
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

UBA-Inf: Unlearning Activated Backdoor Attack
with Influence-Driven Camouflage

Zirui Huang, Yunlong Mao, and Sheng Zhong, Nanjing University
https://www.usenix.org/conference/usenixsecurity24/presentation/huang-zirui

USENIX Security ’24 Artifact Appendix: <UBA-Inf: Unlearning
Activated Backdoor Attack with Influence-Driven Camouflage>

Zirui Huang
Nanjing University

Yunlong Mao*

Nanjing University
Sheng Zhong

Nanjing University

A Artifact Appendix

A.1 Abstract

This artifact includes the core algorithm for UBA-Inf cam-
ouflage generation, along with codes for model training and
unlearning. We provide a shell script for environment setup
and include a comprehensive README.md with detailed in-
structions. A demo is included to facilitate understanding
and reproduction of experiments, covering dataset prepara-
tion, camouflage generation, and obtaining pre-unlearning
and post-unlearning models.

A.2 Description & Requirements

Our experiment utilizes Conda version 4.12.1 and features 4
NVIDIA GeForce RTX 3090 GPUs. Essential prerequisites
include Python ≥ 3.8.19, PyTorch ≥ 2.3.1+cu121, TorchVi-
sion ≥ 0.18.1+cu121, and OpenCV ≥ 4.5.5.

The training and backdoor generation codes are referenced
from BackdoorBench [1].

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns.

A.2.2 How to access

This artifact is accessible from the following URL: https:
//github.com/Huangzirui1206/UBA-Inf/releases/t
ag/v1.0.

A.2.3 Hardware dependencies

Our experiment employs Conda version 4.12.1 and utilizes
four NVIDIA GeForce RTX 3090 GPUs, each with approxi-
mately 25GB of VRAM, leveraging CUDA version 12.1. Ad-
ditionally, each GPU requires around 5GB of memory space.
We assert that this artifact is compatible with other suitable
GPU devices as well.

*Corresponding author, email: maoyl@nju.edu.cn.

A.2.4 Software dependencies

Essential prerequisites include Python ≥ 3.8.19, PyTorch ≥
2.3.1+cu121, TorchVision ≥ 0.18.1+cu121, and OpenCV ≥
4.5.5.

For datasets, CIFAR10 [5], MNIST [6] and Tiny-ImageNet
[8] can be downloaded online automatically through PyTorch
directly during training. For GTSRB [7], evaluators may have
to download it manually.

There model architectures are evaluated in the original
paper, including PreActResNet-18 [2], VGG-16 [3] and
ResNet34 [4]. All models used in this artifact is self-
contained.

A.2.5 Benchmarks

Four datasets are required as benchmarks, namely CIFAR-
10 [5], MNIST [6], GTSRB [7] and Tiny-ImageNet [8].

A.3 Set-up

We provide some shell scripts to automate the evaluation.

A.3.1 Installation

To streamline setup, we provide a script for automatic envi-
ronment configuration:

conda create -n uba-inf python=3.8
conda activate uba-inf
sh ./sh/install.sh
sh ./sh/init_folders.sh

A.3.2 Basic Test

Basic tests can be directly run by:

sh ./sh/demo.sh

For more detailed and comprehensive evaluations and
demonstrations, a ./demo folder is availble. You can go to
README.md for more information.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 263

https://github.com/Huangzirui1206/UBA-Inf/releases/tag/v1.0
https://github.com/Huangzirui1206/UBA-Inf/releases/tag/v1.0
https://github.com/Huangzirui1206/UBA-Inf/releases/tag/v1.0

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): UBA-Inf effectively camouflages the backdoor effect
before unlearning, achieving a low Attack Success Rate
(ASR) to ensure stealthiness. This is proven by the ex-
periment (E1 and E3) described in Section 5.2 whose
results are reported in Table 3 and Table 4.

(C2): The UBA-Inf backdoor effect can be effectively acti-
vated through unlearning, leading to a high ASR. UBA-
Inf is versatile, being applicable to various backdoor
triggers and unlearning algorithms. This is proven by
the experiment (E2 and E3) described in Section 5.2
whose results are reported in Table 3 and Table 4.

A.4.2 Experiments

(E1): [Camouflage effectiveness] [2 human-minutes + 1
compute-hour]: This experiment generates the dataset
with backdoor and camouflage samples and trains the
pre-unlearning model to evaluate the camouflage effect
of UBA-Inf. The injection ratio of backdoor samples and
camouflage samples are demonstrated in Table 13.
How to:
Preparation: Prepare the dataset and construct
UBA-Inf camouflage samples before training. Run
python ./attack/badnet.py ... and
python python ./uba/uba_inf_cover.py
... as presented in README.md.
Execution: Train the model by running python
./uba/perturb_attack.py as presented in the
README.md.
Results: The results can be found in the result folders
in ./record.
Tips: In some cases, training models may cost a lot
of time and resources. For quick evaluation, some pre-
trained models results and intermediate results are avail-
able on cloud: https://transfer.pcloud.co
m/download.html?code=5ZubYP0Zdi1h4h
7kDlJZQzHk7ZxTT766WonFRKP9xDRvv3ijjp
dFXX and https://transfer.pcloud.com/
download.html?code=5ZRhYP0Zdi1h4h7k
DlJZQzHk7ZAxCy8MJSNfRSM718DTBnSLmp
pt3k. More demos are available in ./demo. You can
see more details in the READDME.md file in the repo.

(E2): [Activation effectiveness] [2 human-minutes + 1
compute-hour]: This experiment simulates machine
unlearning by full retraining and obtains the post-
unlearning model to evaluate the camouflage effect of
UBA-Inf.
How to:
Preparation: Evaluators can reuse the datasets gener-
ated in (E1).
Execution: Train the model by running python

./uba/perturb_attack.py as presented in the
README.md but with parameter c_num equal to nil.
This experiment evaluate the UBA-Inf effectiveness with
full retraining as unlearning.
Results: The results can be found in the result folders
in ./record.

(E3): [SISA evaluations] [2 human-minutes + 4 compute-
hour]: This experiment simulates machine unlearning by
SISA [9] and obtains both the pre-unlearning and post-
unlearning SISA models. The injection ratio of backdoor
samples and camouflage samples are demonstrated in
Table 13.
How to:
Preparation: Evaluators can generate the datasets as
described in (E1).
Execution: You first need to con-
struct the backdoor dataset python
./attack/badnet.py --yaml_path
../config/attack/prototype/cifar10.yaml
--save_folder_name
badnet_dataset_sisa_3 --add_cover
1 --epoch 00 --pratio 0.012
--cratio 0.006 --attack_target
6. The construct UBA-Inf camouflages with
python ./uba/uba_inf_cover.py
--dataset_folder
../record/badnet_dataset
_sisa_3 --device cuda:3
--recursion_depth 50 --r_averaging
1 --ft_epoch 60 --ap_epochs 6.
Train the model by running python
./uba/perturb_attack_sisa.py as pre-
sented in the README.md. This experiment obtains
both the pre-unlearning and post-unlearning SISA
models for effectiveness evaluation.
Results: The results can be found in the result folders
in ./record.

For your reference, after executing python
./attack/badnet.py ... to construct the datasets,
you should see outputs similar to those shown in Fig-
ure 1. After running python ./uba/uba_inf_cover.py
... to construct the camouflage, the outputs will re-
semble those in Figure 2. Finally, executing python
./uba/perturb_attack.py ... to train the pre-training
or post-training models will produce outputs like those
displayed in Figure 3.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

264 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://transfer.pcloud.com/download.html?code=5ZubYP0Zdi1h4h7kDlJZQzHk7ZxTT766WonFRKP9xDRvv3ijjpdFXX
https://transfer.pcloud.com/download.html?code=5ZubYP0Zdi1h4h7kDlJZQzHk7ZxTT766WonFRKP9xDRvv3ijjpdFXX
https://transfer.pcloud.com/download.html?code=5ZubYP0Zdi1h4h7kDlJZQzHk7ZxTT766WonFRKP9xDRvv3ijjpdFXX
https://transfer.pcloud.com/download.html?code=5ZubYP0Zdi1h4h7kDlJZQzHk7ZxTT766WonFRKP9xDRvv3ijjpdFXX
https://transfer.pcloud.com/download.html?code=5ZRhYP0Zdi1h4h7kDlJZQzHk7ZAxCy8MJSNfRSM718DTBnSLmppt3k
https://transfer.pcloud.com/download.html?code=5ZRhYP0Zdi1h4h7kDlJZQzHk7ZAxCy8MJSNfRSM718DTBnSLmppt3k
https://transfer.pcloud.com/download.html?code=5ZRhYP0Zdi1h4h7kDlJZQzHk7ZAxCy8MJSNfRSM718DTBnSLmppt3k
https://transfer.pcloud.com/download.html?code=5ZRhYP0Zdi1h4h7kDlJZQzHk7ZAxCy8MJSNfRSM718DTBnSLmppt3k
https://secartifacts.github.io/usenixsec2024/

Figure 1: Possible output of data construc-
tion.

Figure 2: Possible output of camouflage
construction.

Figure 3: Possible output of training pre-
unlearning or post-unlearning models.

References

[1] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao
Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. 2024.
BackdoorBench: a comprehensive benchmark of back-
door learning. In Proceedings of the 36th International
Conference on Neural Information Processing Systems
(NeurIPS ’22). Curran Associates Inc., Red Hook, NY,
USA, Article 766, pp. 10546–10559.

[2] Kaiming He, Ross B. Girshick, and Piotr Dollár. 2016.
Identity Mappings in Deep Residual Networks. In Pro-
ceedings of the European Conference on Computer Vi-
sion (ECCV ’16). Springer International Publishing,
Cham, Switzerland, pp. 630–645.

[3] Karen Simonyan and Andrew Zisserman. 2015. Very
Deep Convolutional Networks for Large-Scale Image
Recognition. In Proceedings of the International Confer-
ence on Learning Representations (ICLR ’15).

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Learning for Image Recogni-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR ’16).

[5] Alex Krizhevsky. 2009. Learning Multiple Layers of Fea-
tures from Tiny Images. Technical Report, University of
Toronto.

[6] Yann LeCun, Corinna Cortes, and Christopher J.C.
Burges. 1998. MNIST Handwritten Digit Database.
http://yann.lecun.com/exdb/mnist/.

[7] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. 2012. The German Traffic Sign Recog-
nition Benchmark: A Multi-Class Classification Com-
petition. In Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN ’12).

[8] Li Fei-Fei, Andrej Karpathy, and Justin Johnson. 2015.
Tiny ImageNet Visual Recognition Challenge (Stanford
University). https://tiny-imagenet.herokuapp.com/.

[9] Lucas Bourtoule, Varun Chandrasekaran, Christo-
pher A. Choquette-Choo, Hubert Eichinger, Yutong
He, Athanasios Mourtgos, Benny Pinkas, Nicolas
Papernot, and Maria Apostolaki. 2021. Machine
Unlearning. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (SP). IEEE,
https://ieeexplore.ieee.org/document/9519498.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 265

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

