
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Two Shuffles Make a RAM: Improved Constant
Overhead Zero Knowledge RAM

Yibin Yang, Georgia Institute of Technology;
David Heath, University of Illinois Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yibin

USENIX Security ’24 Artifact Appendix:
Two Shuffles Make a RAM:

Improved Constant Overhead Zero Knowledge RAM

Yibin Yang
Georgia Institute of Technology, USA

yyang811@gatech.edu

David Heath
University of Illinois Urbana-Champaign, USA

daheath@illinois.edu

A Artifact Appendix

A.1 Abstract

The artifact includes code for all benchmarks presented in
the paper. It mainly includes ZK set/ROM/RAM schemes
in our paper. It also includes baseline [FKL+21] and our
implementation of [GOT+22].

This document describes how one can use our code to
reproduce all results in Section 6 of the proceedings paper. For
other benchmarks, that are not presented in our proceedings
version (some of them are deferred to the full version1), please
refer to the README.md in our repository.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

GitHub link:
https://github.com/gconeice/improved-zk-ram/

tree/d7f6b56e9c630484d3d93a8073fabd7e538c5f9a
Hash tag:
d7f6b56e9c630484d3d93a8073fabd7e538c5f9a

We will maintain new versions, and this appendix will be
included and updated accordingly in our repository.

A.2.3 Hardware dependencies

Our repository can be executed on a single machine to emu-
late ZK Prover P and ZK Verifier V using a localhost network.
However, our results were tested using two standalone ma-
chines: one for ZK Prover P, and another for ZK Verifier V.

We tested our code on two machines each having ≥ 32GiB
memory. Namely, we used two Amazon Web Services (AWS)
EC2 m5.2xlarge machines.

1https://eprint.iacr.org/2023/1115.pdf

Our paper numbers were obtained by testing with x86_64
CPUs, but our repository also supports ARM CPUs (e.g.,
Apple M1).

A.2.4 Software dependencies

We tested our code on a clean installation of Ubuntu 22.04.
Our repository includes simple scripts to install everything
starting from a clean installation.

We depend on emp-toolkit2 (in particular, the VOLE func-
tionalities inside). Our scripts will help you set it up properly.
In particular, one of our baselines is [FKL+21], which is in-
cluded under emp-zk3. We include the version of emp-zk we
used in the folder baseline with a simple script to compile.
We made some small changes on emp-zk to simplify testing.

We also tried our code on macOS. It works well but our
numbers were not generated over macOS.

We use Linux command tc to simulate the network with a
certain bandwidth.

A.2.5 Benchmarks

None.

A.3 Set-Up
You can simply download our repository and type “bash
setup.sh”. (You may need root access, e.g. sudo, in some ma-
chines.) Just hit ‘return/enter’ button on the keyboard when-
ever a question shows. Please read our README.md in the
repository if you prefer to do it step-by-step yourself.

A.3.1 Installation

Our ZK set/ROM/RAM and implemented baseline ZK
RAM in [GOT+22]. You can simply download our reposi-
tory and type “bash build.sh”. Please read our README.md
in the repository if you prefer to do it step-by-step yourself.

2https://github.com/emp-toolkit
3https://github.com/emp-toolkit/emp-zk

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 93

https://github.com/gconeice/improved-zk-ram/tree/d7f6b56e9c630484d3d93a8073fabd7e538c5f9a
https://github.com/gconeice/improved-zk-ram/tree/d7f6b56e9c630484d3d93a8073fabd7e538c5f9a
https://eprint.iacr.org/2023/1115.pdf
https://github.com/emp-toolkit
https://github.com/emp-toolkit/emp-zk

Baseline ZK ROM/RAM in [FKL+21]. Please cd in the
folder baseline. Similarly, you can simply type “bash
build.sh”.

A.3.2 Basic test

Note that we have two machines P and V. For P and V, goto
the folder build (resp. the folder baseline/build). Let ip
denote the machine P’s IP address. Please set environment
variable ‘IP=ip’ on V’s machine.

Our ZK set/ROM/RAM and implemented baseline ZK
RAM in [GOT+22]. To test our implementation:

P executes: ./bin/test_arith_inset_zk_rom_block
1 44444 12 16 localhost

V executes: ./bin/test_arith_inset_zk_rom_block
2 44444 12 16 $IP

If everything goes through, you should see the execution
results on P and V.

Baseline ZK ROM/RAM in [FKL+21]. To test our base-
line [FKL+21]’s implementation:

P executes: ./bin/test_ram_ro_ram_test 1 44444
12 localhost

V executes: ./bin/test_ram_ro_ram_test 2 44444
12 $IP

If everything goes through, you should see the execution
results on P and V.

A.3.3 Expected executable files

You should generate the following executable files located in
build/bin/:

1. test_arith_inset_zk_rom_block: Our ZK set data
structure.

Usage: test_arith_inset_zk_rom_block PARTY
PORT logN blockSize IP where PARTY=1,2, logN
denotes the bit-length of each entry in (set) ROM, and
blockSize denotes the block size parameter of the
product optimization.

2. test_arith_zk_rom_block: Our ZK ROM.

Usage: test_arith_zk_rom_block PARTY PORT
logN blockSize IP where PARTY=1,2, logN denotes
the bit-length of each entry in ROM, and blockSize
denotes the block size parameter of the product
optimization.

3. test_arith_zk_ram_block: Our ZK RAM.

Usage: test_arith_zk_ram_block PARTY PORT
logN blockSize IP where PARTY=1,2, logN denotes
the bit-length of each entry in RAM, and blockSize
denotes the block size parameter of the product
optimization.

4. test_arith_GOT_block: (Optimized) baseline
[GOT+22]’s ZK RAM.

Usage: test_arith_GOT_block PARTY PORT logN
blockSize IP where PARTY=1,2, logN denotes the bit-
length of each entry in RAM, and blockSize denotes
the block size parameter of the product optimization.

You should generate the following executable files located
in baseline/build/bin/:

1. test_ram_ro_ram_test: Baseline [FKL+21]’s ZK
ROM.

Usage: test_ram_ro_ram_test PARTY PORT logN
IP where PARTY=1,2 and logN denotes the bit-length of
each entry in ROM.

2. test_ram_ram_test: Baseline [FKL+21]’s ZK RAM.

Usage: test_ram_ram_test PARTY PORT logN IP
where PARTY=1,2 and logN denotes the bit-length of
each entry in RAM.

A.4 Evaluation Workflow

Please set environment variable ‘IP=ip’ on V’s machine,
where ip is the machine P’s IP address.

A.4.1 Major Claims

(C1): Parameter ε for accelerating permutation proofs affect
the execution time for our ZK set/ROM/RAM as in Fig-
ure 10. This is proven by the experiment (E1) described
in Section 6 paragraph “Parameter ε for accelerating
permutation proofs”.

(C2): Our ZK RAM outperforms the baseline [FKL+21]’s
ZK RAM. This is proven by the experiment (E2) de-
scribed in Section 6 paragraph “Our RAM/ROM vs.
[26]’s RAM/ROM” whose results are illustrated/reported
in Figures 12 and 14.

(C3): Our ZK ROM outperforms the baseline [FKL+21]’s
ZK ROM. This is proven by the experiment (E3) de-
scribed in Section 6 paragraph “Our RAM/ROM vs.
[26]’s RAM/ROM” whose results are illustrated/reported
in Figures 13 and 14.

(C4): Our ZK RAM outperforms the (optimized) baseline
[GOT+22]’s ZK RAM. This is proven by the experiment
(E4) described in Section 6 paragraph “Our RAM vs.
[20]’s RAM” whose results are illustrated/reported in
Figure 15.

(C5): The bottleneck of our ZK ROM/RAM is the Access
phase. This is proven by the experiment (E5) described in
Section 6 paragraph “Microbenchmarks” whose results
are illustrated/reported in Figure 16.

94 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

A.4.2 Experiments

(E1): [Figure 10] [10 human-minutes + 0.5 compute-hours
of two machines + 32GB memory each machine/party]:
Please cd to the folder build.
Machines we used: AWS EC2 m5.2xlarge.
Preparation: For both machines, let the name of net-
work card be ens5, please set up the network as follows:

1. DEV=ens5 (change ens5 accordingly)
2. If there exists a previous old setting, initialize it:

sudo tc qdisc del dev $DEV root

3. sudo tc qdisc add dev $DEV root handle
1: tbf rate 25Mbit burst 100000 limit
10000 (resp. 100Mbit, 500Mbit, 1Gbit)

4. sudo tc qdisc add dev $DEV parent 1:1
handle 10: netem

Recall that the intended network is 25Mbps, 100Mbps,
500Mbps, 1Gbps. You can use iperf to check it. For
each network setting, the following execution needs to
be executed repeatedly (i.e., 4 times).
Execution: There are three related executable files: our
ZK set, ROM, and RAM. Execute them as:

• Our ZK set:
For each ε = 2,4,8,16,32,64,128:
P machine:
./bin/test_arith_inset_zk_rom_block 1
44444 20 ε localhost
V machine:
./bin/test_arith_inset_zk_rom_block 2
44444 20 ε $IP

• Our ZK ROM:
For each ε = 2,4,8,16,32,64,128:
P machine:
./bin/test_arith_zk_rom_block 1 44444
20 ε localhost
V machine:
./bin/test_arith_zk_rom_block 2 44444
20 ε $IP

• Our ZK RAM:
For each ε = 2,4,8,16,32,64,128:
P machine:
./bin/test_arith_zk_ram_block 1 44444
20 ε localhost
V machine:
./bin/test_arith_zk_ram_block 2 44444
20 ε $IP

Results: The time outputted on P or V’s terminal re-
flects the time (per access) in Figure 10. The total com-
munication (per access) is calculated as the sum of the
comm. outputted P’s terminal and V’s terminal. In the
following experiments, we fix ε = 16.

(E2): [Our RAM vs. [FKL+21]’s RAM] [20 human-minutes
+ 1 compute-hours of two machines + 32GB memory

each machine/party]: Please cd to the folder build for
our ZK RAM; and cd to the folder baseline/build for
baseline [FKL+21]’s ZK RAM.
To simplify the re-experiment, we highly recommend
the reader to use Figures 22 and 23 in our full version4

to check Figure 12. Figures 22 and 23 include the pre-
cise data used to plot Figure 12. Meanwhile, Figure 14
includes identical (partial) data from Figures 22 and 23.
Machines we used: AWS EC2 m5.2xlarge.
Preparation: For both machines, let the name of net-
work card be ens5, please set up the network as follows:

1. DEV=ens5 (change ens5 accordingly)
2. If there exists a previous old setting, initialize it:

sudo tc qdisc del dev $DEV root

3. sudo tc qdisc add dev $DEV root handle
1: tbf rate 25Mbit burst 100000 limit
10000 (resp. 100Mbit, 500Mbit, 1Gbit)

4. sudo tc qdisc add dev $DEV parent 1:1
handle 10: netem

Recall that the intended network is 25Mbps, 100Mbps,
500Mbps, 1Gbps. You can use iperf to check it. For
each network setting, the following execution needs to
be executed repeatedly (i.e., 4 times).
Execution: There are two related executable files: our
ZK RAM and baseline [FKL+21]’s ZK RAM. Execute
them as:

• Our ZK RAM (cd to the folder build):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_zk_ram_block 1 44444 ℓ
16 localhost
V machine:
./bin/test_arith_zk_ram_block 2 44444 ℓ
16 $IP

• Baseline [FKL+21]’s ZK RAM (cd to the folder
baseline/build):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_ram_ram_test 1 44444 ℓ
localhost
V machine:
./bin/test_ram_ram_test 2 44444 ℓ $IP

Results: The time printed on V’s terminal reflects the
number in Figures 22 and 23 (row RAM) of the full
version, which is used to plot Figure 12. Note that each
point in Figure 12 is defined by tbaseline/tourRAM.
The comm. outputted on P’s terminal is the communi-
cation (per access) from P to V. Similarly, the comm.
outputted on V’s terminal is the communication (per
access) from V to P.

(E3): [Our ROM vs. [FKL+21]’s ROM] [20 human-minutes
+ 0.5 compute-hours of two machines + 32GB memory

4https://eprint.iacr.org/2023/1115.pdf

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 95

https://eprint.iacr.org/2023/1115.pdf

each machine/party]: Please cd to the folder build for
our ZK ROM; and cd to the folder baseline/build for
baseline [FKL+21]’s ZK ROM.
To simplify the re-experiment, we highly recommend
the reader to use Figures 22 and 23 in our full version5

to check Figure 13. Figures 22 and 23 include the pre-
cise data used to plot Figure 13. Meanwhile, Figure 14
includes identical (partial) data from Figures 22 and 23.
Machines we used: AWS EC2 m5.2xlarge.
Preparation: For both machines, let the name of net-
work card be ens5, please set up the network as follows:

1. DEV=ens5 (change ens5 accordingly)
2. If there exists a previous old setting, initialize it:

sudo tc qdisc del dev $DEV root

3. sudo tc qdisc add dev $DEV root handle
1: tbf rate 25Mbit burst 100000 limit
10000 (resp. 100Mbit, 500Mbit, 1Gbit)

4. sudo tc qdisc add dev $DEV parent 1:1
handle 10: netem

Recall that the intended network is 25Mbps, 100Mbps,
500Mbps, 1Gbps. You can use iperf to check it. For
each network setting, the following execution needs to
be executed repeatedly (i.e., 4 times).
Execution: There are two related executable files: our
ZK ROM and baseline [FKL+21]’s ZK ROM. Execute
them as:

• Our ZK ROM (cd to the folder build):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_zk_rom_block 1 44444 ℓ
16 localhost
V machine:
./bin/test_arith_zk_rom_block 2 44444 ℓ
16 $IP

• Baseline [FKL+21]’s ZK ROM (cd to the folder
baseline/build):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_ram_ro_ram_test 1 44444 ℓ
localhost
V machine:
./bin/test_ram_ro_ram_test 2 44444 ℓ
$IP

Results: The time printed on V’s terminal reflects the
number in Figures 22 and 23 (row ROM) of the full
version, which is used to plot Figure 12. Note that each
point in Figure 12 is defined by tbaseline/tourROM.
The comm. outputted on P’s terminal is the communi-
cation (per access) from P to V. Similarly, the comm.
outputted on V’s terminal is the communication (per
access) from V to P.

5https://eprint.iacr.org/2023/1115.pdf

(E4): [Our RAM vs. [GOT+22]’s RAM] [20 human-minutes
+ 0.5 compute-hours of two machines + 32GB memory
each machine/party]: Please cd to the folder build.
To simplify the re-experiment, we highly recommend
the reader to use Figures 22 and 24 in our full version6 to
check Figure 15. Figures 22 and 24 include the precise
data used to plot Figure 15.
Machines we used: AWS EC2 m5.2xlarge.
Preparation: For both machines, let the name of net-
work card be ens5, please set up the network as follows:

1. DEV=ens5 (change ens5 accordingly)
2. If there exists a previous old setting, initialize it:

sudo tc qdisc del dev $DEV root

3. sudo tc qdisc add dev $DEV root handle
1: tbf rate 25Mbit burst 100000 limit
10000 (resp. 100Mbit, 500Mbit, 1Gbit)

4. sudo tc qdisc add dev $DEV parent 1:1
handle 10: netem

Recall that the intended network is 25Mbps, 100Mbps,
500Mbps, 1Gbps. You can use iperf to check it. For
each network setting, the following execution needs to
be executed repeatedly (i.e., 4 times).
Execution: There are two related executable files: our
ZK RAM and (our implemented and optimized) baseline
[GOT+22]’s ZK RAM. Execute them as:

• Our ZK RAM (Note that these experiments overlap
with some experiments in E2):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_zk_ram_block 1 44444 ℓ
16 localhost
V machine:
./bin/test_arith_zk_ram_block 2 44444 ℓ
16 $IP

• Baseline [GOT+22]’s ZK RAM:
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_GOT_block 1 44444 ℓ 16
localhost
V machine:
./bin/test_arith_GOT_block 2 44444 ℓ 16
$IP

Results: The time printed on V’s terminal reflects the
number in Figures 22 and 24 (row RAM) of the full
version, which is used to plot Figure 15. Note that each
point in Figure 15 is defined by tbaseline/tourRAM.

(E5): [Fine-grained analysis on our ZK RAM/ROM, Figure
16] [20 human-minutes + 0.5 compute-hours of two
machines + 32GB memory each machine/party]: Please
cd to the folder build.
Machines we used: AWS EC2 m5.2xlarge.

6https://eprint.iacr.org/2023/1115.pdf

96 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2023/1115.pdf
https://eprint.iacr.org/2023/1115.pdf

Preparation: For both machines, let the name of net-
work card be ens5, please set up the network as follows:

1. DEV=ens5 (change ens5 accordingly)
2. If there exists a previous old setting, initialize it:

sudo tc qdisc del dev $DEV root

3. sudo tc qdisc add dev $DEV root handle
1: tbf rate 25Mbit burst 100000 limit
10000 (resp. 100Mbit, 500Mbit, 1Gbit)

4. sudo tc qdisc add dev $DEV parent 1:1
handle 10: netem

Recall that the intended network is 25Mbps, 100Mbps,
500Mbps, 1Gbps. You can use iperf to check it. For
each network setting, the following execution needs to
be executed repeatedly (i.e., 4 times).
Execution: There are two related executable files: our
ZK RAM and our ZK ROM. Execute them as:

• Our ZK RAM (Note that these experiments overlap
with some experiments in E2/E4):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_zk_ram_block 1 44444 ℓ
16 localhost
V machine:
./bin/test_arith_zk_ram_block 2 44444 ℓ
16 $IP

• Our ZK ROM (Note that these experiments overlap
with some experiments in E3):
For each ℓ= 11,12, · · · ,20:
P machine:
./bin/test_arith_zk_rom_block 1 44444 ℓ
16 localhost
V machine:
./bin/test_arith_zk_rom_block 2 44444 ℓ
16 $IP

Results: The (decomposed) time printed on V’s termi-
nal reflects the number in Figure 16.

A.5 Notes on Reusability
We note that more executable files are also generated from our
repository, including those used to perform more experiments
in our full version. See README.md for a complete list.

Finally, we remark that our ZK set/ROM/RAM can be used
as a standalone C++ class, which can be easily re-used in
future developments.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 97

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-Up
	Installation
	Basic test
	Expected executable files

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

