
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

NetShaper: A Differentially Private Network
Side-Channel Mitigation System

Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer, Mathias Lécuyer,
and Aastha Mehta, University of British Columbia

https://www.usenix.org/conference/usenixsecurity24/presentation/sabzi

USENIX Security ’24 Artifact Appendix: NetShaper: A Differentially Private
Network Side-Channel Mitigation System

Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer, Mathias Lécuyer, Aastha Mehta
The University of British Columbia

A Artifact Appendix

A.1 Abstract

In this paper, we present NetShaper, a system that mitigates
network side channel leaks through traffic shaping. Net-
Shaper’s traffic shaping offers differential privacy guaran-
tees while configuring a trade-off between privacy assurances,
bandwidth, and latency overheads. For evaluation, we im-
plement NetShaper on four interconnected machines, where
two of these machines serve as communicating parties, with
the other two functioning as middleboxes. Furthermore, to
expedite the evaluation of experiments involving multiple
transmissions of traffic traces, we construct a traffic shaping
simulator.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our datasets are public. The artifact does not involve de-
structive actions, and there is no security, privacy, or ethical
concerns associated with using it.

A.2.2 How to access

The code for both the traffic shaping simulator and our imple-
mentation of NetShaper can be found on our GitHub reposi-
tory: https://github.com/ubc-systopia/netshaper/tree/AE_v2.0
. First, clone the github repository.

$ git clone --recursive-submodules
https://github.com/ubc-systopia/netshaper.git↪→

$ cd netshaper

To download NetShaper’s dataset, change the directory to
dataset directory and run the following commands:

$ cd dataset
$ wget

https://zenodo.org/api/records/10783814/files-archive↪→

$ unzip files-archive
$ tar -xf netshaper_dataset.tar.gz

Please note that the dataset is essential for the execution of
both the simulator and the testbed implementation. Further
details are available in the README.md.

A.2.3 Hardware dependencies

The simulator requires a machine that should have at least 8
CPU cores, 64 GB of RAM, and a GPU with 24 GB of mem-
ory. To store the dataset and experiment results, simulator
needs 100 GB of disk space. For NetShaper implementation,
we use four machines interconnected in a linear topology.
Each machine should have at least 8 CPU cores, 32 GB of
RAM, 100 GB of disk space, and a 10 Gbps NIC. The ma-
chines should be connected to a LAN, ensuring no interfer-
ence from the public network or other network applications.

A.2.4 Software dependencies

Simulator requires Python 3.10.6 and can be executed on
arbitrary OS without root access. The list of required Python
packages is available in our repository. To compile our code
for NetShaper implementation, we use gcc 11.4.0. The im-
plementation is specific to Ubuntu 22.04. For video server, we
use Nginx 1.23.4. For transport protocol we use Microsoft im-
plementation of the QUIC protocol, MsQUIC 2.2.4. We use
our modified version of wrk2, an HTTP benchmarking tool,
to send requests asynchronously. The list of main software
dependencies are provided in Git repository.

A.2.5 Benchmarks

• Datasets: We use two datasets, one for our video stream-
ing service and another for our web service. Instructions
for accessing these datasets can be found in Section
A.2.2.

• Models: We use TCN model and CNN model from the
Beauty and the Burst paper. Both are included in the
code repository.

• Metrics: We report throughput as number of requests
per second, latency in milliseconds, and accuracy of the
classification. The relative bandwidth overhead is the
number of dummy bytes transmitted normalized to the
size of the unshaped traffic trace. For privacy, we re-
port the privacy loss, ε, as defined in the framework of
differential privacy (Equation 1).

• Data licenses: The Creative Commons Attribution li-
cense.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 211

https://github.com/ubc-systopia/netshaper/tree/AE_v2.0
https://github.com/ubc-systopia/netshaper/tree/AE_v2.0

A.3 Set-up
Here, we offer high-level steps for setting up both the simula-
tor and our implementation. Additionally, each experiment is
accompanied by dedicated setup instructions outlined in the
corresponding section of the README.md file.

A.3.1 NetShaper Implementation

To set up the server and client, ensure that Docker is installed
on the hosting machines, clone the sys repository onto both
of them, download and place the dataset in the /dataset
directory, and execute the ./setup script for the server and
the client. Our scripts will handle the remaining setup proce-
dures. To configure the middleboxes, physical access to the
machines is necessary to adjust the BIOS settings and initiate
a reboot. In addition to Docker, ensure that tcpdump is in-
stalled on these machines to facilitate the collection of traffic
traces. For more details, consult the experiments’ README.md
file.

A.3.2 Traffic Shaping Simulator

Setting up the simulator is comparatively straightforward com-
pared to the testbed; you only need to install the necessary
Python prerequisites.

pip install -r <path-to-simulator>/requirements.txt

A.3.3 Basic Test

After downloading the dataset, to test the simulator, you can
run the following commands:

cd evaluation/web_bandwidth
./run.sh --experiment="dp_interval_vs_overhead_web"

--config_file="configs/dp_interval_vs_overhead_web.json"↪→

The experiment results are stored in reslts directory of this
particular experiment.

A.4 Evaluation Workflow
Each experiment has its dedicated directory under the
/evaluation directory of the NetShaper repository. To exe-
cute the experiment, run ./run.sh with specific arguments
as outlined in the experiment’s README.md file. The parame-
ters of the experiment controlled by a json file stored under
/config directory of the experiment. Note that these param-
eters are specific to each experiment, and their descriptions
can be found in the experiment’s README.md file. The results
of the experiments, including a pickle file and a plot, will
be recorded in a subdirectory of the /results directory for
the experiment, named as the experiment title along with the
date and time of the execution. Certain experiments depend
on a set of helper scripts for execution, data collection, and
result plotting. All these scripts can be found in the /helper
directory within the experiment.

A.4.1 Major Claims

(C1): NetShaper defeats state-of-the-art classifier with pri-
vacy loss (ε) as large as 200. This is proven by the
experiment (E1) described in Section 5.1 whose re-
sults are illustrated in Figure 5.

(C2): When shaping is disabled, the peak system through-
put and the maximum concurrent clients sustained
by the NetShaper middlebox align with those of a
direct connection. The NetShaper middleboxes add
a small latency overhead ,typically less than 10ms,
when compared to a direct connection. This is proven
by experiment (E2) described in Section 5.3. The re-
sults of these experiments are illustrated in Figure 7a
and Figure 7b respectively.

(C3): When shaping is enabled, the latency of video seg-
ments in a video streaming application increases lin-
early with the DP interval. For all configurations in
Section 5.4, NetShaper latency is less than 5s. The
bandwidth overhead of NetShaper decreases as the
DP intervals become larger. Experiments (E3) and
(E4) reproduce results illustrated in Figure 8a and
Figure 8b.

(C4): When shaping is enabled, the latency of webpage
requests in a web service increases linearly with the
DP interval. The minimum bandwidth overhead oc-
curs at T = 50ms. Experiments (E5) and (E6) prove
the results showed in Figure 8c and Figure 8d.

(C5): In both video streaming and web service applica-
tions, NetShaper incurs three order of magnitude
lower bandwidth overhead than constant-rate traffic
shaping. The bandwidth overhead of NetShaper de-
creases as the number of concurrent flows increases.
For video streaming and web service applications,
NetShaper requires 11 flows and more than 40 flows,
respectively to achieve lower overhead Pacer. Exper-
iment (E7) described in Section 5.6 proves this, and
the results are illustrated in Figure 9a and Figure 9b.

A.4.2 Experiments

In this section, we provide a short description of each ex-
periment. For more details on the experiment steps, prepa-
ration, execution, and results, please consult the dedicated
README.md file of each experiment.

(E1): (Empirical Privacy)[5 human-minutes + 72 compute-
hours]: In this experiment, we evaluate the accuracy
of state-of-the-art classifiers under the deployment of
NetShaper traffic shaping. The runtime depends on
GPU architecture, and we used NVIDIA Tesla V100
to train the models. The execution scripts for this

212 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

experiment are stored under the ’classifier’ directory
in the NetShaper repository.

(E2): (Middlebox Throughput and Latency)[30 human-
minutes + 4 compute-hours]: In this experiment, we
measure the maximum throughput that NetShaper
middleboxes can sustain, and the latency overhead
imposed by NetShaper middleboxes. This experi-
ment is located in the ’microbenchmarks’ directory
in the project’s repository.

(E3): (Video Streaming Latency Overhead)[30 human-
minutes + 4 compute-hours]: This experiment evalu-
ates the latency of video streaming application with
NetShaper traffic shaping.

(E4): (Video Streaming Bandwidth Overhead)[5 human-
minutes + 3 compute-hours]: Measuring the band-
width overhead of the video streaming application
with NetShaper traffic shaping.

(E5): (Web Service Latency Overhead)[30 human-minutes
+ 2 compute-hours]: In this experiment, we evaluate
the latency of web service application.

(E6): (Web Service Bandwidth Overhead)[5 human-
minutes + 1 compute-hours]: This experiment mea-
sures the bandwidth overhead of web service with
NetShaper traffic shaping.

(E7): (Comparison with Related Work)[5 human-minutes
+ 4 compute-hours]: In this experiment, we compare
bandwidth overhead of NetShaper with Pacer and
Constant-rate traffic shaping for both video streaming
and web service applications.

(E8): (Impact of Privacy Parameters)[5 human-minutes +
1 computer-minutes] In this experiment, we evalu-
ate the effect of the sensitivity (∆T), noise (σT), and
number of DP queues (N) on privacy loss (ε).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 213

https://secartifacts.github.io/usenixsec2024/

