== aes
. .I|||1rh||||1 ARERIAN
:ﬂ}ulm I

usenix

THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

Don’t Listen To Me: Understanding and Exploring
Jailbreak Prompts of Large Language Models

Zhiyuan Yu, Washington University in St. Louis; Xiaogeng Liu, University of
Wisconsin, Madison; Shunning Liang, Washington University in St. Louis;
Zach Cameron, John Burroughs School; Chaowei Xiao, University of Wisconsin,
Madison; Ning Zhang, Washington University in St. Louis

https://www.usenix.org/conference/usenixsecurity24/presentation/yu-zhiyuan

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

AVAILABLE

REPRODUCED

USENIX Security 24 Artifact Appendix:
Don’t Listen To Me: Understanding and Exploring Jailbreak Prompts of
Large Language Models

Zhiyuan Yu', Xiaogeng Liu®, Shunning Liang®, Zach Cameron*, Chaowei Xiao®, Ning Zhang’

¥ Washington University in St. Louis, ¥ University of Wisconsin - Madison, ¥ John Burroughs School

A Artifact Appendix

A.1 Abstract

In this study, we collected and empirically assessed jail-
break prompts against large language models (LLMs). The
attacker’s goal is to deceive LLMs into producing harmful
content, such as fake news articles or instructions for unlawful
activities, to aid their malicious objectives. However, commer-
cial LLMs are typically equipped with built-in defense that
reject direct queries exhibiting malicious intent. To overcome
such protection, jailbreak arises where the so-called jailbreak
prompts will mislead the LLM, for example, by constructing
a fictional world without ethical concerns, such that the LLMs
will be tricked into generating harmful content. Numerous
such prompts have proliferated across the Internet, and we
conducted a study to systematically evaluate them.

Our artifacts comprise the source code, jailbreak prompts,
malicious queries, responses from target LLMs, human an-
notations, and other necessary data needed to reproduce the
main results in the manuscript. The code contained are Python
scripts used for LLM generation and statistical analysis. No
other specialized hardware is required to execute our artifacts.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Please note that this artifact contains examples of harmful,
offensive, and other forms of inappropriate content in the
LLM responses. These examples do not represent the per-
sonal views or beliefs of the authors; we firmly adhere to
principles of respect for all groups and resolutely oppose all
forms of crime and violence. The explicit examples discussed
in the manuscript are used solely for research purposes, with
our ultimate goal of enhancing LLM security and mitigating
potential harm. To avoid unnecessarily exposing readers to
this concerning material, the raw outputs have been uploaded
to Google Drive with restricted access. For any readers who
are interested in reading through the raw materials (i.e., po-
tentially harmful LLM responses), please request access and

avoid being influenced by any concerning material. However,
this artifact itself is safe and will not cause any harm to com-
puting systems during execution.

A.2.2 How to access

The code and data are publicly available on a GitHub reposi-
tory. Considering the potential impacts of the harmful content
contained in the LLM responses, they are stored on a separate
Drive with access restrictions. Users interested in obtaining
the raw materials must submit a request justifying their in-
tended usage, and access will only be granted upon author
agreement. The stable link of the GitHub repository tree is
https://github.com/WUSTL-CSPL/LLMJailbreak/tre
e/e8cf5196077ea7lde8b75364d31af58a265b674ct

A.2.3 Hardware dependencies

The artifact can run on a machine with a moderate CPU and
at least 16GB of available RAM. No other specialized or
high-end hardware is required for execution.

A.2.4 Software dependencies

Our artifact contains textual datasets, as well as scripts writ-
ten in Python. The environment was set up using Miniconda
4.12.0 on Ubuntu 22.0.4. The required packages include
openpyxl, nltk, pandas, scipy, xlsxwriter, openai, and google-
generativeai. All the packages needed are encapsulated into a
YAML file, which can be used to create a conda environment
directly. For the detailed installation process please see Sec-
tion A.3. All the raw data and programs needed to reproduce
the results are included in the artifact and do not need to be
downloaded from external sources.

A.2.5 Benchmarks

The data required by the experiments are the jailbreak
prompts, malicious queries, and human-annotated LLM re-
sponses. The artifact involves 448 jailbreak prompts and
161 malicious queries documented in Excel files, and the

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 289

https://github.com/WUSTL-CSPL/LLMJailbreak/tree/e8cf5196077ea7de8b75364d31af58a265b674cf
https://github.com/WUSTL-CSPL/LLMJailbreak/tree/e8cf5196077ea7de8b75364d31af58a265b674cf

LLM responses are stored in individual text files. More
specifically, the jailbreak prompts can be found in “Jail-
breakPrompts.xlsx” file, the malicious queries can be found in
“MaliciousQueries.xlsx” file, the LLM responses can be found
in “AutomaticGeneration/Response” folder, and the human
annotations for the three LLMs are in “Labels_ GPT35.xlsx”,
“Labels_GPT4.xlsx”, and “Labels_PalLM2.xlsx” respectively.

A.3 Set-up
A.3.1 Installation

Conda or Miniconda is recommended for setting up the en-
vironment. It can be installed via the official link https:
//docs.conda.io/en/latest/miniconda.html and the
process can differ based on the user’s OS. The commands for
setting up the environment are:

$ cd <the_path_to_the_folder>
$ conda env create -f jailbreak.yml
$ conda activate jailbreak

A.3.2 Basic Test

The basic test can be run with the command:
$ python3 BasicTest.py

The test mainly calls the APIs for the three models, GPT-
3.5, GPT-4, and PaLM-2. The query is “Hello I am doing a
basic test of your functionality. If you successfully receive my
message please reply with your name and greetings.”. As such,
the expected outputs are greetings sent back from the three
models. Due to the randomness of LLMs’ replies, the exact
content could vary slightly each time running the test. At the
end, the terminal will print “Basic test passed!” if succeeds.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We collected a total of 448 jailbreak prompts and sys-
temized them into five categories. We also derived 161
malicious queries from OpenAl usage policies. The sys-
temized jailbreak prompts, malicious queries, referred
OpenAl guidelines, and calculated token counts are in-
cluded in the artifact. This is proven by the experiment
(E1), mapped to Table 1 and Table 2 in the paper.

(C2): We employed the jailbreak prompts and malicious
queries for automatic generation on three state-of-the-art
commercial models, GPT-3.5, GPT-4, and PaLM-2. The
generation script and LLM responses are included in the
artifact. This is proven by the experiment (E2).

(C3): The corresponding LLM responses were manually
annotated and quantitatively analyzed through our pro-
posed metrics. The LLM responses, human annotation,

and our measurement programs are included in the ar-
tifact. Through the analysis, our main conclusions and
results include the jailbreak efficacy in terms of jail-
break prompt categories, malicious query categories, and
prompt length. We also calculated jailbreak efficacy per
each prompt and identified universal jailbreak prompts
that were found effective across three models. Experi-
ment (E3) supports these findings, mapped to Table 3,
Figure 2, and Section 6 in the manuscript.

A.4.2 Experiments

(E1): [Systemization and Token Calculation] [5 human-
minutes + 1 compute-minute]:
Preparation: Detailed instructions regarding environ-
ment setup and activation are included in Section A.3.1.
Execution: The jailbreak prompts are included in the
“JailbreakPrompts.xlsx” file in the artifact. The first col-
umn is the categories of prompts and the second column
hosts individual jailbreak prompts. Similarly, the mali-
cious queries are included in “MaliciousQueries.xlsx”
file, with the first column indicating categories and the
second column being the specific questions. The Ope-
nAlI guidelines from which the malicious queries were
derived are also included in “Usage_policies.html” file.
The Python script “Token_Calculation.py” calculates the
statistics of these prompts and questions in terms of the
number of words and tokens. To run it, please use the
command line:

$ python3 Token_Calculation.py

Results: The “JailbreakPrompts.xlsx” file contains a
total of 448 jailbreak prompts systemized into five cate-
gories, which can be mapped to Table 1 in the manuscript.
For the detailed explanations of each category and ra-
tionale, please see Section 5.1 in the manuscript. The
“MaliciousQueries.xlsx” hosts 161 malicious queries rep-
resenting six types of misuse. The statistical results of
“Token_Calculation.py” will be written into two files,
“JailbreakPrompts_TokenCount.xlsx” and “Malicious-
Queries_TokenCount.xlsx” respectively. The results doc-
umented in these two files should align with those in
Table 2 in the manuscript. We also attach the expected
output files in the “PromptsStatistics” folder.

(E2): [Automatic generation] [I10 human-minutes + 2
compute-minutes]|:
Preparation: This experiment involves calling LLM
APIs and therefore requires API keys beyond the materi-
als provided in the artifact.
Execution: We used two scripts for automatic gener-
ation on three models, GPT-3.5, GPT-4, and PaLM-2.
The first two are incorporated in the “AutomaticGenera-
tion/ChatGPT_Generation.py” script while PaLM-2 is

290 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

in “AutomaticGeneration/PaLM?2_Generation.py”. The
scripts mainly extract jailbreak prompts and malicious
queries, and feed them into LL.Ms to obtain the responses.
The commands for GPT-3.5, GPT-4, and PaLM-2 are:

$ cd AutomaticGeneration

$ python3 ChatGPT_Generation.py gpt35
$ python3 ChatGPT_Generation.py gpti4
$ python3 PalM2_Generation.py

The generation setup used in the script aligns with Sec-
tion 6.1, such as employing fop-p sampling and five gen-
erations to mitigate randomness. Please note that the user
is designed to be prompted to enter two things. The first
is the root path for the “AutomaticGeneration” folder,
and the second is the API key. The complete responses
from the three LLMs are included in “Response” folder
on Google Drive. Considering the potential harm, we cur-
rently do not publicize access to these responses. If any
readers are interested in reading the raw response data,
please reach out to us via email and read Section A.2.1
carefully before proceeding.

Results: The expected output of this experiment is a
series of LLM responses stored in individual txt files. If
the programs run correctly, a new folder will be automat-
ically created named “AutomaticGeneration/Response.
Under this folder, the individual response files are stored
in “AutomaticGeneration/Response/ChatGPT/gpt35”,
“AutomaticGeneration/Response/ChatGPT/gpt4”, and
“AutomaticGeneration/Response/PaLM?2/text-bison-
001 respectively.

(E3): [Quantitative Evaluation] [10 human-minutes + 5

compute-minutes]:

Preparation: This experiment involves using Python
scripts for quantitative evaluation. Detailed instructions
regarding environment setup and activation are included
in Section A.3.1.

Execution: The human annotation on the LLM re-
sponses are included in “Labels_GPT35.xlsx”, “La-
bels_GPT4.xlsx”, and “Labels_PalLM?2.xlsx” respec-
tively. Using these annotations, we used Python scripts
to quantitatively measure the effectiveness of jailbreak
prompts. First, we can run “JSR_EMH_Category.py” to
obtain the jailbreak efficacy across three models in terms
of prompt and malicious query categories:

$ python3 JSR_EMH_Category.py
The second experiment is to measure the jailbreak effi-
cacy on three models individually, which can be obtained

by executing the command:

$ python3 JSR_EMH_Model.py

The third experiment is to investigate the correlations
between the prompt lengths and its jailbreak efficacy.
This experiment can be executed in the “PromptLength-
Correlation” folder. We first document the analysis
results from the previous experiment into “Effica-
cyPromptLength.xlsx” file, and run the program with
commands:

$ cd PromptLengthCorrelation
$ python3 PromptLengthCorrelation.py

The fourth experiment is to measure jailbreak efficacy
per each jailbreak prompt and identify the ones that are
universally effective across the three models. Please
switch back to the main directory and run:

$ python3 JSR_EMH_per_Prompt.py

Results: After executing “JSR_EMH_Category.py”, the
results are two files named “EMH_Category.xlsx” and
“JSR_Category.xlsx”. Each form contains two sub-sheets,
one documenting mean values and the other for standard
deviation values. These values should align with those
in Table 3 in the paper. We also attach these expected
output forms in “EMH_JSR_Category” folder.

The expected results for the second experiment are six
Excel forms documenting mean and standard devia-
tion values in subsheets of each file, “EMH_GPT4.xlsx”,
“EMH_GPT35”,“EMH_PalLM2.xlsx”,“JSR_GPT4.xlsx”,
“JSR_GPT35.xlsx”, and “JSR_PalLM2.xlsx”, which are
named by the metrics (EMH or JSR) and models (GPT-
3.5, GPT-4, or PaLM-2). These results should align with
those in Figure 2 in the paper. We also attach the ex-
pected results in “EMH_JSR_Model” folder.

The outcomes for the third experiment are the correlation
test results printed out on the terminal. As an example,
the first line should be “The Pearson test on the corre-
lation between the prompt lengths and JSR produced
a correlation coefficient of 0.207445408829702, with
a p-value of 9.565429118142019e-06". The values in
the printed results should align with that in Impacts of
Prompt Length in Section 6.3 in the paper.

The expected outputs for the last experiment are
two-fold. The first part consists of two Excel forms
named “EMH_Prompts.xlsx” and “JSR_Prompts.xlsx”.
These two files are intermediate results that document
the jailbreak efficacy (measured in EMH and JSR)
per each prompt. We also attach these files in the
“EMH_JSR_Prompts folder. Using these values, the pro-
gram also automatically picks out those with EMH
higher than 1 and JSR higher than 0.5 across the three
models and prints the index of these prompts on the
terminal. The expected printed indexes are 8, 10, 103,
and 138. Referred back to the “JailbreakPrompts.xlsx”

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 291

file, these four prompts consist of one from “Virtual Al
Simulation” (138), one from “Role Play” (103), and two
from “Hybrid Strategies” (8 and 10). The results should
align with the paper.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

292 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

