Hyperparameters: transferring from LayoutLM to BROS
The CDMI attack described in section 4 involves several
hyperparameters: the number of candidates Nc in step 1,
the temperature parameter and decay in steps 3 and 4, the
averaging method and its weight in step 5, the parameter p for
top-p sampling in step 6, and the number of attempts na for
the multi-shot variant. We tuned these hyperparameters for
the 14 configurations with LayoutLM backbone and Precision
criterion, optimizing the evaluation metrics of the one-shot
variant (see section 5.2 and the appendix).

Finally, we used each of these 14 sets of hyperparameters
for 8 attacks: one-shot or multi-shot, Precision or Loss crite-
rion, and LayoutLM or BROS backbone, yielding in a total
of 112 evaluation settings. Given that the hyperparameters
were calibrated with LayoutLM backbone, we anticipate the
accuracy of CDMI to be superior with LayoutLM than with
BROS. These enable us to assess the transferability of our
attack, as we measure its performance on an architecture for
which it was not optimized, namely BROS.

Hardware and computation time Each of these 112 evalu-
ations was performed on a fraction of 0.1 Nvidia A100 80GB.
The mean computation time was 20:40 hours for each experi-
ment, resulting in a total of about 2300 hours.

5.2 Evaluating the one-shot variant
Four evaluation metrics To evaluate the quality of the
one-shot attack, we compare each reconstruction f̃ to its cor-
responding ground truth f . We employed four metrics for
this purpose: the Perfect Reconstruction PR = 1( f = f̃ ), the
Hamming Distance (HD) [28], the normalized Levenshtein
Distance (LD) [48], and the normalized Jaro-Winkler Dis-
tance (JWD) [39, 78]. We computed these metrics using the
tokens of the fields, ignoring their alphanumeric decoding by
the tokenizer, and we averaged them across all fields.

Our baseline A logical analysis of the other fields and head-
ers can often enable guessing many fields within a document.
Consequently, we compare our one-shot attack to a baseline
which represents the reconstruction that are feasible with pub-
lic information only. In practice, this baseline corresponds
to the reconstruction of the fields using only the PUB-MLM
likelihoods in figure 2.

We compute the four evaluation metrics with this baseline,
and compare them to our attack. In this way, we assess how
useful it is to have access to the target model to obtain accurate
reconstructions. Using an idea similar to the advantage often
used in cryptography, we introduce the improvement factor
(IpF), which represents the mean improvement between the
attack and the baseline for our four metrics. For example,
IpF= 1.5 means that the attack is 50% better than the baseline
on average. The improvement factor is defined in equation 6,
where "att" represents the attack, and "base" the baseline. We
also add a parameter ε to bound the improvement factor.

IpF =

PRatt+ε

PRbase+ε
+ HDbase+ε

HDatt+ε
+ LDbase+ε

LDatt+ε
+ JWDbase+ε

JWDatt+ε

4
(6)

5.3 Evaluating the multi-shot variant
The evaluation of the multi-shot variant must account for both
the order of the reconstructions with respect to the member-
ship inference metric (F and F̃), and the similarity between
the fields and their reconstructions ( fi ∈ F vs. f̃i ∈ F̃). Thus,
our evaluation metrics should satisfy the two following math-
ematical properties:

1. With fixed values fi and f̃i for each i, the metric is maxi-
mized when F and F̃ are sorted in descending order of
similarity between fi and f̃i.

2. With a fixed order of F and F̃ , for each i, the metric in-
creases when the similarity between fi and f̃i increases.

However, common metrics used in the literature do not
satisfy these properties. Indeed, existing work such as [9, 84]
assess separately the quality of the reconstructions and the
membership inference attack. For example, with the regular
AUC score computed with the ROC curve, a value of 1.00 is
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Figure 3: AccAUC and HamAAC computation examples.
Acc(p) denotes the mean accuracy of the top-p fields the
adversary is the most confident in. The greater it is, the more
accurate the reconstructions are. A peaky and decreasing
shape means that the membership inference metric accurately
sorts the reconstruction attempts. This is why we seek to max-
imize its Area Under the Curve (AccAUC). Idem for the Area
Above the Curve with the Hamming distance (HamAAC).

achieved in the two following situations, despite the apparent
superiority of the latter: (1) a single perfect reconstruction is
ranked highest, trailed by 99 inaccurate reconstructions; and
(2) all 100 reconstructions are perfect. This is because AUC
score ignores the prevalence of perfect reconstruction, which
is necessary to meet the second property we want.

This motivates the introduction of two new metrics that
satisfy these properties. Figure 3 demonstrates an example
of their computation. We will introduce them briefly, and we
refer to the appendix for rigorous definitions and proofs that
they satisfy the two desired properties.

Accuracy-AUC and Hamming-AAC First, we introduce
the Accuracy-at-p metric for p ∈ [0,1] (AccAt(p)). It rep-
resents the accuracy of the reconstruction within the top-p
fields the adversary is the most confident in, i.e. the one with
the greatest membership inference metric. Then, we plot
AccAt(p) versus p. A greater Area Under the Curve ("AUC")
means that that the reconstruction are more accurate. This
motivates the introduction of the Accuracy-AUC metric.

Similarly, HamAt(p) represents the mean normalized Ham-
ming distance [28] within the top-p fields the adversary is
the most confident in. However, we look at the Area Above
the Curve ("AAC") because it is a distance and not a simi-
larity. This results in the Hamming-AAC metric. Both the
AccAUC and HamAAC metrics take values between 0 and 1,
and increase as the quality of the attack improves.

6 Experimental results

This section presents the experimental results of our attack
and discusses our main findings. For a comprehensive pre-
sentation of our results, please refer to the appendix. Our
experiments show that CDMI achieves robust results, allow-
ing for meaningful reconstructions with every task and dataset
we evaluated, including numbers, dates, and names up to 8
tokens. Table 3 shows examples of perfect reconstruction.

In our experiments, the maximum value of AccAt(1.0) that
we reach is 0.041, meaning that under optimal conditions,
the adversary can flawlessly reconstruct 4.1% of the fields.
For comparison, under identical conditions, our baseline only
recovers 0.77% of the fields. Furthermore, the maximum
AccAt(0.05) registered is a promising 22.5%. This indicates
that in this scenario, when the adversary employs a mem-
bership inference metric to retain the 40 fields they are most
confident in (5% of the dataset), they can attain up to 9 perfect
reconstructions. This performance far exceeds our baseline’s
score at 2.5%, corresponding to just a single field.

6.1 Performance of the attack

Factors influencing the one-shot variant with LayoutLM
We observe that certain configurations result in significant
outcomes. For example, when selecting the checkpoint with
the best validation precision from a bimodal MLM trained on
FUNSD, we achieve an improvement factor of 1.395. This
means that the CDMI reconstructions are approximately 40%
more effective than the ones of our baseline (see line 2 in
table 5 in the appendix for more details).

However, some models are more vulnerable than others.
Figure 4 compares the performance of the one-shot attack
for the 8 MLM models we trained with LayoutLM back-
bone: unimodal or bimodal, Precision or Loss criterion, and
FUNSD or SROIE dataset (see lines 1-8 in table 5 for more
details). Interestingly, the difference between FUNSD and
SROIE datasets is minor, showing that our attack is robust

Data Archi Task Reconstruction Len Occ

SRO LayoutLM EE-SPD restaurant jiawei
jiawei house 6 1

SRO LayoutLM EE-BIO guardian health and
beauty sdn bhd 8 1

FUN LayoutLM EL m. a. peterson 5 1
FUN LayoutLM EE-SPD r. g. ryan 5 1

SRO LayoutLM MLM lim seng tho
hardware trading 6 1

SRO LayoutLM MLM 101. 75 3 2
FUN LayoutLM MLM april 13, 1984 4 1
FUN BROS MLM 1. 500. 00 6 1
FUN BROS MLM dr. a. w. spears 7 1

Table 3: Examples of perfect reconstructions.
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Figure 4: Factors influencing the performance of the one-
shot attack on a LayoutLM with MLM task. We attack 8
different models (2 modality, 2 criteria, 2 datasets) with an
average improvement factor of IpF = 1.187. Among them,
the 4 attacks implying a bimodal model are more accurate
than those against a unimodal model (IpF of 1.296 vs. 1.078).
Similarly, the attacks are more accurate with the Precision
criterion, and with the FUNSD dataset.

to at least two type of documents. Moreover, we observe
that Precision criterion leads to more vulnerable models than
Loss criterion. This is not surprising because they are trained
for more epochs, so the model had more time to memorize
its training data. Finally, we observe that bimodal models
are much more vulnerable than unimodal ones, with a mean
improvement factor of 1.296 compared to 1.078. This indi-
cates that the visual encoder memorizes information about the
training sample, which our attack efficiently extracts. These
aspects are discussed further in section 6.2.

For non-MLM tasks, the factors influencing the one-shot
attack are different. Indeed, the attack is very efficient on
SROIE dataset, with a mean improvement factor of 1.224.
However, it obtains poor results on FUNSD, with a mean
improvement factor of 1.036, indicating that the attack is
not significantly better than the baseline. We explain this
result by observing that these models exhibit significantly
lower accuracy on FUNSD compared to SROIE, so it is not
surprising that the attack can extract less information from
them (see columns 6-7, lines 9-24 in table 5 for more details).

Comparison between the tasks With LayoutLM backbone,
some tasks are easier to attack than others, as outlined in
figure 5. MLM task is the most vulnerable, as expected.
Indeed, it is designed to reconstruct masked tokens, aligning
with the objective of the reconstruction. On the opposite,
models trained with EL task exhibit lower validation accuracy
compared to EE-BIO and EE-SPADE, which explains their
low susceptibility to our attack. Since the model struggles in
learning meaningful patterns to solve the task, using its loss
as per the CDMI approach makes it less efficient.

However, we observe that for every task and dataset, there
exists a configuration yielding an improvement factor of a
minimum of 1.10. This suggests that our reconstruction attack
could be generalized to a wider range of fine-tuning tasks,
such as document classification and question answering.

Comparison between LayoutLM and BROS As detailed
in section 5, we have optimized our attack with the LayoutLM
backbone, and then evaluated its transferability to BROS
architecture. Thus, it is unsurprising that we obtain stronger
results for LayoutLM than BROS. For example, we obtain
poor results for most one-shot and multi-shot configurations
with non-MLM tasks when using BROS backbone.

However, the outcomes of CDMI for MLM tasks on BROS
are highly competitive compared to those on LayoutLM, as
outlined in figure 5. For the one-shot variant, there is a minor
gap between LayoutLM and BROS backbones, with a mean
improvement factor of 1.187 and 1.167, respectively. Our
best performance for the one-shot variant is even obtained
with BROS backbone, with an impressive improvement factor
of 1.54. For the multi-shot variant with BROS backbone, 5.4%
of the fields are perfectly reconstructed on average within the
top-5% fields (Accuracy-at-5%). This is much higher than
the accuracy of 1.3% obtained with the baseline, showing that
the model memorizes a significant part of its training set.

The successful transferability of our attack to BROS back-
bone in some settings suggests that it could likely be adapted
to other document understanding model architectures.

Figure 5: Performance comparison based on the backbone or
task. The top graph shows the average performance of the
attack with LayoutLM backbone, for the four possible tasks.
The bottom graphs compare the average performance of the
attack on the MLM models with LayoutLM backbone (in
blue) or BROS backbone (in orange), for both the one-shot
variant (left) and the multi-shot variant (right).
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Figure 6: Comparison between the attack and the baseline
in a multi-shot setting, with a bimodal model, LayoutLM
backbone, EE-SPADE task, SROIE dataset and Loss criterion.
On the upper plot, the Hamming-at-p distance is much lower
for the attack. On the middle plot, the Accuracy-at-p of
the attack is decreasing, so the membership inference metric
accurately sorts the most credible reconstructions. On the
last plot, the evaluation metrics are higher for the attack:
for instance, with p = 0.05, the attack perfectly reconstructs
6/40 = 15% of the fields, vs. 1/40 = 2.5% for the baseline.

The multi-shot variant We observe that many configura-
tion yielding good results with the one-shot variant perform
poorly with the multi-shot variant. Thus, in these configura-
tions, even though the model memorizes information about
its training data, it is not sufficient to perfectly reconstruct a
significant portion of the fields with high confidence.

However, some configurations lead to strong results for
both MLM and non-MLM tasks. For example, figure 6 dis-
plays a successful attack on a very realistic model trained
on EE-SPADE task, which is targeted at epoch 4, when its
validation loss is minimal. The adversary perfectly recon-
structs 15% of the fields they are most confident in. Moreover,
the peaked shapes of AccAt(p) and HamAt(p) indicate that
the membership inference metric efficiently sorts the good
reconstructions first. As a result, CDMI reconstructions con-
siderably outperform our baseline in all evaluation metrics.

This proves that even non-generative models trained on
entity extraction tasks can be successfully attacked.

6.2 Ablation studies

In this section, we demonstrate that neither overfitting nor
data duplication accounts for the performance of our attack.
Moreover, we demonstrate that we can extract information
memorized by the visual modality, proving that documents
should be considered as a distinct data type, susceptible to
attacks that can exploit their bimodal nature.

Overfitting As detailed in section 2.2, overfitting often fa-
vors the memorization of training data, even though it is not
a requisite condition [9, 21, 83, 85]. We also observed this
phenomenon with CDMI. From the early stages of training,
even before the model can overfit, training data are memo-
rized. And the attack performance gradually increases over
epochs, even when validation accuracy starts to decrease.

To verify the correlation, we executed the experiment de-
picted in figure 7. We evaluate the one-shot and multi-shot
CDMI attacks on 40% of the fields for one out of 5 model
checkpoints between epoch 1 and 300. First, we observe that

Figure 7: Attacking a bimodal LayoutLM model trained on
FUNSD with MLM task and Nc = 256. The first graph plots
the validation loss and accuracy, with the best values achieved
at epoch 60 and epoch 180, respectively. The two following
plots display the performance of the one-shot attack, and the
last one shows the performance of the multi-shot attack. In
both cases, the attack is more accurate than the baseline from
epoch 12, well before the best validation loss.
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overfitting is evident, as the best validation loss is achieved
much earlier than the best validation precision. However,
the attack outperforms the baseline quite early, after just 12
epochs, showing that the model memorizes training data with-
out needing to overfit. Finally, all the performance metrics of
our attack increase with the number of training epochs, and
persist beyond the epoch with the optimal precision.

This shows that our attack is efficient from the early epochs
of training, and that simple regularization techniques are un-
likely to be sufficient to ensure the security of the data used
to train document understanding models.

Data duplication Data duplication is known to favor mem-
orization of training data (see section 2.2 and [43]). Certain
definitions such as k-eidetic memorization [9] even include
the number of duplicates. However, defining duplication for
document data is not straightforward. In our case, we seek
to reconstruct the fields in their context: for example, the
reconstruction of "24.8 mm" only becomes useful when it is
linked to the form it comes from. Therefore, we deemed that
two forms with identical headers but different answers were
not duplicates, contrary to shifted or rotated documents.

We did not implement an automatic count of duplication
within our datasets; however we manually checked the num-
ber of occurrences for a few documents (see "Occ" column
in table 3). Even though we observed some duplicates in the
SROIE dataset, we did not detect any of them in FUNSD.
Thus, we conclude that the good results of our attack is pre-
sumably not linked to data duplication. However, further
investigating this issue would be a promising topic for fu-
ture research, as numerous document datasets contain a great
number of similar documents (e.g. ID cards, etc.).

Importance of layout and visual modality Our attack was
designed to efficiently reconstruct data from layout-aware
document models. However, it could be possible that it only
extracts information from textual content, and would be just
as effective on text-only models. We conducted the following
experiments to demonstrate that it is not the case, and that
both layout and visual modality contribute to memorization.

As shown in the upper plot of figure 8, we trained several
models with BERT backbone [13], which does not take the
layout into account, and compared them with those using
LayoutLM backbone. We specifically used models trained on
SROIE with the EE-BIO task, as in this setting, the valida-
tion accuracy between BERT and LayoutLM is similar. This
means that a difference in memorization cannot be attributed
to a difference in accuracy. We observed that the attack is
much more successful with LayoutLM, with a mean improve-
ment factor of 1.248 compared to 1.150 with BERT. This
proves that layout information contributes to memorization,
making the layout-aware models more vulnerable than their
textual counterparts.

Figure 8: Upper plot: our attack performs better on LayoutLM
backbones than BERT. This confirms that layout contributes
to memorization, making document models more vulnerable.
Lower plot: the performance of attacks using auxiliary public
MLM trained on four datasets with increasing distribution
shift. Our attack remains feasible if the adversary has access
to different yet similar data distribution.

The significance of visual modality was already discussed
in section 6.1. As depicted in figure 4, bimodal models are
more susceptible to our attack than unimodal ones. To con-
firm that the information is memorized within visual modality,
we conducted an experiment using bimodal models trained on
MLM task with LayoutLM backbone. We obtained a mean
improvement factor of 1.296 when attacking these models
normally. However, when we deactivated the visual modality
by replacing it with Gaussian noise in these models, the mean
improvement factor dropped significantly to 1.044. This con-
firms that our attack extracts information that is memorized
within the visual modality.

Robustness to distribution shifts As explained in section 3,
we assume that the adversary knows the target distribution
D, and uses it to train an efficient auxiliary public MLM.
This hypothesis is plausible given the accessibility of many
datasets online, but it gives an advantage to the adversary.

To evaluate its impact, we conducted attacks on SROIE
dataset using auxiliary public MLM trained on four datasets
with increasing distribution shifts (see figure 8). The first one
was trained with the original distribution. For the second one,
we removed all restaurant receipts from SROIE, which repre-
sents a sub-population of about 10%. We obtained a similar
improvement factor, indicating that our attack remains feasi-
ble with a minor distribution shift. The third one was trained
without any receipt dated 2018 (around 50% of the dataset).
This is an important distribution shift because the ‘date’ field
is one of those we are attacking. The performance dropped,
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because the adversary is unable to accurately select relevant
candidate tokens. Finally, the last auxiliary model was trained
on FUNSD. Here, the distribution shift is too important and
the attack is ineffective, yielding an improvement factor close
to 1. We conclude that the ability of the adversary to train a
well-performing auxiliary model on a nearby distribution is
an important assumption for the success of our attack.

7 Conclusion

A pioneer attack In this paper, we introduce the first re-
construction attack against document understanding models:
CDMI (Combinatorial Document Model Inversion). Despite
similarities with some attacks against language models, what
sets CDMI apart is that it is explicitly designed to handle
documents as multimodal data, making it the first to target
layout-aware models. We present two variants of the attack:
a one-shot version, and a multi-shot version where CDMI is
combined with a membership inference attack.

We also establish a meticulous protocol to assess our at-
tack, comparing it with reconstructions that can be made with
only public information. We also introduce two new evalua-
tion metrics, Accuracy-AUC and Hamming-AAC, designed
to simultaneously evaluate the reconstruction phase and the
membership inference phase in the multi-shot variant.

Empirical evidence We demonstrate that models trained on
Key Information Extraction tasks under realistic conditions
are vulnerable to reconstruction attacks. Under optimal condi-
tions, the adversary is able to perfectly reconstruct from 4.1%
of the fields to 22.5% when combined with a membership
inference attack.

We clearly observe that the Masked Language Modelling
task is more vulnerable than the Key Information Extraction
ones. Moreover, we demonstrate that both layout and vi-
sual modality contribute to memorization, making document
models more vulnerable than their textual counterparts, and
susceptible to specific attack developments.

We show that our attack’s performance is not a conse-
quence of either overfitting or data duplication. It only takes
a dozen epochs to memorize training data even without dupli-
cation. Thus, further research into alternative defense mecha-
nisms, such as differential privacy, is necessary.

Recommendations We recommend three mechanisms to
make the prerequisites of our attack impossible. First, avoid
open-sourcing the weights of models trained on sensitive
data. Second, when serving models through an API, hide
your model’s confidence score and filter repetitive queries on
similar data. Third, avoid sharing anonymized documents, as
they can be used for reconstruction attacks.

If these three mechanisms cannot be implemented in a
particular situation, we recommend exercising the utmost

caution. More advanced reconstruction attacks are likely to be
developed in the near future. Our attack method can be used
to estimate the privacy risk of a model, and we also advocate
for the use of provable privacy-preserving techniques.

We hope our work will alert researchers and practitioners
to the privacy risks of document understanding models, and
lay the foundation for the development of robust, privacy-
preserving architectures.
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Dataset Partition # doc # field # selected
FUNSD Valid 50 809 495
FUNSD Train-PUB 74 1436 911
FUNSD Train-PRI 75 1296 777
SROIE Valid 100 400 301
SROIE Train-PUB 263 1052 796
SROIE Train-PRI 263 1052 791

Table 4: Number of documents and fields in our partitions.

Appendix

A Training conditions
This section elaborates on aspects discussed in section 5.1.

First, table 4 shows the volumes of the datasets we used.
We used two datasets: FUNSD [40] and SROIE [35], which
we split into three non-overlapping parts: validation, train-
public, and train-private. Column 3 displays the number of
documents in each part. Columns 4 and 5 present the total
number of fields in each dataset, and the number of fields we
selected for our attack, respectively.

Second, the results of our hyperparameter optimization
are as follows. For step 1, Nc = 128 offers a satisfactory bal-
ance between performance and computational time (Nc = 512
marginally improves the attack accuracy by 2%, at a signifi-
cant computational cost). For steps 3 and 4, effective results
were typically associated with a low temperature, about 0.2–
0.4, with a decay rate applied over 3 steps for the PUB-MLM
softmax, and no decay for the target one. For step 5, geomet-
ric mean exhibited superior results, though the optimal weight
varied considerably across configurations (between 0.2 and
0.6). For step 6, the optimal parameter was p = 0.10, except
for some settings where p = 0.12 proved superior. Finally,
we selected na = 8 attempts for the multi-shot variant.

B Evaluation of the multi-shot variant
Let us detail further AccAUC and HamAAC metrics intro-
duced in section 5.3. For p ∈ [0,1], let T (p) be the set of field
that are ranked top-p by the membership inference metric,
and let Ham be the Hamming distance [28]. We define:

AccAt(p) :=
1

|T (p)| ∑
f∈T (p)

1( f = f̃ ) ∈ [0,1] (7)

AccAUC :=
∫ 1

p=0
AccAt(p)dp ∈ [0,1] (8)

HamAt(p) :=
1

|T (p)| ∑
f∈T (p)

Ham( f , f̃ ) ∈ [0,1] (9)

HamAAC := 1−
∫ 1

p=0
HamAt(p)dp ∈ [0,1] (10)
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Backbone Task Data Crit Modal Prec IpF HamAAC AccAUC AccAt 1% AccAt 5% AccAt 100%
LayoutLM MLM FUN Prec UniM 0.545 1.132 0.153 0.020 0.125 0.051 0.009
LayoutLM MLM FUN Prec BiM 0.545 1.395 0.274 0.061 0.125 0.154 0.027
LayoutLM MLM FUN Loss UniM 0.543 1.123 0.198 0.021 0.125 0.077 0.010
LayoutLM MLM FUN Loss BiM 0.543 1.171 0.181 0.034 0.250 0.103 0.013
LayoutLM MLM SRO Prec UniM 0.540 1.081 0.104 0.036 0.000 0.075 0.020
LayoutLM MLM SRO Prec BiM 0.538 1.393 0.191 0.070 0.125 0.225 0.032
LayoutLM MLM SRO Loss UniM 0.534 0.977 0.077 0.017 0.000 0.025 0.010
LayoutLM MLM SRO Loss BiM 0.534 1.226 0.112 0.031 0.000 0.025 0.021
LayoutLM EE-BIO FUN Prec UniM 0.762 1.075 0.216 0.016 0.125 0.026 0.008
LayoutLM EE-BIO FUN Prec BiM 0.746 1.024 0.201 0.004 0.000 0.000 0.004
LayoutLM EE-BIO FUN Loss UniM 0.718 1.053 0.203 0.008 0.125 0.026 0.004
LayoutLM EE-BIO FUN Loss BiM 0.702 1.024 0.188 0.003 0.000 0.000 0.001
LayoutLM EE-BIO SRO Prec UniM 0.960 1.252 0.231 0.026 0.000 0.025 0.019
LayoutLM EE-BIO SRO Prec BiM 0.967 1.207 0.204 0.010 0.000 0.000 0.010
LayoutLM EE-BIO SRO Loss UniM 0.940 1.246 0.249 0.023 0.000 0.025 0.018
LayoutLM EE-BIO SRO Loss BiM 0.955 1.294 0.231 0.014 0.000 0.000 0.013
LayoutLM EE-SPD FUN Prec UniM 0.760 1.054 0.177 0.005 0.000 0.000 0.004
LayoutLM EE-SPD FUN Prec BiM 0.760 1.001 0.181 0.008 0.000 0.026 0.004
LayoutLM EE-SPD FUN Loss UniM 0.469 1.036 0.144 0.012 0.125 0.026 0.004
LayoutLM EE-SPD FUN Loss BiM 0.623 0.979 0.170 0.007 0.125 0.026 0.001
LayoutLM EE-SPD SRO Prec UniM 0.952 1.141 0.213 0.019 0.000 0.050 0.010
LayoutLM EE-SPD SRO Prec BiM 0.935 1.209 0.192 0.008 0.000 0.000 0.009
LayoutLM EE-SPD SRO Loss UniM 0.856 1.224 0.227 0.044 0.125 0.150 0.020
LayoutLM EE-SPD SRO Loss BiM 0.880 1.221 0.205 0.009 0.000 0.050 0.005
LayoutLM EL FUN Prec UniM 0.240 1.164 0.135 0.012 0.000 0.026 0.013
LayoutLM EL FUN Prec BiM 0.193 0.986 0.059 0.005 0.000 0.026 0.001
LayoutLM EL FUN Loss UniM 0.093 1.019 0.118 0.006 0.125 0.026 0.001
LayoutLM EL FUN Loss BiM 0.000 1.015 0.116 0.002 0.000 0.000 0.001

BROS MLM FUN Prec UniM 0.546 1.243 0.302 0.051 0.250 0.128 0.021
BROS MLM FUN Prec BiM 0.546 1.540 0.389 0.078 0.250 0.154 0.041
BROS MLM FUN Loss UniM 0.543 1.170 0.276 0.038 0.125 0.077 0.019
BROS MLM FUN Loss BiM 0.539 1.246 0.312 0.041 0.125 0.051 0.023
BROS MLM SRO Prec UniM 0.541 1.028 0.102 0.007 0.125 0.025 0.001
BROS MLM SRO Prec BiM 0.539 1.092 0.126 0.008 0.000 0.000 0.006
BROS MLM SRO Loss UniM 0.534 1.017 0.072 0.000 0.000 0.000 0.000
BROS MLM SRO Loss BiM 0.534 1.001 0.080 0.000 0.000 0.000 0.000

Table 5: Main experimental results. Columns 1-5 show the target’s model training conditions: backbone (LayoutLM, BROS),
task (MLM, EE-BIO, EE-SPADE, EL), dataset (FUNSD, SROIE), criterion (Precision, Loss), modality (Unimodal, Bimodal).
Column 6 shows its validation accuracy. Columns 7 and 8-12 show the results of the one-shot and multi-shot attacks, respectively.

Let us now prove that HamAAC satisfies the two properties
of section 5.3; the demonstration is similar for AccAUC:

1. Let us fix the values of all f and f̃ . Then, let be
two indices 1 ≤ i < j ≤ M such that Ham( fi, f̃i) >

Ham( f j, f̃ j). If we swap i and j, this will increase
HamAt(p) for p ∈ [i/M, j/M[ leaving the other values
unchanged, which will increase the HamAAC score. As
a result, every step of a selection sort applied to sort the
indices by increasing values of Ham( fi, f̃i) will increase
HamAAC, proving that the maximum will be achieved
at the end of the selection sort.

2. Let F and F̃ have fixed order, and length M, and let
i ∈ J1,MK. Then, if we change the reconstruction f̃i

into another f̃ ′i such that Ham( fi, f̃ ′i )> Ham( fi, f̃i), it is
clear that ∀p ≥ i/M, HamAt(p) increases. As a result,
this improvement of f̃i increases HamAAC as well.

C Detailed experimental results
Table 5 details our experimental results, using Nc = 128 can-
didates. We excluded non-MLM tasks with BROS backbone
because of their lower results (see section 6.1).
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