
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

PURE: Payments with UWB RElay-protection
Daniele Coppola, Giovanni Camurati, Claudio Anliker, Xenia Hofmeier,

Patrick Schaller, David Basin, and Srdjan Capkun, ETH Zurich
https://www.usenix.org/conference/usenixsecurity24/presentation/coppola

USENIX Security ’24 Artifact Appendix: PURE: Payments with UWB
RElay-protection

Daniele Coppola
ETH Zurich

Giovanni Camurati
ETH Zurich

Claudio Anliker
ETH Zurich

Xenia Hofmeier
ETH Zurich

Patrick Schaller
ETH Zurich

David Basin
ETH Zurich

Srdjan Capkun
ETH Zurich

A Artifact Appendix

A.1 Abstract
Our artifacts consist of the source code for the proof-of-
concept (PoC) implementation, the datasets collected to eval-
uate our implementation, and the formal model of PURE in
Tamarin. The source code consists of an Android app im-
plementing the stand-alone and the integrated version of the
protocol. Moreover, it contains the firmware needed to flash
the UWB board used for the ranging. We provide analysis
scripts used to derive the reliability and security results pre-
sented in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifacts do not pose any risk for the evaluators.

A.2.2 How to access

All artifacts can be accessed via Github. The project consists
of three repositories

• pure-poc1: contains the proof-of-concept code which can
be run on Android phones equipped with UWB boards.

• pure-sec-rel2: contains the analysis of the proposed pro-
tocol in terms of reliability and security.

• pure-models3: contains the Tamarin models used to for-
mally prove the security of the proposed EMV extension.

A.2.3 Hardware dependencies

To run the Android apps, two Android phones are necessary.
For the UWB ranging the following hardware is necessary

1https://github.com/pure-uwb/pure-poc/tree/
f73633f9716e42d0b8917912c72c912b479f3153

2https://github.com/pure-uwb/pure-sec-rel/tree/
77cc1792f79bec02b59168ee922dfe335c972ad3

3https://github.com/pure-uwb/pure-models/tree/
8aef1c0254642b476d9736ae5770c1992e620b27

• 2 x Qorvo DWM3000EVB

• 2 x Nordic Semiconductor nRF52 DK (pca10040)

• 2 x USB-C to USB-A adapter for connecting the boards
to the phones.

Both the Android app and the UWB firmware can be tested
separately in case the phones or the boards are missing. The
interface between the Android app and the UWB implemen-
tation is such that:

• The Android phones write a ranging key over UART and
expect timing information from the board.

• The board expects a ranging key over UART and reports
the timings to the phones.

The experiments in Section A.4.2 do not strictly require this
hardware because they rely on datasets that we collected.
However, the listed hardware is required to execute transac-
tions.

A.2.4 Software dependencies

The UWB firmware requires Segger J-Link to flash the boards.
It can be installed following the instructions on Segger web-
site4. Tamarin prover is required to verify the formal proofs.

A.2.5 Benchmarks

None

A.3 Set-up
A.3.1 Installation

Android application The Android application can easily
be built and installed using Android Studio. It is necessary to
enable on the phones the developer options and USB/WiFi
debugging.

4https://www.segger.com/downloads/jlink/JLink_Linux_
V786e_x86_64.deb

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 281

https://github.com/pure-uwb/pure-poc/tree/f73633f9716e42d0b8917912c72c912b479f3153
https://github.com/pure-uwb/pure-poc/tree/f73633f9716e42d0b8917912c72c912b479f3153
https://github.com/pure-uwb/pure-sec-rel/tree/77cc1792f79bec02b59168ee922dfe335c972ad3
https://github.com/pure-uwb/pure-sec-rel/tree/77cc1792f79bec02b59168ee922dfe335c972ad3
https://github.com/pure-uwb/pure-models/tree/8aef1c0254642b476d9736ae5770c1992e620b27
https://github.com/pure-uwb/pure-models/tree/8aef1c0254642b476d9736ae5770c1992e620b27
https://www.segger.com/downloads/jlink/JLink_Linux_V786e_x86_64.deb
https://www.segger.com/downloads/jlink/JLink_Linux_V786e_x86_64.deb

UWB firmware We provide a vagrant script to create a VM
from which it is possible to build and install the binary on the
boards.

Data Analysis We provide a python virtual environment
containing all packages needed to run the analysis. Moreover,
a download script can be executed to download the datasets
from a publicly available link.

A.3.2 Basic Test

In order to flash the boards, please make sure that they are
visible from within the VM executing the command lsusb.
Moreover, in the VM running nrfjprog -i should list the iden-
tifier of the connected UWB boards. Installing the Android
apps should be straightforward with Android Studio.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The absolute threshold necessary to limit a ghost peak
attack to 2−49 on a Qorvo DWM3000 is 702 PURE. This
result is proven by Experiment 1 and shown in Figure 9.

(C2): An absolute threshold of 702 achieves a 2% false re-
jection rate (FRR) in realistic payment scenarios with a
maximum accepted relay of 46 cm. This result is proven
by Experiment 2 and shown in Table 2.

(C3): The DH share is authentic and secret, and the AIP is
authentic. This result is described in Section 3.3 and can
be verified through Experiment 3.

(C4): PURE introduces at most 78 ms delay. This result is
presented in Table 2 and supported by Experiment 4.

A.4.2 Experiments

(E1): [10 human-minutes]: In this experiment the probabil-
ity of a ghost peak attack against an absolute threshold
is evaluated. We provide the dataset collected while in-
jecting UWB packets into a DWM300 board with an
increasing number of correct STS bits. The script analy-
ses the corrected CIRs and outputs Figure 9. We do not
include the code used for the data collection.
Preparation: Following the README pure-sec-
rel/pure-reliability, download the dataset and install the
required python dependecies.
Execution: Execute python3 nsame-analyze-plot.py –
single nsame_2000_2500.
Results: The generated plot shows the success rate of a
ghost peak attack as a function of the absolute threshold
used to verify a peak.

(E2): [10 human-minutes]: This experiment analyzes the
CIRs collected in contactless payment scenarios. The
data collection process (not included in this experiment)
is shown in Figure 10.

Preparation: Following the README in pure-sec-
rel/pure-reliability, download the dataset and install the
required python dependecies.
Execution: Execute the reliability_analysis.py with the
parameters listed in the README.
Results: The script prints the FRR for different ac-
cepted relay distances (46 cm, 85 cm, 95 cm).

(E3): [30 human-minutes; 1 hour of computation]: This
experiment provides the model and proofs of the Master-
card protocol extension proposed in PURE.
Preparation: Install tamarin following the instruction
on the tamarin webpage5.
Execution: Execute tamarin as tamarin-prover –prove
EMV_Mastercard_Secure_Ranging_Ext_proof.spthy –
derivcheck-timeout=0. The proofs took 65 minutes on
a computing server running Ubuntu 20.04.3 with two
Intel(R) Xenon(R) E5-2650 v4@2.20GHz CPUs (with
12 cores each) and 256GB of RAM. We have limited the
number of threads to 14 and the memory consumption
(RAM) to 32GB. Depending on the available computa-
tional resources, this may take longer.
Results: Once the proofs finished running, a summary
of each lemma is printed in the console. The lemmas
auth_to_terminal_dh, secrecy_SIGMA are the additional
provne lemmas related to the extension.

(E4): [10 human-minutes] We provide the timings collected
running the PoC implementation on a Samsung S21 and
a Pixel 4. This experiment prints the average and stan-
dard deviation run time of each section of the protocol.
Preparation: Install the python dependencies in tim-
ings/requirements.txt in the pure-poc repo.
Execution: From pure-poc/timings execute python pro-
cess.py.
Results: The script outputs the mean and standard devi-
ation runtime of each part of the protocol for the stand-
alone and the integrated version.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

5https://tamarin-prover.com/. The easiest way to install Tamarin
is through Homebrew

282 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/
https://tamarin-prover.com/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

