
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Intellectual Property Exposure: Subverting and
Securing Intellectual Property Encapsulation

in Texas Instruments Microcontrollers
Marton Bognar, Cas Magnus, Frank Piessens, and Jo Van Bulck,

DistriNet, KU Leuven
https://www.usenix.org/conference/usenixsecurity24/presentation/bognar

Intellectual Property Exposure: Subverting and Securing
Intellectual Property Encapsulation in Texas Instruments Microcontrollers

Marton Bognar, Cas Magnus, Frank Piessens, Jo Van Bulck

DistriNet, KU Leuven, 3001 Leuven, Belgium

Abstract
In contrast to high-end computing platforms, specialized mem-
ory protection features in low-end embedded devices remain
relatively unexplored despite the ubiquity of these devices.
Hence, we perform an in-depth security evaluation of the
state-of-the-art Intellectual Property Encapsulation (IPE) tech-
nology found in widely used off-the-shelf, Texas Instruments
MSP430 microcontrollers. While we find IPE to be promising,
bearing remarkable similarities with trusted execution envi-
ronments (TEEs) from research and industry, we reveal sev-
eral fundamental protection shortcomings in current IPE hard-
ware. We show that many software-level attack techniques
from the academic TEE literature apply to this platform, and
we discover a novel attack primitive, dubbed controlled call
corruption, exploiting a vulnerability in the IPE access con-
trol mechanism. Our practical, end-to-end attack scenarios
demonstrate a complete bypass of confidentiality and integrity
guarantees of IPE-protected programs.

Informed by our systematic attack study on IPE and root-
cause analysis, also considering related research prototypes,
we propose lightweight hardware changes to secure IPE. Fur-
thermore, we develop a prototype framework that transpar-
ently implements software responsibilities to reduce informa-
tion leakage and repurposes the onboard memory protection
unit to reinstate IPE security guarantees on currently vulnera-
ble devices with low performance overheads.

1 Introduction

Memory isolation is a fundamental building block for security,
safety, and privacy in computing systems; it protects secret
keys, personal data, intellectual property, and other sensitive
information. On high-end systems, the operating system pro-
vides isolation using established hardware features such as
memory management units (MMUs) and CPU privilege lev-
els. Recent years have also seen the rise of trusted execution
environments (TEEs) shipped by major processor vendors,
such as Intel SGX [13] and TDX [29], AMD SEV [5], and

ARM TrustZone [4], which provide hardware-backed isola-
tion even in the presence of a compromised operating system.
Still, low-end embedded devices, omnipresent in the Internet
of things (IoT), often lack established memory isolation prim-
itives [26] due to stringent demands on manufacturing costs
and power consumption. In response to these unique chal-
lenges, a line of specialized, embedded TEE research proto-
types [9,15,18,32,41,42] has been developed. However, these
TEE designs all require custom hardware changes and are,
hence, incompatible with off-the-shelf IoT microcontrollers
that often only offer a coarse-grained and error-prone memory
protection unit (MPU) [24].

There is a clear demand for specialized IoT memory pro-
tection mechanisms, as also evidenced by the inclusion of
diverse hardware security features with varying degrees of
sophistication by embedded device manufacturers [4, 6, 10,
36–38, 48, 51, 52]. In this paper, we study an advanced exam-
ple, the Intellectual Property Encapsulation (IPE) technology
found in some popular, ultra-low-power MSP430 microcon-
trollers by Texas Instruments (TI). Interestingly, we find that
IPE holds remarkable similarities to general-purpose TEEs
in that it offers enclave-like, hardware-level isolation of arbi-
trary code and data, protecting from read or write access from
anywhere outside of the encapsulated memory area, including
the embedded operating system and even JTAG hardware
debuggers [55, 61]. Unlike academic prototypes, IPE technol-
ogy has been readily available in off-the-shelf devices since
2014 [55, 58], predating most academic works and several
commercial technologies. IPE technology has been advertised
to protect high-value proprietary code and sensitive data such
as cryptographic keys [57, 60, 61]. Moreover, IPE has been
used as a critical enabling technology for several recent aca-
demic security systems [17, 33, 34]. However, despite IPE’s
potential and widespread availability, no critical analysis has
yet been conducted to properly understand the guarantees and
limitations of this security technology.

This paper performs such an analysis: we study TEE attack
literature and comparable research prototypes [15, 18, 41, 42]
to assess the security level offered by off-the-shelf IPE tech-

USENIX Association 33rd USENIX Security Symposium 2155

nology against software adversaries with arbitrary code ex-
ecution on the device. Our findings paint a promising but
currently disappointing picture. The lack of clear documenta-
tion makes it difficult to identify the exact security guarantees
and attacks prevented by IPE. Furthermore, inadequate com-
piler toolchain support considerably increases the burden on
developers and the likelihood of introducing unintentional
interface sanitization vulnerabilities [69].

Most concerningly, we discover several hardware short-
comings that make it impossible to securely isolate appli-
cation code and data with IPE on current devices. First, we
discover controlled call corruption, a novel critical vul-
nerability in IPE’s memory access control logic, allowing
an attacker-controlled call instruction to overwrite arbi-
trary protected memory locations. In our root-cause analysis,
we attribute this behavior to the pipelined CPU architecture
and show that at least two related open-source TEE imple-
mentations [41, 42] took measures to avoid similar flaws in
their access control logic. Second, we show how the lack
of enforcing a single entry point into the encapsulated IPE
area, standard in comparable single-address-space TEE de-
signs [13, 18, 32, 41, 42], opens the door to code-reuse at-
tacks [35, 49]. Third, we demonstrate that IPE’s lack of en-
forcing atomic execution [18,41,42] or protecting the register
state [13, 15, 30, 32, 71] upon interrupts allows to leak or
modify CPU registers at arbitrary points during execution.
In practical proof-of-concept demonstrations, we show how
these attack primitives – individually and in potent combi-
nations – allow us to bypass the IPE security objectives, i.e.,
confidentiality and integrity of encapsulated code and data.

Finally, we challenge assumptions [8, 16, 75] that deter-
ministic MSP430 platforms would be less vulnerable to mi-
croarchitectural side-channel attacks. Specifically, inspired
by attack research on popular high-end TEEs, including In-
tel SGX and AMD SEV, we experimentally show how IPE
software adversaries can induce measurable cache timing dif-
ferences [39] by manipulating CPU clock speed, reconstruct
instruction timings via interrupt latency [71], and mount novel
controlled-channel attacks [25, 77] through the MPU.

Building on our comprehensive attack analysis, we propose
both hardware and software countermeasures. First, inspired
by research prototypes [15, 18, 41, 42] on the open-source
openMSP430 [20] processor, we formulate concrete refine-
ments for IPE’s hardware-level memory access control logic.
Next, we contribute a software framework, inspired by es-
tablished TEE software development kits [28, 41, 69], to im-
prove on TI’s rudimentary toolchain [61] by using a source-to-
source translator and hardened entry and exit assembly stubs
to automatically transform a developer-annotated C program
and transparently safeguard IPE software transitions. More-
over, we extend this framework to secure currently vulnerable
devices against our attacks by repurposing the onboard MPU
to overlay an additional layer of fine-grained, execution-aware
protection over the IPE memory area, reinstating the security

guarantees of IPE against software adversaries (without JTAG
access) with minimal performance and code size impact.

Contributions. In summary, our main contributions are:

• Analyzing the security guarantees offered by IPE tech-
nology in off-the-shelf TI MSP430 microcontrollers, un-
covering important vulnerabilities in current hardware,
including the novel controlled call corruption attack.

• Showing that side channels from prior research can be
adapted to leak information from vulnerable IPE code.

• Building practical, software-exploitable attack primitives
and end-to-end attack demonstrations that completely
bypass IPE confidentiality and integrity guarantees.

• Contributing hardware and software mitigations to im-
prove security, including a software framework that trans-
parently sanitizes IPE programs and mitigates our attacks
on current hardware by utilizing the MPU.

Responsible disclosure. We disclosed our findings, includ-
ing proof-of-concept exploits, to TI on April 20, 2023. After
thorough analysis and successful reproduction of our attacks,
TI issued a security advisory [65] for the controlled call
corruption with a CVSS score of 7.1 (high). TI also fed back
our findings to their internal design teams to ensure improved
security practices for future devices and included our MPU
approach as a suggested mitigation for current devices. TI
currently considers the other issues out of scope, defining
the goal of IPE as blocking the direct readout of encapsu-
lated memory via the CPU or JTAG and not as preventing
an attacker from indirectly inferring code or secrets. In this
paper, we clearly show, however, that such indirect exposure
is practical using our attack primitives.

Availability. To facilitate future research on IPE, our
source code, including our attacks, the software framework,
and the evaluation, is available at https://github.com/
martonbognar/ipe-exposure/.

2 Background and problem statement

2.1 MSP430 microcontrollers
The widely used [19] line of MSP430 microcontrollers, devel-
oped by Texas Instruments, is targeted at low-cost, ultra-low-
power applications, such as vehicle ECUs and key fobs [56].
These microcontrollers feature a single address space with-
out virtual memory or processor privilege levels and exhibit
deterministic timing behavior, allowing their use in real-time
systems. Over time, the 16-bit MSP430 instruction set and the
devices received several extensions, such as an address space
extension to 20 bits, direct memory access (DMA) capabili-
ties, and security features such as an AES accelerator and an
elementary MPU. More recently, TI has shipped millions of

2156 33rd USENIX Security Symposium USENIX Association

https://github.com/martonbognar/ipe-exposure/
https://github.com/martonbognar/ipe-exposure/

MSP430 microcontrollers with non-volatile FRAM memory
technology [58, 59], equipped with the IPE security feature
described in the following subsection.

Memory protection unit (MPU). The most rudimentary
mechanism to enforce isolation on the FRAM MSP430 de-
vices is the MPU [55]. It allows partitioning the address space
into three regions at 1 kB boundaries with separate access
control permissions for each region. The MPU configuration
registers are protected by fixed “passwords”, allowing to safe-
guard the memory partitions against accidental read, write, or
execute accesses originating from code, DMA, and JTAG. The
access control of the MPU is not program-counter-dependent,
and while setting a configuration bit makes its configuration
immutable, a device reset deactivates the protection entirely.

Research TEEs on openMSP430. Supported by the sim-
plicity and popularity of the MSP430 instruction set, and
the availability of the near-cycle-accurate openMSP430 [20]
open-source softcore implementation, the MSP430 platform
has been an attractive target for developing academic pro-
totypes, among others TEEs [15, 18, 41, 42]. These systems
employ a lightweight, program-counter-based access control
mechanism [53] to seclude a contiguous memory region from
external software accesses: additional hardware-level circuitry
enforces that only when the program counter is inside the pro-
tected address range, access to protected memory is allowed.

2.2 Intellectual Property Encapsulation (IPE)
The security feature studied in this work is Intellectual Prop-
erty Encapsulation, widely available since 2014 [58] in the
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx fami-
lies of TI microcontrollers. In short, IPE isolates a region of
the address space from all outside accesses. In the following,
we elaborate on IPE’s design and precise security features
based on several technical documents [54, 55] and whitepa-
pers [57, 61, 64] released by TI, anticipating and contextual-
izing some of the attack primitives explored in depth in Sec-
tion 3. Given the striking resemblance of IPE to (embedded)
TEE designs, we structure the discussion based on require-
ments explicitly identified to realize enclave isolation [53].

Memory isolation. The most fundamental building block
for trusted execution is that untrusted code should not be able
to read or modify the data of the protected module. To this end,
IPE includes hardware-level access control logic, schematized
in Figure 1, that is strikingly similar to the program-counter-
based access control mechanism [53] used in many embedded
TEEs [18, 32, 41, 42]. The device user’s guide [55] explains
unambiguously that “only program code executed from the
IPE-segment can access data stored in this segment” and
multiple TI documents [57, 60, 61] explicitly recommend us-
ing IPE to protect secret keys and configuration data. One

IBH

IBL

PC

Memory
address

<

<

>=

>=

No CPU
access

No JTAG or
DMA access

Figure 1: IPE access control logic [55]. IBH and IBL refer to
the high and low boundaries of the IPE region.

important difference to many other TEEs is that, as hinted
by the name, Intellectual Property Encapsulation, this tech-
nology is meant to protect code in addition to data. Hence,
IPE protects a unified contiguous address range for both code
and data, whereas research prototypes commonly separate
executable code and (non-executable) data. Finally, IPE is
limited to isolating a single “enclave”, similar to simpler de-
signs [11, 15, 18, 42], whereas more advanced TEEs [32, 41]
provide support for multiple, mutually distrusting enclaves.

Two explicitly documented [55] exceptions for the protec-
tion are that IPE cannot protect the fixed memory locations for
the interrupt vector table (IVT) and that the first 8 bytes of IPE
memory are reserved for a configuration data structure, called
ipe_init_struct, and, hence, code executed from here can-
not access the rest of the IPE region. This structure stores the
boundaries of the IPE region along with other settings and a
checksum, and is used by the boot process, explained next.

Minimal trusted computing base (TCB). The compelling
feature of TEEs is that their security guarantees only rely on
the correct functioning of the enclave code itself, the hardware,
and possibly part of the boot process, not on the operating
system or any other privileged software on the platform.

In line with this definition, IPE only requires trusting the
hardware and a minimal part of the boot process. On startup,
an immutable piece of trusted TI firmware (“bootcode”) ini-
tializes the IPE region boundary registers by reading the
ipe_init_struct. This process allows IPE software to dy-
namically reconfigure its boundaries across resets. However,
ipe_init_struct also includes an odd-bit-interleaved par-
ity checksum, such that the bootcode can detect any accidental
corruptions and erase all memory to avoid unintentional ex-
posure of IPE secrets. Crucially, once the trusted bootcode
finishes, the IPE boundary hardware registers are locked, and
the processor’s program-counter-based access control logic
protects the IPE region from any later direct accesses, in-
cluding from the privileged MSP430 bootstrap loader (BSL),
which was previously leveraged to extract firmware [21, 22].

USENIX Association 33rd USENIX Security Symposium 2157

While IPE does not explicitly support software attestation,
commonly found in TEEs, the trusted bootcode can be con-
sidered an effective root of trust. That is, after IPE is first
initialized in a secure environment, e.g., in the factory or be-
fore deploying the microcontroller to end users, stakeholders
can assume that across system reboots the IPE code and data
will remain persistent (via the non-volatile FRAM technol-
ogy) and protected (via IPE).

Controlled entry points. If the protected module can be in-
voked at any location, its behavior will become unpredictable,
posing a risk of inadvertent secret leakage through code-reuse
attacks [49]. To avoid this issue, invocation should only hap-
pen at defined entry functions, as implemented in embed-
ded [15, 18, 32, 41, 42] and high-end TEEs [13].

We found that TI’s documentation is unclear about re-
stricting execution to defined entry points. The device user’s
guide [55] writes: “to execute code from the IPE-segment,
branch into that segment or call functions stored in that seg-
ment”. At least one document [54] describes IPE as protecting
against “any read, write, or execute access”, implying that
execute access can be disabled for part of the IPE region. Of
course, completely disabling execute permissions would make
the IPE section useless, as no code in the module could be
invoked, which also means that the protected data could never
be accessed. Another TI white paper [64] used to hint more
explicitly towards defined entry points: “execution of this por-
tion of memory can be limited to specific callback functions
that are defined at the time the IPE module is enabled”.1 How-
ever, we experimentally demonstrate in Section 3.2 that the
current IPE hardware access control logic does not enforce
entry points, giving rise to capable code-reuse attacks.

Interrupts and real-time guarantees. To prevent the cor-
ruption or leakage of CPU register values, some embed-
ded TEE designs disable interrupts during enclaved execu-
tion [18, 41, 42, 53]. However, it is important to note that
embedded devices are often used for real-time, safety-critical
applications where timely handling of interrupts is crucial, and
allowing enclaves to arbitrarily hold on to the CPU may be
unacceptable. Thus, more advanced TEEs like Intel SGX and
many embedded research prototypes [2,11,15,32,68] support
interruptible enclaves via a hardware-level secure interrupt
mechanism that transparently saves and restores enclave reg-
ister contents when transitioning to and from the untrusted
interrupt service routine (ISR). Interestingly, early versions
of AMD SEV, before the introduction of SEV-ES [30], did
not feature such a mechanism and were vulnerable as a re-
sult [73]. As we will demonstrate in Section 3.3, IPE also
does not include a secure interrupt mechanism, nor forcibly
disables interrupts in hardware.

1Following our disclosure process, TI updated this document to reflect
the offered security features better.

Table 1: Results of our IPE security analysis, listing software-
driven architectural and side-channel attack primitives from
prior TEE research or contributed by us (new). Symbols in-
dicate whether the attack primitive can break IPE confiden-
tiality (C ✗) and integrity (I ✗) guarantees directly () or
indirectly (G#). Positive results are highlighted.

Attack primitive C ✗ I ✗ Section

A
rc

hi
te

ct
ur

al Controlled call corruption (new) G# §3.1
Code gadget reuse [35] G# G# §3.2
Interrupt register state [73] §3.3
Interface sanitization [69] G# G# §6.1

Si
de

ch
an

ne
ls Cache timing side channel [23, 39] G# # §3.4.1

Interrupt latency side channel [71] G# # §3.4.2
Controlled channel [25, 77] G# # §3.4.3
Voltage fault injection [31, 40] # # §A.1
DMA contention side channel [7, 8] # # §A.2

Attacker model and scope. The device user’s guide [55]
describes IPE as a feature protecting an address range from
accesses originating from any code outside this region. In ad-
dition to protection against software adversaries with arbitrary
code execution, IPE also blocks DMA requests by peripher-
als and JTAG accesses by the debugger [55]. The FRAM
technology used for IPE also has physical features specifi-
cally aimed at thwarting physical attackers with microscopy,
voltage manipulation, and radiation capabilities [57].

To scope our work, we consider only software-exploitable
attacks in our analysis. Specifically, in line with the standard
threat model assumed by academic TEEs for embedded de-
vices [9, 15, 18, 32, 41, 42], we consider a capable software
adversary with arbitrary code execution on the device, but
place physical attacks out of scope. Studying physical attacks
against IPE and validating the relevant security measures is
orthogonal to our analysis and left as future work.

3 Attack primitives

This section presents the attack primitives we discovered and
reproduced, most of which build on existing TEE attack liter-
ature. Table 1 summarizes our results, where we distinguish
between attack primitives that directly break confidentiality
or integrity of IPE memory or register contents, and primi-
tives that indirectly impact these properties through confused-
deputy code gadgets or side channels. The table also includes
two relevant negative results that we describe in Appendix A.

All attacks in this section have been implemented on
proof-of-concept code based on TI’s official example IPE
project [62] and experimentally validated on the following ac-
tively manufactured TI boards: MSP-EXP430FR5994, MSP-
EXP430FR5969, EVM430-FR6047, MSP-EXP430FR6989.

2158 33rd USENIX Security Symposium USENIX Association

4E2C: mov #secret, SP
4E2E: call #ipe_function
4E32: nop

Untrusted code

secret:
 .word 0x1234 0x4E30

ipe_function:
 mov &secret, r4
 ...

IPE region

1

3

2

Figure 2: Principle of the controlled call corruption exploit.

3.1 Controlled call corruption

The processor’s access-control logic must protect IPE memory
against both explicit and implicit accesses. One example of
the latter is the processor’s interrupt logic, which pushes the
interrupted instruction’s address and the value of the status
register on the stack. In this scenario, we found that even if the
attacker manipulates the stack pointer to point to IPE memory,
the access rights are correctly enforced, and the interrupt logic
will not write to the IPE region. Another example is the call
instruction, which pushes the called function’s return address
on the stack. Crucially, we found that the access control rules
are not always correctly enforced for this instruction.

Figure 2 explains how to exploit this vulnerability. The
attacker, executing from an untrusted region, first 1 points
the stack pointer inside the IPE region. Next, when executing
a simple call instruction, 2 the processor writes the return
address of the function call (i.e., the address of the instruction
below call) to the stack. As the stack pointer currently points
inside IPE, data or code inside the protected region could be
overwritten by the (known) return address if the access rules
are not correctly enforced. Indeed, in our experiments, we
found that this write access is incorrectly allowed in a specific
scenario; 3 when the target of the call (i.e., the function
being called) lies inside the IPE region.

This vulnerability gives the attacker a very strong primitive:
arbitrary locations inside the IPE region, chosen by setting
the stack pointer value, can be overwritten by a known value,
i.e., the address of the instruction following the call.

Choosing corruption values. Attackers using the con-
trolled call corruption primitive can overwrite code and
data locations inside IPE. The exact written value is the re-
turn address of the call and, thus, depends on the location of
the attacker code. For certain attacks, e.g., when overwriting
secret keys, inserting a known arbitrary value is sufficient.

In other cases, however, the attacker may want to insert
concrete values, such as the machine code of an assembly
instruction. If the attacker had control over the entire address
space, they could place the call instruction anywhere, in-
serting arbitrary values. In reality, however, the attacker is
limited in the available locations. Table 2 lists the different
memory segments, and Table 3 lists a subset of the instruction
encodings on MSP430 (we refer to the user’s guide [55] for

Table 2: Address space of our target devices. Segments
marked with a ✓ are writable and executable by the attacker
unless protected by the MPU or IPE.

Segment Address range RWX

FRAM 0x4400 - 0x13FFF ✓
RAM 0x1C00 - 0x23FF ✓

Information memory 0x1800 - 0x1AFF ✗
Bootloader 0x1000 - 0x17FF ✗
Peripherals 0x0000 - 0x0FFF ✗

Table 3: A subset of instruction encodings on MSP430, falling
in the RAM (italic) or FRAM ranges (cf. Table 2).

Encoding Inst Encoding Inst

0xFxxx and 0x8xxx sub
0xExxx xor 0x7xxx subc
0xDxxx bis 0x6xxx addc
0xCxxx bic 0x5xxx add
0xBxxx bit 0x4xxx mov
0xAxxx dadd 0x3xxx jmp, jl, jge, jn

0x9xxx cmp 0x2xxx jc, jnc, jz, jnz

the complete list). The attacker can execute code from the
entirety of the RAM and FRAM sections, except for regions
protected by the MPU or IPE. Depending on the size and
location of these restricted regions, the attacker can encode
different binary instructions in the written value, as seen by
comparing the two tables. A possible complication is that
some instructions in MSP430 consist of multiple words, e.g.,
representing integer literals or memory addresses.

Many of these challenges can be overcome depending on
the goal of the attacker: alternative instructions may be in-
serted as gadgets to leak information (e.g., add instead of mov),
instructions with indirect addressing modes (using addresses
stored in registers) can be used to avoid having to insert ad-
ditional literal values. Additionally, the 20-bit MSP430X in-
struction set used by our target microcontroller features a
calla instruction that jumps to 20-bit target addresses and
writes the 20-bit return address to the stack as a zero-extended
32-bit value, covering two 16-bit words. This way, values can
be inserted as either the lower 16 bits of a 20-bit address or
the zero-extended upper 4 bits, making it possible to insert
a broader range of values. We, therefore, want to stress that
merely overlapping the IPE region over a specific part of
the address space (e.g., covering all the mov instructions) is
decidedly not a sufficient defense against this attack.

Vulnerability root-cause hypothesis. Given that this ex-
ploit only works when the call target lies inside the IPE
region, we suspect the vulnerability is caused by incorrectly
performing the access control check on the updated program

USENIX Association 33rd USENIX Security Symposium 2159

1 2 3 4 5

CLK

DMEM

PC 4E2E 4E30 F16C

BUFF_PC 4E2E

INST call #0xF16C

Figure 3: Changes to the program counter (PC) during a call
on openMSP430. During the instruction’s execution, the pro-
gram counter changes twice, in the 2nd and 5th clock cycles.
Sancus [41] and VRASED [42] buffer the PC (BUFF_PC) for
accurate program-counter-based access control.

counter. During the execution of the call instruction, the
program counter changes to the target address, and the return
address is written to the stack. This write will be subject to
the access control of IPE. If, however, the program counter
is updated before the access control check, this check will
succeed when the target of the call is inside the IPE region.

This hypothesis is supported by an additional finding: as
explained in Section 2.2, the first 4 words of the IPE region,
storing ipe_init_struct, should not have access to the rest
of the protected region. We experimentally confirmed that
an instruction executing from the last word of the struct can
access the IPE region. This incorrect behavior could again be
explained by the program counter being updated too early, this
time simply moving to the next instruction before the check.
In the pipelined MSP430 design, the processor fetches the
next instruction while executing the current one, explaining
why the value of the program counter would change early.

The openMSP430 [20] two-stage pipeline behaves very
similarly, and this open-source processor allows the inspec-
tion of its internal signals. Figure 3 shows the evolution of
the program counter during the execution of a call instruc-
tion. The program counter updates multiple times during the
instruction’s execution, first to fetch an additional word from
memory (the target address of the call), then to change to
the jump target while the instruction is still executing. The
DMEM signal shows that the memory bus is active in the last
cycle, where the return address is written to the stack, making
it logical that the flawed access control check happens then.

Attack on modified Sancus. Building on the previous find-
ing on openMSP430, we illustrate that the identified access-
control flaw is not just a one-off bug in TI’s proprietary IPE
implementation, but represents a more fundamental consider-
ation for program-counter-based access control in pipelined
CPU designs. To this end, we examined two mature and popu-
lar open-source TEE designs, Sancus [41] and VRASED [42],
which feature similar program-counter-based access control
logic and are built on openMSP430. We found that both San-

cus and VRASED include explicit patches2 to avoid this issue
in their hardware-level access control logic. Figure 3 shows
how a new stable BUFF_PC signal is introduced that buffers the
program counter of the currently executing instruction until
its last cycle, such that access control is performed accurately
for the full duration of the instruction. We theorize that these
patches were introduced to prevent instructions on protection
boundaries from being prematurely granted access to pro-
tected data, similar to the experiment with ipe_init_struct.
To show the applicability of the controlled call corruption,
we manually removed the buffered program counter from
Sancus, effectively reverting the protection to that before the
patch. With this modification, we experimentally validated
in simulation that attackers from outside a Sancus enclave
could indeed use the controlled call corruption primitive to
corrupt data inside the enclave in the same way as on IPE.

3.2 Arbitrary jumps to IPE code
As explained in Section 2.2, arbitrary jumps to code in the
protected region lead to a known class of code-reuse attacks.
We experimentally validated that – in contrast to other TEEs,
such as Intel SGX [13], Sancus [41], or VRASED [42] – IPE
indeed does not enforce an entry point to its code, allowing
untrusted code to jump to arbitrary locations in IPE. Interest-
ingly, TI’s ARM-based MSP432 microcontrollers did enforce
a mechanism similar to entry points in their IP protection [63]
but have been discontinued [66], leaving the MSP430 line
as the only active one supporting IPE. However, compared
to traditional return-oriented programming (ROP) [49], the
attacker on IPE is thwarted, as the code of the IPE region
is also confidential. This makes finding useful gadgets more
difficult, similar to blind ROP attacks on TEEs [35].

1 mov #source, r13
2 mov #dest, r14
3 mov 0(r13), 0(r14)

Listing 1: IPE code gadget copying secure data.

We first demonstrate an elementary proof-of-concept with
this attack primitive assuming knowledge of the protected
code but discuss the possibility of leaking IPE memory with-
out this assumption in the following subsection. Consider the
code in Listing 1, copying a word of data from one protected
location to another with the mov 0(r13), 0(r14) instruc-
tion. This instruction takes the value from memory at the
address contained in the r13 register and stores it to the ad-
dress taken from r14. While under normal operation these
registers are set up with the correct, secure addresses, this
instruction can be attacked with our primitive and used as a
universal read or write gadget. By setting the registers r13
and r14 in untrusted code to point to a location inside and out-
side IPE respectively, then jumping directly to this instruction

2For Sancus, we could pinpoint the fix to a commit bcc746a dated Oct 23,
2012. For VRASED, this fix is similarly included in the initial release commit
d2d316c dated May 15, 2019.

2160 33rd USENIX Security Symposium USENIX Association

https://github.com/sancus-tee/sancus-core/commit/bcc746aeea20235d6ced2aff0215583bd8b1ae72#diff-5621764050ebae03ae0dfeccfa60d9af13adc4b1266b83b02d8de3fd2d4e92a7
https://github.com/sprout-uci/vrased/commit/d2d316c33a68e631a38e529ffae55cf81f06ef8f#diff-a4d3a26da197670eee8a1a7cae87c9e2975f8649f6eac2dfab741c7a9d31906a

(line 3), it will unknowingly copy data or code from inside
IPE to an unprotected outside location.

3.3 Arbitrary interrupts in IPE code

Section 2.2 explained that interrupting protected code without
protections can lead to leaking or modifying the values of
CPU registers. We experimentally validated that IPE does not
offer such protection, and this class of attacks can be carried
out by implementing a malicious ISR and overwriting an IVT
entry (which remains writeable even if placed within IPE
boundaries [55]). Our attack was again conducted on the code
of Listing 1, this time interrupting the execution before the
instruction on line 3 after the intended addresses are written
to r13 and r14. We overwrite the addresses in r13 and r14
inside the ISR, then resume execution to IPE, which will again
unintentionally leak the secret values to unprotected memory.

TI discusses interrupt handling in multiple documents, none
of which offer a fix for these attacks. While TI’s example
code [62] does not disable interrupts, it clears the register
state at the end of its execution. This is insufficient, as an at-
tacker can interrupt the code before the register state is cleared
and read out the registers. A different TI document [61] men-
tions interrupts as an attack vector and recommends disabling
interrupts during IPE execution. There are different issues
with this recommendation. First, it is not explained how to dis-
able interrupts, and the dint (disable interrupts) instruction
leaves non-maskable interrupts enabled, which could also be
used for this attack. Second, using the previous arbitrary jump
primitive, attackers could simply jump over the instructions
disabling interrupts at the start of IPE code.

Blind attacks. The proofs-of-concept for the interrupt and
the arbitrary jump primitive relied on the attacker knowing the
location of a universal read gadget in the victim code. There
are many such instructions, such as the pop rx instruction,
which pops the last word from the stack into a register. This
instruction is commonly emitted by compilers in function
prologues and epilogues and is always present in code using
stack operations, e.g., function arguments or local variables.

More generally, even if the code is protected, instructions
may be reconstructed by observing the state changes they
cause. In prior work, Schink and Obermaier [47] reconstructed
code on MSP432 devices with IP protection enabled by in-
terrupting individual instructions and observing their state
changes. We, hence, anticipate that such an automated dis-
assembler, augmented with the side-channel information de-
scribed in the following section, could also be constructed for
MSP430 IPE. Our attacks currently make such an effort un-
necessary, as they allow the leakage of the entire IPE region.

Table 4: Evaluation of the side channels used in a covert-
channel setting on MSP430FR5969. The extrapolated speeds
are calculated for the maximum frequency of 16 MHz.

Side channel Cycles to leak 16 bits Extrapolated speed

FRAM cache patterns 1473 173 kbps
Instruction latencies 750 341 kbps
MPU access violations 475 538 kbps

3.4 IPE side-channel leakage
In addition to the attack primitives providing architectural
leakage, we investigated the applicability of microarchitec-
tural side-channel primitives from the TEE attack literature.
We experimentally validated the presence of three different
sources of side-channel leakage from IPE code, showing the
relevance of these attacks on MSP430. For each side chan-
nel, we built and evaluated a proof-of-concept covert channel
on the MSP430FR5969 to demonstrate how secrets can leak
from the IPE region to untrusted code without shared memory,
summarized in Table 4. While the control-channel setups rely
on a cooperating victim, our examples show how determin-
istic and straightforward the channels are, making them also
relevant in a classical attack scenario. In the following sub-
sections, we describe these side channels in more detail and
give some countermeasures that can limit the leakage from
IPE. Importantly, the established defense against these types
of side channels is writing data-oblivious (constant-time [3]
or balanced [8,75] code), avoiding any secret-dependent state
changes in the microarchitecture. We only discuss different,
specific defenses against the given side channels, possibly
involving proposed hardware changes.

3.4.1 FRAM cache access patterns

Side-channel description. Cache attacks are one of the
most well-known microarchitectural attacks in the litera-
ture. They have been extensively demonstrated on Intel
SGX [23, 39], but, to the best of our knowledge, MSP430 mi-
crocontrollers were not considered vulnerable to fine-grained,
cache-based access pattern leakage [8, 16, 75]. However, the
FRAM MSP430 microcontrollers with IPE feature a small
cache (2-way set-associative with two sets and 64-bit lines)
to speed up accesses to FRAM [55]. This cache improves per-
formance when the processor operates at frequencies above
8 MHz, in which case the CPU needs to insert wait cycles for
FRAM reads unless they are served from the cache.

These differences in the timing of FRAM accesses can be
observed accurately and deterministically on MSP430 thanks
to the following properties. First, the attacker can config-
ure the operating frequency of the core from untrusted soft-
ware [55], forcing the insertion of wait cycles for cache misses.
The attacker can also interrupt the execution of IPE after each
instruction, similar to CacheZoom [39] or SGX-Step [70],
and measure the cache state using a cycle-accurate timer. Fi-

USENIX Association 33rd USENIX Security Symposium 2161

1 configure_frequency();
2 � prime_cache();
3 if (secret[0] == 1) touch(line1);
4 if (secret[1] == 1) touch(line2);
5 � secret[1:0] = probe_cache();

Listing 2: Pseudocode of the cache covert channel.

nally, the instruction timings are deterministic, and, unlike in
higher-end systems [23], there is no noise in the cache state
due to parallel processes.

Proof-of-concept setup. Listing 2 shows the pseudocode of
our covert channel setup, based on the Prime+Probe [44] tech-
nique. The victim, depending on the value of two secret bits,
accesses two variables that fall into different cache sets, which
we reverse-engineered to be determined by the 4th least signif-
icant bit of the address. The attacker sets up two interrupts (�)
that execute before and after these accesses. The first ISR,
executing from RAM to avoid polluting the FRAM cache,
primes the cache state by filling it with attacker-controlled val-
ues. Afterward, the victim performs the conditional accesses
that can evict two lines from the cache. The attacker’s second
interrupt hits after the conditional accesses, at which point
the cache state can be probed and the two secret bits can be
reconstructed based on which of the attacker’s values were
evicted from the cache. Due to the IPE code executing from
FRAM, its code accesses will also evict lines from the cache,
limiting the number of cache lines that can be used for data
transmission. In our proof-of-concept, we limit the execut-
ing code to two cache lines, leaving the two other lines for
transmitting information. We successfully transmitted a secret
word in a total of 1473 clock cycles (including both attacker
and victim code), translating to an extrapolated bandwidth of
173 kbps at the maximum frequency of 16 MHz.

Mitigations. Hardware defenses include cache partitioning
between trusted and untrusted code [14] or flushing the cache
between context switches. Importantly, merely running the
IPE code at a lower frequency is an insufficient defense, as
we have observed that the cache state was kept updated at low
clock speeds, making it possible to recover the cache state by
increasing the frequency after the IPE’s execution.

3.4.2 Instruction timings through interrupt latency

Side-channel description. Interrupt latency attacks were
first demonstrated on Intel SGX and Sancus platforms [71]
and later extended to VRASED [7] and AMD SEV [74].
These attacks derive the execution time of individual instruc-
tions by measuring the time taken for interrupt handlers to
fire, as the processor first waits for the current instruction to
complete before handling a pending interrupt request.

1 setup_isr();
2 if (secret[1:0] == 0b00) inst1;
3 if (secret[1:0] == 0b01) inst2;
4 if (secret[1:0] == 0b10) inst3;
5 if (secret[1:0] == 0b11) inst4;
6 � secret[1:0] = measure_time();

Listing 3: Pseudocode of the instruction-timing channel.

Our device is very similar to the openMSP430-based [20]
Sancus and VRASED, having deterministic instruction tim-
ings and a cycle-accurate timer. Apart from having an ex-
tended instruction set [55], the most interesting difference on
our device is the presence of the FRAM cache, which also
influences the timing of instructions accessing memory. This
means that interrupt-latency attackers can distinguish IPE
load instructions that hit or miss the cache, similar to prior
attacks on Intel SGX [71].

Proof-of-concept setup. Listing 3 shows our covert chan-
nel setup, similar to the cache setting. In this case, the victim
executes instructions with different execution times depend-
ing on the secret bit values. The attacker times an interrupt (�)
to the start of the secret-dependent instruction’s execution and
derives the leaked secret bits based on the delay before its
ISR starts executing. In our setup, we encode two bits of in-
formation in instructions that take 1-4 cycles to execute. This
setup leaks a secret word in a total of 750 cycles, resulting
in an approximate bandwidth of 341 kpbs at the maximum
frequency of 16 MHz.

Mitigations. If interrupts could be securely disabled during
the execution of IPE code, this attack would be mitigated. The
design of SancusV [11] shows that with hardware support, it is
possible to create provably secure interrupt handling that does
not leak timing information. Alternatively, careful hardware-
software co-design, such as AEX-Notify [12] on recent Intel
SGX platforms, may thwart the attacker’s ability to precisely
interrupt victim enclaves.

3.4.3 MPU-based controlled channel

Side-channel description. One of the first attacks on TEEs
involved abusing the privileged operating system’s control
over untrusted page tables, coining the term controlled-
channel attacks [77]. Particularly, based on the page faults
generated by the application running in the enclave, its mem-
ory access patterns could be reconstructed, which in turn
might allow the reconstruction of its secret data.

While the MSP430 microcontrollers do not feature an ad-
vanced MMU or virtual memory paging, we show that a simi-
lar idea can be applied using the onboard MPU. On MSP430,
the MPU can divide the address space into three regions at
1 kB boundaries with different access rights. The IPE access
rules do not override MPU rules [55], so code within IPE can

2162 33rd USENIX Security Symposium USENIX Association

1 setup_mpu();
2 if (secret[0] == 1) touch(segment1);
3 if (secret[1] == 1) touch(segment2);
4 if (secret[2] == 1) touch(segment3);
5 � secret[2:0] = probe_mpu();

Listing 4: Pseudocode of the MPU-based covert channel.

still be denied from accessing data or executing code if the
target address falls within an MPU segment with restricted
permissions. By partially overlapping MPU segments with the
IPE region and observing when an MPU violation occurs, an
attacker can track when certain parts of the IPE memory are
accessed. Similarly to the original controlled-channel attack,
this can leak information about the location of the executing
code or the data it is operating on.

Proof-of-concept setup. Our covert channel in Listing 4
follows a similar pattern to the previous setups. This time, the
attacker sets up three MPU regions, all without write permis-
sions, before launching the IPE code. The IPE code accesses
the three regions depending on the secret value, encoding
three bits of information. After the victim’s execution, the at-
tacker checks the MPU violation flags, similar to monitoring
page table metadata on Intel SGX [72], to see which of the
three regions has a write violation, reconstructing the secret
bits. Encoding three bits of information in each iteration leaks
a secret word in 475 cycles, translating to a bandwidth of
538 kbps at the maximum frequency of 16 MHz.

Mitigations. The MPU configuration can be made im-
mutable until a reset occurs [55] by setting a lock bit. Code
in the IPE region could either configure the MPU to be in a
known benign state at the start of its execution and lock it or
validate that it is already locked and in a configuration that
will not interfere with the IPE’s execution or leak information.
Alternatively, the hardware could conceivably be changed to
ignore MPU access rights while the IPE code executes.

4 End-to-end attacks

This section demonstrates multiple end-to-end attacks to ex-
tract secret data and code from IPE using our architectural
attack primitives. Our applications are based on TI’s IPE
example project [62], which developers are likely to build
on when writing their code. We successfully reproduced the
attacks on all four analyzed devices.

4.1 Overwriting sensitive data
Our first end-to-end attack scenario overwrites a secret key
stored in IPE to demonstrate how an integrity violation can
lead to loss of confidentiality. The TI example code loads a se-
cret key into the AES accelerator of the device for demonstra-

4E00: mov #AES_key, SP
4E04: call #ipe_function
4E08: add #2, SP
4E0A: cmp #AES_key+16, SP
4E0E: jnz 0x4E04

Untrusted code

AES_key:
 .word 0x1234 0x4E08
 .word 0x5678 0x4E08

ipe_function:
 mov #AES_key, r4
 ...

IPE region

Figure 4: Using a controlled call corruption to overwrite a
secret AES key in IPE memory.

tion purposes. We extended this code to perform encryption
on a secret plaintext string stored in IPE memory, the result
of which is then written to a public variable.

For this attack, we use a controlled call corruption to over-
write the AES key with a known value, gaining the ability to
decrypt the resulting ciphertext. Overwriting the key assumes
knowledge of its location, which, while part of the attacker
model of many other TEEs, is not necessarily a capability on
IPE, as the code is also protected. Nevertheless, the bound-
aries of the IPE region are visible to the attacker, and the
default TI linker script places data at the end of the region,
opening the door to a brute-force attack.

Figure 4 shows the basic idea of the attack. The attacker
code first points the stack pointer to the (assumed) location
of the AES key and calls an IPE function, which, through a
controlled call corruption, will overwrite the first word of
the key with the known return address. This process can be re-
peated for each word of the key (shown by the second dashed
arrow), after which the full key will be overwritten with the
same return value and, as we have shown experimentally, all
output ciphertexts can be trivially decrypted.

4.2 Leaking the entire IPE region
While the previous attack can already pose a threat to real
applications, it relies on two assumptions: the attacker knows
(or can find) the location of some secret information, and
that the corruption of this information leads to violating the
security guarantees of IPE. In the following generic attacks,
we go further; we leak the entire IPE region’s memory without
relying on any assumptions about the code or data.

4.2.1 Variant 1: Inserting a leaky gadget

For the arbitrary jump and interrupt examples in Section 3,
we rely on a known instruction in the IPE region that can
leak data to unprotected memory. With the controlled call
corruption, this requirement is lifted, as the attacker can insert
such an instruction inside the protected region. For example,
to insert the mov 0(r15),r12 instruction with machine code
0x4F2C, we need to place the call instruction at the mem-
ory location preceding 0x4F2C, as the value inserted by the
attack is the return address, the address following the call.

USENIX Association 33rd USENIX Security Symposium 2163

After performing the corruption, we utilize the other attack
primitives to jump directly to the inserted instruction with
r15 pointing to a protected location, then read out the leaked
value from r12 after the inserted instruction executes. The
attack could also be orchestrated without relying on the other
attack primitives, e.g., by encoding absolute addresses in the
inserted instruction.

To mitigate any information loss from overwriting un-
known IPE values, we can choose to insert the instruction at
the end of the IPE region, as the region is aligned to 1 kB
boundaries, leaving some protected memory unused. Over-
writing the ipe_init_struct at the start of the region is an
even better option, as this only contains public values.

4.2.2 Variant 2: Removing IPE protection

The ipe_init_struct data structure enables an even more
interesting attack. The user’s guide mentions the possibility of
reconfiguring the IPE boundaries dynamically [55], a feature
that is not supported on comparable systems such as San-
cus or VRASED. This reconfiguration happens on a reset if
ipe_init_struct is updated with new boundary addresses
and a valid checksum (invalid data leads to a mass erase).

Building on the previous exploit, we perform another
end-to-end attack where we overwrite ipe_init_struct
to move the boundaries of the protection. This is done by
first inserting an arbitrary write gadget inside the IPE re-
gion (we chose 0x4FAE = mov 0(r15), 0(r14)), and then
using this instruction to overwrite ipe_init_struct one
word at a time, taking care to also write a valid checksum
for the modified configuration. Locating the currently active
ipe_init_struct is trivial, as its address is stored at a fixed
location [55]. After overwriting the boundaries to different
values, we reset the device, which will update the IPE config-
uration and completely expose the original protected region,
which can now be read out in full.

5 Hardware mitigations

This section proposes hardware mitigations to our architec-
tural attack primitives inspired by related academic systems.

5.1 Single entry point and secure interrupts
Many TEEs [13,18,32,41,42] enforce a single entry point for
protected regions to prevent code-reuse attacks that could by-
pass isolation. Such a modest change in the hardware would
rule out most code gadget abuse attacks while only requiring
limited extra resources. Specifically, compared to the existing
IPE hardware circuitry in Figure 1, only a new internal hard-
ware register PREV_PC is needed to buffer the previous value
of the program counter (PC), plus additional comparators to
ensure that when the current PC lies inside the protected IPE
range, it is either the single entry point address or PREV_PC

already pointed inside IPE [41, 53]. Furthermore, existing ap-
plications could be transparently recompiled with our frame-
work (cf. Section 6) to securely multiplex several software
entry points through a single hardware-level entry point.

While it is possible to disable interrupts during the exe-
cution of enclaves from hardware as it is done in some em-
bedded TEEs [18, 42], an enforced single entry point also
makes it possible to disable interrupts in a non-bypassable
way from enclave software. Alternatively, if interruptible and
resumable IPE execution is desired, e.g., to ensure real-time
guarantees, the hardware can be extended with support to
securely save and clear registers upon interrupts, safeguard-
ing the confidentiality and integrity of the register state from
the untrusted ISR. In SancusV [11], the hardware cost of this
mechanism when synthesized to an FPGA was 260 slice reg-
isters (+21%) and 142 slice LUTs (+5%), where most of the
overhead comes from a shadow register file in the processor.
This could be further reduced by storing the values securely
in memory [2,13,15,32,68] (e.g., on the protected IPE stack).

5.2 Controlled call corruption mitigation
As discussed in Section 3.1, the likely cause of the controlled
call corruption is performing the access control check on an
updated program counter value, which we have shown may
also affect the openMSP430 core [20]. While we do not have
access to the design of the proprietary TI microcontrollers,
we suspect that a defense that properly buffers the program
counter register, similar to Sancus and VRASED, could be
straightforwardly applied to mitigate our attacks.

To estimate the cost of this mitigation, we compare two
versions of Sancus: the current upstream version (commit
d83a5207) and the modified version on which we demon-
strated our attack in Section 3.1 by reversing the buffered
program counter defense. We synthesized both versions for
the Xilinx XC6SLX25-2FTG256 FPGA at 20 MHz using the
Xilinx ISE 14.7 tool. Based on this analysis, applying the
mitigation incurs an overhead of 20 slice registers, from 3078
to 3098 (less than 1% increase), while slightly decreasing the
number of necessary slice LUTs from 5628 to 5613.

6 Software mitigations

This section presents our software framework, which helps se-
cure IPE applications on both future devices with mitigations
for our attacks and currently deployed hardware. While TEEs
like Sancus [41] and Intel SGX [28] provide mature toolchains
to help enforce software requirements to achieve the security
guarantees of the system, TI only offers an automated setup of
the IPE boundaries based on developer annotations via their
CCS IDE [61] and an example IPE project [62] demonstrating
best practices. This lack of support motivated our framework,
which, in addition to using the MPU to reinstate most se-
curity guarantees of IPE on current devices with vulnerable

2164 33rd USENIX Security Symposium USENIX Association

https://github.com/sancus-tee/sancus-core/commit/d83a5207

hardware, offers compiler toolchain support to automatically
prevent information leakage from sensitive programs, also
providing utility on future devices with hardware fixes for
our attack primitives. Our mitigation design, like IPE itself,
focuses only on preserving the confidentiality and integrity
of IPE memory and register contents, placing availability and
real-time guarantees out of scope.

Our framework consists of a collection of assembly and
C code files and a source-to-source translation script. The
developer is responsible for adding intuitive IPE_ENTRY,
IPE_FUNC, and IPE_DATA C preprocessor annotations in the
source code to define the (entry) functions and data objects
that are to be protected. This source file can then be applied to
our translator script, which will generate additional assembly
stubs and a slightly modified C source code, all of which com-
piled together will produce a protected binary. As the source
files and the changes generated by the translator script are
minimal, they can be subjected to manual security analysis or
symbolic validation efforts [1] in future work.

6.1 Secure entry and exit stubs
Similar to the Sancus toolchain [41] and the Intel SGX
SDK [28], we support a (non-nested) secure function call
abstraction, where ecalls represent context switches from un-
trusted code to IPE and ocalls refer to calls from secure IPE
code to untrusted code. Our framework automatically inserts
dedicated assembly stubs whenever the control flow enters or
leaves the protected code to sanitize low-level CPU registers
and switch between call stacks, known sources of uninten-
tional information leakage [7, 69]. These stubs, shown in
orange in the first section of Table 5, are protected by IPE.

In addition to low-level assembly stubs, our framework
includes a small C library with support functions for securely
validating that a given pointer lies outside the IPE region
and for constant-time comparison. These functions can help
prevent known issues demonstrated earlier on MSP430 mi-
crocontrollers, such as inadvertently leaking secrets through
unchecked pointers [69] or timing side channels [7, 21].

IPE ecalls. For each IPE_ENTRY function, the translator as-
signs a logical eID and generates an ecall_stub placed in
untrusted memory with the name of the original function (to
preserve compatibility with other code). This untrusted stub
transparently invokes the single protected ipe_entry entry
point, passing the logical eID in a defined register, ensuring
that third-party code calling the entry functions will be vec-
tored correctly through the single entry point. The translator,
furthermore, automatically generates an ecall_table in IPE
memory. This table, indexed by the eID, stores the addresses
of the ecall functions and a bitmap indicating which registers
hold return values and should thus not be cleared on exit.

The single entry point ipe_entry performs multiple
security-critical tasks. First, it disables all (maskable and non-

Table 5: Assembly stubs provided or generated by our frame-
work. Orange entries in the first section are protected by IPE
(and also by the MPU when untrusted code is executing). Blue
entries in the second section are only protected by the MPU.
Black entries in the last section are not protected.

Stub # instances Size Cycles

IP
E

+
M

PU

ipe_entry global 76 B 63
ipe_ocall global 60 B 51
ocall_stub per ocall fn 20 B 25
ecall_table entry per ecall fn 6 B -

M
PU

on
ly

_system_pre_init global 72 B 28/42
_system_post_cinit global 36 B 28
reset_into_ipe global 66 B 49
ipe_ocall_cont global 72 B 54
ecall_ret global 68 B 51
new_reset_isr global 120 B 45/62
Interrupt vector table (IVT) global - -

Untrusted ecall_stub per ecall fn 12 B 16

maskable) interrupts and switches to a known secure stack in
IPE memory. The assembly logic then decides if the IPE code
previously performed an ocall, in which case it restores the
saved register state and resumes IPE execution. Otherwise,
the stub vectors to the ecall function address retrieved from
ecall_table[eID]. Upon return from the protected func-
tion, the remainder of the assembly code clears all registers
except those containing a return value, switches back to the
untrusted stack, and returns to untrusted code.

IPE ocalls. For each untrusted function called from IPE
code, the translator generates an ocall_stub in IPE memory
and redirects the call site there. This stub vectors to a single
ipe_ocall exit point, passing the address of the untrusted
function to be called and a bitmap indicating argument register
usage. The ipe_ocall stub will securely exit IPE by clearing
unused registers and switching to the untrusted stack before
vectoring to the called function.

TI example code and toolchain limitations. As a compari-
son, the TI example project [62] only includes inline assembly
to demonstrate register clearing before returning from an ecall
but does not provide any guidance for ocalls. Furthermore, we
found that the inline assembly code does not clear the value
of the MSP430 status register, which contains sensitive infor-
mation on whether the previous branch was taken, potentially
leaking secret information for non-constant-time programs.
More worrisomely, the TI example code offers no guidance
on sanitizing the stack pointer, which could lead to severe
confused-deputy memory corruption or leakage [7, 69].

Finally, we found that the compiler – both GCC and TI’s
proprietary MSP430 compiler – may silently include calls to
built-in runtime helper functions, such as memset or software-
emulated numerical operations. By default, these functions re-

USENIX Association 33rd USENIX Security Symposium 2165

Table 6: Timeline (top to bottom) of MPU-based protection
showing the initialization of the device and a subsequent
execution consisting of an ecall followed by an ocall. Device
resets disabling the MPU are highlighted.

Executing function MPU

✷ Untrusted initial startup code ✗
_system_pre_init ✗
_system_post_cinit ✓
Untrusted main→ ecall_stub(eID) ✓
reset_into_ipe ✓

✱ Software brownout reset ✗
new_reset_isr ✗
ipe_entry(eID) → ecall_table[eID](args) ✗

ocall_stub → ipe_ocall ✗
ipe_ocall_cont ✓

Untrusted ocall function ✓
reset_into_ipe ✓

✱ Software brownout reset ✗
new_reset_isr ✗
ipe_entry → resume ecall function ✗
ecall_ret ✓

Resume untrusted main ✓

side in untrusted memory, even when called from IPE. Hence,
any such compiler-generated calls would inadvertently trans-
fer control to the attacker and allow to expose arguments and
inject arbitrary return values through CPU registers. It is well-
known that compilers that are not aware of security objectives
of code can introduce serious vulnerabilities [50], and this is a
particularly dangerous illustration of that problem. Therefore,
we developed a script in our framework that runs before the
linker and intercepts any relocations to such compiler-inserted
functions, transparently redirecting them to trusted, intra-IPE
counterparts offering the required functionality.

6.2 MPU-based isolation

To protect currently deployed devices with no mitigations
against our architectural attack primitives, we leverage the
MPU in our framework. This allows reinstating the security
guarantees of IPE at the cost of increasing the TCB with the
hardware MPU and security-sensitive code protected by the
MPU: a few stubs and the IVT (cf. blue entries in Table 5).

Preventing controlled call corruption. Our framework
dynamically disables write access in the MPU over the IPE
region when untrusted code is executing, preventing the cor-
ruption of protected values by untrusted call instructions.

Table 6 shows the evolution of the MPU protection for an
execution consisting of an ecall with a single ocall. During the
first boot after flashing, _system_pre_init sets up our reset
vector handler new_reset_isr in the IVT. Following the
initialization of global variables, this one-time setup finishes
with _system_post_cinit enabling and locking the MPU

configuration, then calling the untrusted main function.
When untrusted code calls (via ecall_stub) or returns

to (via ipe_ocall_cont) the IPE region, the protected
reset_into_ipe stub is called, which saves all register val-
ues and triggers a software brown-out reset. Upon such a reset,
the MPU is disabled, and the CPU executes the reset vec-
tor, new_reset_isr. This reset vector re-enables the secure
MPU configuration unless a persistent flag is set, indicating
that the untrusted code requested an ecall. In this case, the
MPU is not enabled and ipe_entry is directly invoked from
the reset vector after restoring the previously saved register
values to support passing arguments or return values from
untrusted code to IPE ecall functions. Two additional stubs,
ipe_ocall_cont and ecall_ret, enable and lock the MPU
configuration before calling or returning to untrusted code.

Single entry point and interrupts. In addition to restrict-
ing reads and writes to the sensitive MPU region, we also
remove execute privileges from this region. By restricting
the execute permissions, we prevent attackers from being
able to jump to arbitrary points inside the protected region.
To launch the protected code, untrusted code needs to call
reset_into_ipe as explained before, which our framework
automatically handles in the generated entry stubs.

Once the previous fixes are in place, and code injection or
reuse attacks are not possible, interrupts can be disabled from
software in ipe_entry before the protected code executes.
Even if not all non-maskable interrupt sources can be disabled,
the MPU-protected IVT entries can be set to trusted interrupt
handlers that prevent register values from being exposed.

6.3 Limitations
Our framework has a few prototype limitations that we believe
could be addressed with further engineering effort in future
work. For instance, we currently only support automatically
generating stubs for functions that only pass basic primitive
data types as arguments and return values in registers.

A more fundamental limitation of using the MPU is that
we inherit a weaker attacker model than IPE. That is, while
JTAG can be, and often is deactivated on devices sold to end
users [22], if it is enabled, JTAG can easily bypass our de-
fense if execution is halted during new_reset_isr before the
MPU protection is enabled and locked, which disables JTAG
accesses. This is in contrast to IPE, which is enabled earlier in
the boot process before the debugger can attach. Furthermore,
our design requires using two of the three MPU regions to
protect the original IPE code and our stubs. Due to the IVT
residing in the middle of the address space (near 0xFFFF),
the MPU protection also reduces the available storage for
untrusted code and data, as only one MPU region can have
no protection, and this region cannot contain the IVT.

We use software-induced brown-out resets to remove the
MPU protection, which also comes with limitations. These

2166 33rd USENIX Security Symposium USENIX Association

resets may add non-deterministic delays, making them inap-
propriate in certain hard real-time settings. They also clear
peripherals and configuration settings (e.g., the processor fre-
quency), making it necessary to manually move the required
setup code to a section (e.g., ipe_entry) that executes before
the protected code on each reset. However, both the FRAM
and the RAM contents are preserved on resets, and our frame-
work handles the saving of register contents.

Disabling interrupts for the duration of IPE execution and
handling them afterward, as is done currently in our frame-
work, might also be unacceptable in real-time settings. If
real-time handling of interrupts is desired, our design could
conceivably be extended to handle interrupts securely instead
of disabling them. This would require adding a trusted inter-
rupt handler to all IVT entries, which first enables the MPU
protection and cleans the execution state, then invokes the
untrusted ISR. The downside of this approach is that after the
untrusted ISR’s execution, IPE needs to be resumed through
reset_into_ipe, causing a reset.

6.4 Evaluation
To evaluate the security and performance of our framework,
we ported a representative embedded enclaved application,
VRASED’s memory attestation [42] using the HACL* cryp-
tographic library [78], to the MSP-EXP430FR5969 board.

Security. To validate the security guarantees of our frame-
work, we first implemented the attestation in IPE, following
TI’s guidelines and example project [62]. We then used an
attack chain with the three architectural primitives to leak
the secret attestation key, very similar to Section 4.2.1. After
applying our framework to the application, we observed that
the key could no longer be leaked. We also validated that each
of the three primitives is individually mitigated by running
more self-contained examples with our framework. The MPU
protection for overwriting, reading, or executing the protected
region is active during the execution of untrusted code and
causes a device reset when the controlled call corruption or
the arbitrary jump primitive is attempted. Interrupts are also
disabled during execution of the secure attestation code, in
line with VRASED’s original requirements [42], and inter-
rupting the code at the start (before interrupts are disabled)
does not leak information. More rigorous or formal testing of
the security of our framework is left as future work.

Microbenchmarks. To assess the individual overhead con-
tributions of the different components introduced by our
framework, we performed a series of microbenchmarks. First,
Table 5 provides the binary size and execution times3 of all
stubs provided or generated by our framework, which are de-
terministic and minimal. A more important measurement is

3For stubs containing a branch, both possible execution times are listed.

Table 7: Mean duration of software-induced brown-out reset
on tested devices (n = 100), calculated from cycle counts of
the measuring device. Note that due to the frequency of the
measuring device, the granularity of our timer is 0.0625 µs.

Device Reset duration Standard deviation

MSP-EXP430FR5969 347.3 µs 0.109 µs
MSP-EXP430FR5994 428.5 µs 0.095 µs
EVM430-FR6047 581.4 µs 0.099 µs
MSP-EXP430FR6989 383.9 µs 0.107 µs

the time taken for the brown-out resets that need to be in-
duced before executing trusted code. Table 7 shows these
measurements for each of our devices. In our experimental
setup, the target device was performing brown-out resets in a
loop, sending a GPIO signal on each iteration to a dedicated
MSP-EXP430FR5969 performing the timing measurement.
While these timings are not entirely deterministic and might
depend on physical properties, we see that, in all our experi-
ments, the reset times were fast and very consistent.

Macrobenchmark. As an end-to-end benchmark, we also
measured (using the above method) the average execution
time of attesting the entire RAM (2 kB). Running at 8 MHz,
the attestation takes 497.0777 ms (n = 100,σ = 0.0149) with
only IPE protection, similar to the figure reported in the orig-
inal paper (450.15 ms for 4 kB) [42]. Using our framework
to protect this vulnerable implementation, the execution time
increases to 497.7123 ms (n = 100,σ = 0.0182), an overhead
of 634.6 µs (0.13%), which corresponds to the two resets re-
quired (the initial ecall, then returning from an ocall) as shown
in Table 6. This result shows that, as is common with TEEs,
the overhead of our framework seems to closely correspond
with the number of context switches between the enclave and
the untrusted world.

7 Related work

7.1 Code protection on microcontrollers
While this paper focused on IPE, in the following, we summa-
rize other code protection or isolation features on currently
manufactured microcontrollers.

Arm TrustZone. Arm TrustZone [4,45], introduced in 2004
and predating most other code protection and TEE technolo-
gies, isolates secure and non-secure software on 32-bit devices
using support from the hardware, which maintains a security
state and propagates it for bus operations, making peripherals
also aware of the current security level.

Microchip CodeGuard. Microchip CodeGuard [36, 37],
introduced in 2006, offers more comprehensive protection

USENIX Association 33rd USENIX Security Symposium 2167

than IPE on a similar class of devices. CodeGuard allows
the flash code memory to be partitioned into three segments,
called Boot, Secure, and General. These segments can also
claim exclusive access over parts of the device’s data memory,
enabling the isolation of dynamic data. At the highest secu-
rity setting, CodeGuard also enforces entry points, making
only the first 32 instructions of the Boot and Secure regions
executable from outside. Finally, interrupts are also secured.
If a Boot segment is defined, only this segment has access
to the IVT. Furthermore, if an interrupt is triggered during
the execution of the Boot or Secure regions, the device first
vectors to a special ISR in these regions that can clean the
register and memory contents before invoking untrusted code.

Flash protection. Multiple vendors offer read and write pro-
tection of program code on embedded devices. While useful
in certain scenarios, these solutions cannot offer the isola-
tion guarantees outlined in this paper, as they do not protect
application data. Microchip Selective Code Protection [38]
separates program memory into blocks and can restrict read
and write accesses to these, allowing read access to constant
values to code from the same block. Armv7-M and v8-M pro-
cessors are equipped with eXecute-Only-Memory (XOM) [6],
which disallows read and write access to specific code regions.
Certain Arm-based ST microcontrollers also feature global
read protection (RDP) and sector-granular write protection,
but importantly, RDP only disallows reads from debug in-
terfaces, not user code [52]. Some ST devices also feature
proprietary code read-out protection (PCROP), which is a
sector-granular protection of sensitive code from read and
write accesses, also from untrusted user code [51].

7.2 Attacks on code protection technologies
While not as actively researched as high-end TEEs, some
code protection technologies have already been the subject of
security analysis, exposing their vulnerabilities to different
classes of attacks. Half-blind attacks [22] exploit the boot-
loader through a memory safety vulnerability in application
code to extract protected code from MSP430 microcontrollers.
Obermaier and Tatschner [43] completely remove the protec-
tion on ST’s RDP [52] by downgrading the security level of
the device and bypass the access control check on the debug-
ger through a race condition. They also discovered that SRAM
contents are readable for a debugger while stepping through
code protected by RDP, potentially revealing the firmware
when a CRC or hash value is calculated over it, storing inter-
mediate values in SRAM.

This last exploit joins a line of work reconstructing pro-
tected firmware based on visible execution state changes. The
first such attack [10] bypasses code protection on Cortex-M-
based Nordic Semiconductor devices. This technique relies
on finding indirect load instructions by single-stepping the
protected code with the debugger, setting each register to a

memory address and examining the register bank after the in-
struction. Once a load instruction is found, this is used to leak
the entire firmware. Schink and Obermaier [47] performed
similar attacks on other Cortex-M-based microcontrollers im-
plementing XOM [6]. Their approach uses values in both
memory and registers (and proposes using side-channel in-
formation) to recover all instructions without relying on load
instructions to leak the firmware. They performed the attack
on ST PCROP [51] and NXP FAC [48] (now deprecated) by
using a debugger to single-step, and on MSP432’s IP protec-
tion by using interrupts to execute instructions in isolation. In
addition, they found implementation issues and load gadgets
that can straightforwardly leak the firmware, similar to the
attack on Nordic devices [10]. Finally, in concurrent work,
RIPencapsulation [46] develops and evaluates a framework
using a similar approach on MSP432 and MSP430 IPE.

8 Conclusion

This paper presented the first in-depth security analysis of
the IPE security technology found in popular, off-the-shelf TI
MSP430 microcontrollers. While this technology is promising
and bears a striking resemblance to embedded TEE research
prototypes that have been widely studied in recent years, we
discovered multiple crucial issues in current IPE hardware
and software. Among other attacks inspired by the attack lit-
erature, we showcased the novel controlled call corruption,
which may critically undermine the security guarantees of
systems relying on IPE as a secure key storage or intellectual
property protection mechanism. To demonstrate the practical-
ity of our attack primitives, we presented proof-of-concept
exploits and end-to-end attacks.

Based on our thorough root-cause analysis and the design
of similar TEE research prototypes, we formulated action-
able hardware-level mitigations for next-generation hardened
IPE microcontrollers. Furthermore, we contributed a practi-
cal, end-to-end framework that automates software security
responsibilities on existing and future IPE devices at low over-
heads and provides security guarantees similar to IPE using
the onboard MPU on existing devices.

Acknowledgments

We thank Jolan Hofmans for the IPE experiments in his mas-
ter’s thesis [27] and the TI PSIRT for their cooperation during
the disclosure process. This research was partially funded
by the ORSHIN project (Horizon Europe grant agreement
#101070008), the Research Foundation – Flanders (FWO) via
grants #G081322N and #1261222N, the Research Fund KU
Leuven, and the Flemish Research Programme Cybersecurity.

2168 33rd USENIX Security Symposium USENIX Association

References

[1] Fritz Alder, Lesly-Ann Daniel, David Oswald, Frank
Piessens, and Jo Van Bulck. Pandora: Principled sym-
bolic validation of Intel SGX enclave runtimes. In 45th
IEEE Symposium on Security and Privacy (S&P), 2024.

[2] Fritz Alder, Jo Van Bulck, Frank Piessens, and Jan To-
bias Mühlberg. Aion: Enabling open systems through
strong availability guarantees for enclaves. In 28th ACM
Conference on Computer and Communications Security
(CCS), 2021.

[3] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), 2016.

[4] Tiago Alves and Don Felton. Trustzone: Integrated
hardware and software security. Information Quarterly,
3, 2004.

[5] AMD. AMD SEV-SNP: Strengthening VM isolation
with integrity protection and more. White Paper, 2020.

[6] Arm Community blogs. What is execute-only-
memory (xom)? https://community.arm.com/
arm-community-blogs/b/architectures-and-
processors-blog/posts/what-is-execute-only-
memory-xom, 2017.

[7] Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind
the gap: Studying the insecurity of provably secure em-
bedded trusted execution architectures. In 43rd IEEE
Symposium on Security and Privacy (S&P), 2022.

[8] Marton Bognar, Hans Winderix, Jo Van Bulck, and
Frank Piessens. Microprofiler: Principled side-channel
mitigation through microarchitectural profiling. In 8th
IEEE European Symposium on Security and Privacy
(EuroS&P), 2023.

[9] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza
Sadeghi, Christian Wachsmann, and Patrick Koeberl.
TyTAN: Tiny trust anchor for tiny devices. In 52nd
ACM/IEEE Design Automation Conference (DAC),
2015.

[10] Kris Brosch. Firmware dumping technique for an ARM
Cortex-M0 SoC. https://blog.includesecurity.
com/2015/11/firmware-dumping-technique-for-
an-arm-cortex-m0-soc/, 2015.

[11] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio
Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and
Frank Piessens. Provably secure isolation for interrupt-
ible enclaved execution on small microprocessors. In
33rd IEEE Computer Security Foundations Symposium
(CSF), 2020.

[12] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao,
Cedric Xing, Ilya Alexandrovich, Taesoo Kim, Frank
Piessens, Mona Vij, and Mark Silberstein. AEX-Notify:
thwarting precise single-stepping attacks through inter-
rupt awareness for Intel SGX enclaves. In 32nd USENIX
Security Symposium, August 2023.

[13] V. Costan and S. Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016(086), 2016.

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In 25th USENIX Security Symposium, 2016.

[15] Ruan De Clercq, Frank Piessens, Dries Schellekens, and
Ingrid Verbauwhede. Secure interrupts on low-end mi-
crocontrollers. In 25th IEEE International Conference
on Application-Specific Systems, Architectures and Pro-
cessors (ASAP), 2014.

[16] Florian Dewald, Heiko Mantel, and Alexandra Weber.
AVR processors as a platform for language-based secu-
rity. In European Symposium on Research in Computer
Security (ESORICS), 2017.

[17] Daniel Dinu, Archanaa S Khrishnan, and Patrick Schau-
mont. SIA: Secure intermittent architecture for off-the-
shelf resource-constrained microcontrollers. In 2019
IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2019.

[18] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. SMART: Secure and minimal ar-
chitecture for (establishing a dynamic) root of trust. In
19th Annual Network and Distributed System Security
Symposium (NDSS), 2012.

[19] Stephen Evanczuk. Slideshow: The most-popular
MCUs ever. https://www.edn.com/slideshow-
the-most-popular-mcus-ever/, 2013.

[20] Olivier Girard. openmsp430 rev 1.17. https:
//github.com/olgirard/openmsp430/blob/
master/doc/openMSP430.pdf, 2017.

[21] Travis Goodspeed. Practical attacks against the MSP430
BSL. In 25th Chaos Communications Congress, 2008.

[22] Travis Goodspeed and Aurélien Francillon. Half-blind
attacks: Mask ROM bootloaders are dangerous. In
Dan Boneh and Alexander Sotirov, editors, 3rd USENIX
Workshop on Offensive Technologies, WOOT. USENIX
Association, 2009.

[23] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on Intel SGX. In 10th Eu-
ropean Workshop on Systems Security (EuroSec), 2017.

USENIX Association 33rd USENIX Security Symposium 2169

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom
https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/
https://www.edn.com/slideshow-the-most-popular-mcus-ever/
https://www.edn.com/slideshow-the-most-popular-mcus-ever/
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf

[24] Michele Grisafi, Mahmoud Ammar, and Bruno Crispo.
On the (in) security of memory protection units: A cau-
tionary In 2022 IEEE International Conference on Cy-
ber Security and Resilience (CSR). IEEE, 2022.

[25] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and
Raoul Strackx. Off-limits: Abusing legacy x86 memory
segmentation to spy on enclaved execution. In Interna-
tional Symposium on Engineering Secure Software and
Systems (ESSoS), 2018.

[26] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh
Jain, Pranav Goyal, and Biplab Sikdar. A survey on IoT
security: application areas, security threats, and solution
architectures. IEEE Access, 7, 2019.

[27] Jolan Hofmans. A comparative analysis of security
features between Sancus and TI MSP430 IPE. Master’s
thesis, KU Leuven, 2022.

[28] Intel. Intel Software Guard Extensions – Get started
with the SDK. https://software.intel.com/en-
us/sgx/sdk, 2019.

[29] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual – Combined volumes, 2023. Reference
no. 325462-062US.

[30] David Kaplan. Protecting VM register state with SEV-
ES. White Paper, 2017.

[31] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael
Franz, and Ahmad-Reza Sadeghi. V0LTpwn: Attacking
x86 processor integrity from software. In 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[32] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,
and Vijay Varadharajan. TrustLite: A security architec-
ture for tiny embedded devices. In 9th European Con-
ference on Computer Systems (EuroSys). ACM, 2014.

[33] Archanaa S Krishnan and Patrick Schaumont. Bench-
marking and configuring security levels in intermittent
computing. ACM Transactions on Embedded Comput-
ing Systems (TECS), 21(4), 2022.

[34] Archanaa S Krishnan, Charles Suslowicz, and Patrick
Schaumont. Secure and stateful power transitions in
embedded systems. Journal of Hardware and Systems
Security, 4, 2020.

[35] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. Byunghoon Kang. Hack-
ing in darkness: Return-oriented programming against
secure enclaves. In 26th USENIX Security Symposium,
2017.

[36] Microchip. Codeguard security: Protecting intel-
lectual property in collaborative system designs.
http://ww1.microchip.com/downloads/en/
DeviceDoc/70179a.pdf, 2006.

[37] Microchip. dspic30f family reference manual - section
26. codeguard security. http://ww1.microchip.com/
downloads/en/DeviceDoc/70275A.pdf, 2007.

[38] Microchip. Selective code protection - microchip devel-
oper help. https://microchipdeveloper.com/xc8:
selective-code-protection, 2021.

[39] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. Cachezoom: How SGX amplifies the power of
cache attacks. In 19th International Conference on Cryp-
tographic Hardware and Embedded Systems (CHES),
2017.

[40] Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based fault injection attacks against
Intel SGX. In 41st IEEE Symposium on Security and
Privacy (S&P), 2020.

[41] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Felix C.
Freiling. Sancus 2.0: A low-cost security architecture
for IoT devices. ACM Transactions on Privacy and
Security, 20(3), 2017.

[42] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep
Rattanavipanon, Michael Steiner, and Gene Tsudik.
VRASED: A verified hardware/software co-design for
remote attestation. In 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[43] Johannes Obermaier and Stefan Tatschner. Shedding too
much light on a microcontroller’s firmware protection.
In 11th USENIX Workshop on Offensive Technologies,
WOOT 2017. USENIX Association, 2017.

[44] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In Top-
ics in Cryptology – CT-RSA 2006, 2006.

[45] Sandro Pinto and Nuno Santos. Demystifying arm trust-
zone: A comprehensive survey. ACM Comput. Surv.,
51(6), 2019.

[46] Prakhar Sah and Matthew Hicks. RIPencapsulation:
Defeating IP encapsulation on TI MSP devices. arXiv
preprint arXiv:2310.16433, 2023.

[47] Marc Schink and Johannes Obermaier. Taking a look
into execute-only memory. In 13th USENIX Workshop
on Offensive Technologies, WOOT. USENIX Associa-
tion, 2019.

2170 33rd USENIX Security Symposium USENIX Association

https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
http://ww1.microchip.com/downloads/en/DeviceDoc/70179a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70179a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70275A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70275A.pdf
https://microchipdeveloper.com/xc8:selective-code-protection
https://microchipdeveloper.com/xc8:selective-code-protection

[48] NXP Semiconductors. Using the kinetis flash execute-
only access control feature. https://www.nxp.com/
docs/en/application-%note/AN5112.pdf, 2015.

[49] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In 14th ACM Conference on Computer and
Communications Security (CCS), 2007.

[50] Laurent Simon, David Chisnall, and Ross Anderson.
What you get is what you c: Controlling side effects
in mainstream c compilers. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE,
2018.

[51] STMicroelectronics. AN4968 application
note: Proprietary code read out protection
(PCROP) on STM32F72xxx and STM32F73xxx
microcontrollers. https://www.st.com/
resource/en/application_note/dm00346619-
proprietary-code-read-out-protection-
pcrop-on-stm32f72xxx-and-stm32f73xxx-
microcontrollers-stmicroelectronics.pdf,
2017.

[52] STMicroelectronics. RM0091 reference manual:
STM32F0x1/STM32F0x2/STM32F0x8 advanced
arm-based 32-bit MCUs. https://www.st.
com/resource/en/reference_manual/rm0091-
stm32f0x1stm32f0x2stm32f0x8-advanced-
armbased-32bit-mcus-stmicroelectronics.pdf,
2022.

[53] Raoul Strackx, Frank Piessens, and Bart Preneel. Effi-
cient isolation of trusted subsystems in embedded sys-
tems. In Security and Privacy in Communication Net-
works, 2010.

[54] Texas Instruments. MSP430 programming with
the JTAG interface. https://www.ti.com/lit/ug/
slau320aj/slau320aj.pdf, 2010.

[55] Texas Instruments. MSP430FR58xx, MSP430FR59xx,
and MSP430FR6xx family user’s guide. https://www.
ti.com/lit/ug/slau367p/slau367p.pdf, 2012.

[56] Texas Instruments. Car access product family. https:
//www.ti.com/lit/ml/slyt455a/slyt455a.pdf,
2013.

[57] Texas Instruments. Closing the security gap with TI’s
MSP430 FRAM-based microcontrollers. https://www.
ti.com/lit/wp/slay035/slay035.pdf, 2014.

[58] Texas Instruments. FRAM FAQs. https://www.ti.
com/lit/wp/slat151/slat151.pdf, 2014.

[59] Texas Instruments. Introduction to MSP430FR5969.
https://www.youtube.com/watch?v=QRJ0r-
Zx2Hk, 2014.

[60] Texas Instruments. MSP430 FRAM technology – how
to and best practices. https://www.ti.com/lit/an/
slaa628b/slaa628b.pdf, 2014.

[61] Texas Instruments. MSP code protection fea-
tures. https://www.ti.com/lit/an/slaa685/
slaa685.pdf, 2015.

[62] Texas Instruments. MSP code protection fea-
tures: Source code. http://www.ti.com/lit/zip/
slaa685, 2015.

[63] Texas Instruments. Software IP protection
on MSP432P4xx microcontrollers. https:
//web.archive.org/web/20191213154223/http:
//www.ti.com/lit/an/slaa660b/slaa660b.pdf,
2015.

[64] Texas Instruments. Understanding security features
for MSP430 microcontrollers. https://www.ti.com/
lit/ml/swpb018/swpb018.pdf, 2017.

[65] Texas Instruments. PSIRT notification:
MSP430FR5xxx and MSP430FR6xxx IP
encapsulation write vulnerability. https:
//web.archive.org/web/20231030234254/https:
//www.ti.com/lit/an/swra792/swra792.pdf,
2023.

[66] TI Support Forum. MSP432P401R: Is
the MSP432 line discontinued? https:
//e2e.ti.com/support/microcontrollers/
arm-based-microcontrollers-group/arm-
based-microcontrollers/f/arm-based-
microcontrollers-forum/1007640/msp432p401r-
is-the-msp432-line-discontinued, 2021.

[67] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium, 2018.

[68] Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg, and
Frank Piessens. Towards availability and real-time guar-
antees for protected module architectures. In Compan-
ion Proceedings of the 15th International Conference
on Modularity (MASS), 2016.

[69] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio D. Garcia, and Frank Piessens. A tale
of two worlds: Assessing the vulnerability of enclave
shielding runtimes. In 26th ACM Conference on Com-
puter and Communications Security (CCS), 2019.

USENIX Association 33rd USENIX Security Symposium 2171

https://www.nxp.com/docs/en/application-% note/AN5112.pdf
https://www.nxp.com/docs/en/application-% note/AN5112.pdf
https://www.st.com/resource/en/application_note/dm00346619-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00346619-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00346619-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00346619-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00346619-proprietary-code-read-out-protection-pcrop-on-stm32f72xxx-and-stm32f73xxx-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.ti.com/lit/ug/slau320aj/slau320aj.pdf
https://www.ti.com/lit/ug/slau320aj/slau320aj.pdf
https://www.ti.com/lit/ug/slau367p/slau367p.pdf
https://www.ti.com/lit/ug/slau367p/slau367p.pdf
https://www.ti.com/lit/ml/slyt455a/slyt455a.pdf
https://www.ti.com/lit/ml/slyt455a/slyt455a.pdf
https://www.ti.com/lit/wp/slay035/slay035.pdf
https://www.ti.com/lit/wp/slay035/slay035.pdf
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.youtube.com/watch?v=QRJ0r-Zx2Hk
https://www.youtube.com/watch?v=QRJ0r-Zx2Hk
https://www.ti.com/lit/an/slaa628b/slaa628b.pdf
https://www.ti.com/lit/an/slaa628b/slaa628b.pdf
https://www.ti.com/lit/an/slaa685/slaa685.pdf
https://www.ti.com/lit/an/slaa685/slaa685.pdf
http://www.ti.com/lit/zip/slaa685
http://www.ti.com/lit/zip/slaa685
https://web.archive.org/web/20191213154223/http://www.ti.com/lit/an/slaa660b/slaa660b.pdf
https://web.archive.org/web/20191213154223/http://www.ti.com/lit/an/slaa660b/slaa660b.pdf
https://web.archive.org/web/20191213154223/http://www.ti.com/lit/an/slaa660b/slaa660b.pdf
https://www.ti.com/lit/ml/swpb018/swpb018.pdf
https://www.ti.com/lit/ml/swpb018/swpb018.pdf
https://web.archive.org/web/20231030234254/https://www.ti.com/lit/an/swra792/swra792.pdf
https://web.archive.org/web/20231030234254/https://www.ti.com/lit/an/swra792/swra792.pdf
https://web.archive.org/web/20231030234254/https://www.ti.com/lit/an/swra792/swra792.pdf
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued
https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/1007640/msp432p401r-is-the-msp432-line-discontinued

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A practical attack framework for precise enclave
execution control. In 2nd Workshop on System Software
for Trusted Execution (SysTEX). ACM, 2017.

[71] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary CPU interrupt logic. In 25th ACM Confer-
ence on Computer and Communications Security (CCS),
2018.

[72] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In 26th USENIX Security Sympo-
sium, 2017.

[73] Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The sever-
est of them all: Inference attacks against secure virtual
enclaves. In Proceedings of the 2019 ACM Asia Confer-
ence on Computer and Communications Security, 2019.

[74] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas
Eisenbarth. SEV-Step: A single-stepping framework
for AMD-SEV. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2024(1), 2024.

[75] Hans Winderix, Jan Tobias Mühlberg, and Frank
Piessens. Compiler-assisted hardening of embedded
software against interrupt latency side-channel attacks.
In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2021.

[76] Lennert Wouters, Benedikt Gierlichs, and Bart Preneel.
On the susceptibility of Texas Instruments SimpleLink
platform microcontrollers to non-invasive physical at-
tacks. In Constructive Side-Channel Analysis and Se-
cure Design, 2022.

[77] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 36th IEEE Sympo-
sium on Security and Privacy (S&P), 2015.

[78] Jean Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A verified modern cryptographic library. In
24th ACM Conference on Computer and Communica-
tions Security (CCS). ACM, 2017.

A Negative results: Inapplicable attacks

Some attacks from high-end or embedded TEEs have turned
out not to apply to the microcontrollers in our analysis. Most
notably, embedded MSP430 microcontrollers are not opti-
mized for high performance and do not come equipped with
advanced microarchitectural features, such as out-of-order ex-
ecution and branch prediction that give rise to the potent line
of transient execution attacks, which has critically affected
high-end TEEs like Intel SGX [67]. Below, we summarize
two non-trivial negative results that we found unexploitable
from software in our analysis.

A.1 Voltage fault injection
While voltage fault injection attacks, also performed on
MSP430 [21] and other TI microcontrollers [76], have tradi-
tionally required physical access and are thus out of scope for
our analysis, on certain systems it is also possible to control
the frequency and voltage of the system through software
interfaces. On Intel SGX, changing the voltage through these
interfaces could compromise the confidentiality and integrity
of enclaves through fault injection, even leading to leaking
cryptographic keys from enclaves [31, 40].

The only related configuration setting our microcontroller
exposes to software is the frequency of the device. Fault in-
jection could occur by running the device at a high frequency,
requiring wait states for the FRAM, but omitting this config-
uration step. However, the device implements a protection
mechanism against this attack and resets the device upon such
misconfiguration, avoiding fault injection [55]. In addition,
the device contains additional measures against physical at-
tacks [57], including voltage attacks, but these are out of scope
for our software-based analysis.

A.2 Direct memory access (DMA) contention
A recent side-channel attack demonstrated on openMSP430-
based TEEs uses contention between the CPU and DMA
devices to measure the memory activity of enclaves [7, 8].
While on our device, it is possible to schedule DMA transfers
from software (putting it in scope for our analysis), due to
the DMA implementation on TI’s devices, this attack is not
possible in its current form. The side-channel attack exploits
subtle timing differences caused by contention when DMA
transfers and CPU activity happen in parallel, whereas on TI
devices, DMA transfers happen while the CPU is disabled in
low-power mode and not executing code [55].

2172 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and problem statement
	MSP430 microcontrollers
	Intellectual Property Encapsulation (IPE)

	Attack primitives
	Controlled call corruption
	Arbitrary jumps to IPE code
	Arbitrary interrupts in IPE code
	IPE side-channel leakage
	FRAM cache access patterns
	Instruction timings through interrupt latency
	MPU-based controlled channel

	End-to-end attacks
	Overwriting sensitive data
	Leaking the entire IPE region
	Variant 1: Inserting a leaky gadget
	Variant 2: Removing IPE protection

	Hardware mitigations
	Single entry point and secure interrupts
	Controlled call corruption mitigation

	Software mitigations
	Secure entry and exit stubs
	MPU-based isolation
	Limitations
	Evaluation

	Related work
	Code protection on microcontrollers
	Attacks on code protection technologies

	Conclusion
	Negative results: Inapplicable attacks
	Voltage fault injection
	Direct memory access (DMA) contention

