é} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Holding Secrets Accountable:
Auditing Privacy-Preserving Machine Learning

Hidde Lycklama, ETH Zurich; Alexander Viand, Intel Labs; Nicolas Kuchler,
ETH Zurich; Christian Knabenhans, EPFL; Anwar Hithnawi, ETH Zurich

https://www.usenix.org/conference/usenixsecurity24/presentation/lycklama

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security 24 Artifact Appendix: "Holding Secrets Accountable:
Auditing Privacy-Preserving Machine Learning"

Hidde Lycklama!, Alexander Viand?, Nicolas Kiichler!, Christian Knabenhans?, Anwar Hithnawi!

VETH Zurich *Intel Labs 3EPFL

A Artifact Appendix

This repository contains the artifact for the USENIX 2024
submission “Holding Secrets Accountable: Auditing Privacy-
Preserving Machine Learning”.

A.1 Abstract

In this work, we introduce Arc, an MPC framework designed
for auditing privacy-preserving machine learning. Arc crypto-
graphically ties together MPC training, inference, and audit-
ing phases to allow robust and private auditing. At the core
of our framework is a new protocol for efficiently verifying
inputs against succinct commitments, ensuring the integrity
of the training data, model, and prediction samples across
phases. We evaluate the performance of our framework when
instantiated with our consistency protocol and compare it
to hashing-based and homomorphic commitment-based ap-
proaches, demonstrating that it is up to 10%x faster and up to
10°x more concise.

A.2 Description & Requirements

The artifact is a prototype implementation of the Arc frame-
work. The prototype is designed to focus on evaluating the
overheads of input consistency protocols for MPC compu-
tations. The framework uses the MPC implementation of
MP-SPDZ, a research framework execute MPC programs
with different protocols. Arc extends the MPC protocols in
MP-SPDZ with the ability to check that MPC inputs are con-
sistent with a commitment through a novel consistency check
protocol.

A.2.1 Arc Components

Our implementation consists of the following components.

* MPC auditing functions Implementations of several au-
diting functions (in addition to ML training and infer-
ence) in MP-SPDZ’s DSL.

* MPC consistency utils A helper library with 1) function-
ality to load the correct datasets and models for auditing

and 2) to compute the correct metadata for the inputs
and outputs to run the consistency check protocol on.

* Consistency check protocol The code for the consistency
check protocol based on polynomial commitments. This
component uses Arkworks’ poly_commit library and is
implemented in Rust.

» Share conversion and efficient EC-MPC scripts Our
framework adds functionality to MP-SPDZ for share
conversion and efficient EC-MPC operations, which are
implemented as lower-level MP-SPDZ scripts.

A.2.2 Arc Benchmarks & Evaluation

* DoE-Suite The evaluation is built using the DoE-Suite,
which allows straightforward reproducibility of results
by defining experiments in a configuration file (suite)
and executing them on a set of machines. We provide
the necessary DoE-Suite commands to reproduce all re-
sults. However, it is also possible to obtain the individual
commands used to invoke the framework and run them
manually.

» Utils Experiment runner utility that ties together the
MPC computation, the share conversion and the con-
sistency protocols. This script is the entrypoint for the
remote servers when running the experiment and reads
the experiment instance config file created by doe-suite
for each experiment.

A.2.3 Security, privacy, and ethical concerns

There are no concerns when running this artifact locally.
Please note that executing experiments on your AWS infras-
tructure involves the creation of multiple EC2 instances, re-
sulting in associated costs. Please manually check that any
created machines are terminated afterward.

A.2.4 How to access

The artifact can be accessed at https://github.com/
pps-lab/arc/tree/ae_final

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 129

https://github.com/pps-lab/arc/tree/ae_final/scripts
https://github.com/pps-lab/arc/tree/ae_final/MP-SPDZ
https://github.com/pps-lab/arc/tree/ae_final/script_utils
https://github.com/pps-lab/arc/tree/ae_final/mpc-consistency
https://github.com/pps-lab/MP-SPDZ/tree/85c3c7e65bb7759c96ef540cca96f6a7163d3568
https://github.com/nicolas-kuechler/doe-suite
https://github.com/nicolas-kuechler/doe-suite
https://github.com/pps-lab/arc/tree/ae_final/utils/python_utils
https://github.com/pps-lab/arc/tree/ae_final/utils/python_utils/scripts/experiment_runner.py
https://github.com/pps-lab/arc/tree/ae_final
https://github.com/pps-lab/arc/tree/ae_final

A.2.5 Hardware dependencies

None.

A.2.6 Software dependencies

No private software is required for this artifact. This artifact
has been tested on Ubuntu and MacOS. The artifact relies
on DoE-Suite to install all necessary dependencies on the
end-to-end servers. To run DoE-Suite, we require Python 3.9,
Poetry, AWS CLI and Make to be installed, which are also
highlighted in the installation instructions below. The frame-
work uses Poetry to manage further Python dependencies. The
sub-components require additional dependencies, which must
be installed manually if you wish to run these components
locally (without DoE-Suite). In particular, mpc-consistency
requires Rust to be installed.

A.2.7 Benchmarks

No proprietary benchmarks and public datasets are automati-
cally loaded by the build scripts.

A.3 Set-up

We provide a make command to run a JupyterLab notebook
(artifact.ipynb) to run the experiments and evaluate the artifact.
We strongly recommend following the detailed instructions
in this notebook that is part of the artifact. This ensures that
the environment is set up correctly and that the necessary
dependencies are installed.

A.3.1 Installation

We require Python, Poetry and Make to be installed to run
the artifact. To get a local copy up and running follow these
steps.

1. Local clone of the repository (with submodules!)
git clone --recurse-submodules
git@github.com:pps-lab/arc.git

2. Install Python Poetry
curl -sSL https://install.python-poetry.org
| python3 -

3. Install Make

4. Install Install AWS CLI version 2 (to run remote experi-
ments on AWS)

Environment Variables The doe-suite requires a few envi-
ronment variables and should handle the rest of the configura-
tion automatically (including for the Jupyter notebook) using
relative paths and poetry. Setup environment variables for the
Doe-Suite are displayed in the jupyter notebook.

Root project directory (expects
the doe-suite-config dir in this folder)
export DOES_PROJECT_DIR=

Your unique short name, such as your
organization’s acronym or your initials.
export DOES_PROJECT_ID_SUFFIX=ae

For AWS EC2:

export DOES_CLOUD=aws

Name of ssh key used for setting up access
to aws machines (name of key not path)
export DOES_SSH_KEY _NAME=id_ec_arc

DOES_SSH_KEY_NAME refers to the key the reviewers have
received through artifact evaluation system.

Tip: To make it easier to manage project-specific
environment variables, we recommend a tool like
Direnv. Direnv allows to create project-specific .en-
vre files that set environment variables for specific
working directories. With Direnv, the below envi-
ronment variables would be set in doe-suite/.envrc

Setting up AWS Authentication details can be found in
the Artifact submission system. This will allow the Artifact
reviewers to run the evaluation on the same resources stated
in the paper submission. The experiments on AWS are auto-
mated with DoE-Suite and can be called from the JupyterLab
environment. Reviewers should have received a private key:
id_ec_arc and AWS credentials

1. Move the provided private key id_ec_arc to the .ssh
folder of your home directory (reviewers should have
received the key, otherwise contact us). Ensure the
id_ec_arc key has the correct permissions:
shell chmod 600 ~/.ssh/id_ec_arc

2. Configure AWS credentials using aws
configure. The credentials can be found in the
arc_ae_accessKeys.txt. Set eu-central-1 as the
default region. By default, credentials should be stored
in ~/.aws/credentials.

3. To configure SSH access to AWS EC2 instances, you
need to add a section to your ~/.ssh/config file:

Host ec2*
IdentityFile ~/.ssh/id_ec_arc
User ubuntu
ForwardAgent yes
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

For more details on the installation of doe-suite please refer to
the doe-suite documentation and AWS-specific instructions.

130 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

https://github.com/pps-lab/arc/tree/ae_final/mpc-consistency
https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb
https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb
https://python-poetry.org/
https://www.gnu.org/software/make/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://github.com/nicolas-kuechler/doe-suite/
https://direnv.net/docs/installation.html
https://github.com/pps-lab/arc/blob/master/doe-suite/.envrc
https://nicolas-kuechler.github.io/doe-suite/installation.html#base-installation
https://nicolas-kuechler.github.io/doe-suite/installation.html#aws-specific

Running JupyterLab From this point on it is possible to
run the Jupyter notebook which contains the experiments and
evaluation of the artifact. To launch the Jupyter notebook in
the environment with the correct dependencies, we provide a
make command.

1. Navigate to the doe-suite sub-directory and run make
jupyter which will launch these instructions in the form
of a notebook.

2. Run the first code cell in the notebook to check that it
prints Environment loaded successfully.

If you see any errors, make sure the correct environment
variables are set.

A.3.2 Basic Test (AWS, 30 minutes)

To test that your local machine is configured properly and
that you have access to the AWS resources, you can run the
following command (with doe-suite as working directory):

make run suite=audit_fairness id=new

which will launch two sets of servers on AWS to reproduce
the fairness experiments (Fig. 6, column 1). The command
will run the experiments, fetch the results and store them in
the doe-suite-results folder.

A.3.3 Basic Test (Local, 15 minutes)

We also provide a Makefile in the project’s root directory
to run scripts locally. For this, we require MP-SPDZ depen-
dencies to be installed. We refer to the MP-SPDZ documen-
tation for more details on those dependencies. To install the
framework’s dependencies in the project directory, run make
install.

Datasets You must store the relevant datasets
in the MP-SPDZ/Player-Data directory. We pro-
vide the datasets from the paper, preprocessed to
work with MP-SPDZ, in a public s3 bucket at
http://pps-mpspdz-data.s3.amazonaws.com/
{DATASET_NAME}.zip. Available datasets are: adult_3p,
mnist_full_3party, cifar_alexnet_3party. For the
QNLI dataset, the identifier is glue_qgnli_bert but the data
will be loaded by the compilation script so there is no need to
download it. Then run one of the tasks with the following
command:

poetry run make ring script=inference \
dataset=adult_3p

The framework will compile the script, compile the MP-SPDZ
binaries (which can take tens of minutes) and then run the
script.

A.4 Evaluation workflow

We assume that the following steps are followed within the
JupyterLab environment (artifact.ipynb). This artifact relies
on the DoE-Suite to manage experiment configurations, or-
chestrate the execution of experiments, collect the results and
post-process them into tables and plots.

The doe-suite can be run using a set of commands defined
in a Makefile in the doe-suite directory that invoke Ansible.
Use make run to run experiments, from now on referred to as
suites, that are defined in the doe-suite-config/designs direc-
tory. Each suite defines a set of Ansible roles that are used to
configure the remote machines running Ubuntu 22.04. Results
of these experiments are then combined together into plots
that are defined in the doe-suite-config/super_etl directory.

For each result shown in the paper, we have a separate
section that contains:

1. Code to create and display the plot shown in
the paper and corresponding dataframe based on
the output files from the benchmarks (stored in
doe-suite-results-cameraready). These files can
be downloaded from this polybox.

2. The command to reproduce the results on AWS. You
can uncomment the command and run the cell with Ctrl
+ Enter. Due to the large amount of output and long
running time, we recommend to run these commands
in a separate terminal window. The results from these
experiments will be stored in doe-suite-results and
will appear in a separate set of plots in the notebook.

A.4.1 Major Claims

This work introduces two major claims:

(C1): Arc instantiated with our consistency protocol is up to
1074x faster and 10"6x more concise than hashing-based
(SHA3) and homomorphic commitment-based (PED)
approaches.

(C2): Across all settings, Arc significantly outperforms re-
lated approaches in terms of runtime, with a storage
overhead comparable to the hash-based approach.

Both claims are proven by the experiments in Section 6:
Training (E1, Fig. 4), Inference (E2, Fig. 5) and Auditing
(E3, Fig. 6).

A.4.2 Experiments

For each of training, inference and auditing, we provide a
table of suites that belong to this setting in the Jupyter note-
book. Each row contains a rough estimate of the maximum
duration of running that suite. This estimate is based on the
raw runtimes in the benchmark logs, but the estimation of
the overhead of creating and provisioning the machines may
not be completely accurate. To run a suite, simply select a

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 131

https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb
https://github.com/data61/MP-SPDZ?tab=readme-ov-file#tldr-source-distribution
https://github.com/data61/MP-SPDZ?tab=readme-ov-file#tldr-source-distribution
https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb
https://github.com/nicolas-kuechler/doe-suite
https://github.com/pps-lab/arc/tree/ae_final/doe-suite/Makefile
https://github.com/pps-lab/arc/tree/ae_final/doe-suite-config/designs
https://github.com/pps-lab/arc/tree/ae_final/doe-suite-config/super_etl
https://polybox.ethz.ch/index.php/s/XyjZP7QuXaPWft3/download
https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb
https://github.com/pps-lab/arc/tree/ae_final/artifact.ipynb

suite from the table and invoke doe-suite to run it. We provide
an option to run the suite inline, or in a separate terminal
window.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

132 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Arc Components
	Arc Benchmarks & Evaluation
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test (AWS, 30 minutes)
	Basic Test (Local, 15 minutes)

	Evaluation workflow
	Major Claims
	Experiments

	Version

