é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Pandawan: Quantifying Progress in
Linux-based Firmware Rehosting

loannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele, Boston University
https://www.usenix.org/conference/usenixsecurity24/presentation/angelakopoulos

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

-+ . = ——

ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: Pandawan: Quantifying
Progress in Linux-based Firmware Rehosting

Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele
Boston University
{jaggel, gian, megele} @bu.edu

A Artifact Appendix
A.1 Abstract

Our artifacts include the source code and instructions about
how to install the Pandawan prototype and use it to holistically
re-host and analyze the code of [oT firmware images. We pro-
vide two examples of firmware images that can be analyzed
with Pandawan. We also packaged Pandawan within a docker
image along with the three re-hosting systems (FirmSolo, Fir-
madyne, and FirmAE) and the PyYPANDA dynamic analysis
system that we used to demonstrate Pandawan’s utility. The
docker image can run on any system that has docker installed.

In this appendix, we describe the steps to analyze a sam-
ple firmware image using Pandawan. The analysis process
involves reverse engineering the original firmware kernel, in-
voking Pandawan’s Kernel Augmentation technique and
building an “augmented” custom kernel that is capable of
holistically analyzing IoT firmware code.

Finally, we demonstrate how Pandawan’s holistic re-
hosting and analysis can be used to analyze the IoT kernel
modules within firmware images and how Pandawan’s FICD
technique can be used to compare different re-hosting systems
on their re-hosting capabilities.

A.2 Description & Requirements

A.2.1 How to access

You can access the artifacts at https://github.com/
BUseclab/Pandawan/tree/v1.0.0

A.2.2 Hardware dependencies

None

A.2.3 Software dependencies

Python, Docker and Java (for Ghidra).

A.2.4 Benchmarks

For the artifact evaluation we use an example Netgear
firmware image as a benchmark (id = 1).

A.3 Set-up
A.3.1 Installation

Using the Docker:
Download the docker image from:
https://doi.org/10.5281/zenodo.7865451
Install the docker image:
docker load < firmsolo.tar.gz

git clone https://github.com/BUseclab/Pandawan.git

cd Pandawan

docker build -t pandawan .

Spawn a docker container:

docker run -v $(pwd):/output --rm -it
--privileged pandawan /bin/bash

Manual Installation:

To manually install and run Pandawan you first need to
install these dependencies:

<install_dir>/Pandawan/install.sh
<install_dir>

where <install_dir> is the directory where Pandawan is
installed (/ inside the container).

Install Ghidra:

Follow instuctions in
InstallationGuide.html

Note: The install. sh script will make use of legacy (and
unavailable) compiler toolchains that are currently only in-
stalled within the Docker image. Also we use a modified
version of FirmAE and Firmadyne (to be compatible with
Pandawan) for our experiments. You have to manually mod-
ify the scripts in these systems to specify the installation
directories of Firmadyne and FirmAE (not required if you use
the Docker container).

Set Toolchains:

cd <install_dir>/FirmSolo

Here follow the instructions in https://github.com/
BUseclab/FirmSolo.git to setup the installation directo-
ries and toolchains that will be used by FirmSolo.

Set paths:

cd <install_dir>/Pandawan

Modify the paths. py script and properly set the directories
specified in the script.

https://ghidra-sre.org/

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 367

https://github.com/BUseclab/Pandawan/tree/v1.0.0
https://github.com/BUseclab/Pandawan/tree/v1.0.0
https://doi.org/10.5281/zenodo.7865451
https://ghidra-sre.org/InstallationGuide.html
https://ghidra-sre.org/InstallationGuide.html
https://github.com/BUseclab/FirmSolo.git
https://github.com/BUseclab/FirmSolo.git

A.3.2 Basic Test

Our basic test for Pandawan includes gathering metadata for
a firmware image. Please proceed as follows (assuming you
are using the Docker container):

Spawn a Docker container according to Section A.3.1 and
run:

mkdir -p /output/images/

Download the example images and store them in the output
directory:
git clone \
https://github.com/BUseclab/FirmSolo-data.git

mv ./FirmSolo-data/images/* /output/images/
In this case /output/ is your work directory.

Then execute:
cd /Pandawan

python3 run_pandawan.py 1 -t sl
1ls /output/pandwan_results/Image_Info/

After running the 1s command you
should see a file named 1.pkl within the
/output/pandawan_results/Image_Info/ directory.

Note: The basic test might take a long time (around 2 hours)
due to the static analysis (the mapping of kernel symbols to
configuration options) happening in the background. Increase
the num_of_threads variable within the custom_utils.py
script within FirmSolo’s directory to speed up the experiment.

A.4 Evaluation workflow
A.4.1 Major Claims

Pandawan is a framework that holistically (both the user and
kernel level) re-hosts and analyzes Linux-based [oT firmware
code. Furthermore, the FICD technique, implemented in Pan-
dawan, enables the comparison of different re-hosting systems
based on the re-hosting capabilities. Below we list and prove
the claims related to the evaluation of our artifact.

(C1): Pandawan reverse engineers the original kernel of
a firmware image and builds an “augmented” custom
kernel supported by QEMU that can holistically re-host
and analyze a firmware image. This claim is proven by
experiment (E1), described in Section 5.3 in our paper.

(C2): Downstream analysis systems can use Pandawan’s
holistic analysis results to analyze the binary firmware
kernel modules for bugs and vulnerabilities. This claim

is proven in Experiment (E2), described in Section 5.4
and Table 2 in our paper.

(C3): The FICD technique can be used to compare different
re-hosting frameworks on their re-hosting capabilities.
This claim is proven in Experiment (E3), described in
Section 5.5 and Table 3 in our paper.

A4.2 Experiments

We assume that you use the docker image to perform the

artifact evaluation.

(E1): [Reverse Engineering] [5 human-minutes + 30
compute-minutes + SGB disk]: In this experiment Pan-
dawan reverse engineers the original firmware kernel
and uses the Kernel Augmentation technique to
produce an “augmented” custom kernel conducive to
holistic re-hosting and analysis. Pandawan also pro-
ceeds to create a dedicated PyYPANDA script for the
firmware image and holistically re-host it using Py-
PANDA.

Preparation: Copy the extracted file-system and kernel
of the target firmware image in the work directory.
Execution: After you install and connect to the docker
container as described in Section A.3.1, proceed to
analyze an example firmware image:

Within the docker execute:
mkdir -p /output/images/

On your host download the images from this link (if you
have not implemented the basic test):

git clone \
https://github.com/BUseclab/FirmSolo-data.git

Execute:
mv ./FirmSolo-data/images/* /output/images/

In this case /output/ is your work directory.

To analyze image 1 with Pandawan, inside your container
execute:

cd /Pandawan/

python3 run_pandawan.py 1 -a -s -g 2700 -p
"\-f 300 \-s \-t \-c"

Pandawan will analyze firmware image 1, reverse
engineer the original firmware kernel and build
a new kernel that is capable of holistically re-
hosting and analyzing image 1. Pandawan will
create a dedicated PyPANDA script for 1 located in
/output/pandawan_results/scratch/1/run.py
and use that script to holistically re-host image 1 with
PyPANDA.

emulation

Results: When the concludes you

368 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

should be able to find the serial log output
(gemu.final.serial.log), the recorded tasks
(i.e., executed programs with their arguments)
(proc_logs. txt), and other information relative to
the re-hosting process in within:

/output/pandawan_results/scratch/1/

Note: Depending on the metadata information ex-
tracted/processed about the original firmware kernel and
the fidelity of the re-hosting (if kernel modules crash
during the re-hosting process) this experiment might
take longer. However, Pandawan implements caching
features during each experiment, which renders future
runs faster.

(E2): [TriforceAFL] [1 human-minute + 1.5 compute-hour]:

In this experiment you use the results from Pandawan’s
holistic analysis and the TriforceAFL kernel fuzzer to
analyze the kernel modules within the target firmware
image.

Preparation: None

Execution: /Pandawan/fuzzing/fuzzing.sh
/Pandawan/ 1 30

This script will use Triforce AFL and the holistic analysis
results of (E1) to fuzz the kernel modules within image
1 for 30 minutes.

The fuzzing.sh script will first run the
get_kernel_traces.py script. This script will
translate Pandawan’s holistic analysis results
(exec_context.pkl and exec_trace.pkl) stored
within /output/pandawan_results/scratch/1/
into seeds that can be used by TriforceAFL to analyze
the firmware kernel modules within image 1. Specifi-
cally, the seeds consist of chains of system calls (see
Table 6 in our paper), traced along with their arguments
by Pandawan during the re-hosting experiment in EI,
that lead to the execution of kernel module code. In
this example, the get_kernel_traces.py will create
seeds for the statistics.ko kernel module within
image 1. Next, fuzzing.sh will invoke TriforceAFL
(/Pandawan/fuzzing/triforce_run.py) to analyze the
above kernel module.

Results: The fuzzing results will be available in the
/output/Fuzz_Results_Cur/1 directory.

(E3): [Comparison Results] [l human-minute + 120

compute-minutes]: In this experiment you use the FICD
technique to compare Pandawan, FirmSolo, Firmadyne,
and FirmAE across the user programs executed, unique
user QEMU Translation Blocks (TBs) executed, kernel
modules loaded, and unique kernel module TBs executed
metrics.

Preparation: None

Execution: Run the re-hosting experiments for each

re-hosting system as follows:

python3 run_pandawan.py 1 -a -s -g 2700 -p
"\-f 300 \-s \-t \-c" (already executed in E1)

python3 run_pandawan.py 1 -a -s -f -g 2700
-p "\-f 300 \-s \-t \-c"

python3 run_pandawan.py 1 -a -s -e -g 2700
-p "\-f 300 \-s \-t \-c"

python3 run_pandawan.py 1 -a -s -d -g 2700
-p "\-f 300 \-s \-t \-c"

python3 run_pandawan.py 1 -c

The first four commands above will run the re-hosting
experiments for all the the compared re-hosting systems
(Pandawan, FirmSolo, Firmadyne, and FirmAE) while
using the FICD technique and will collect the metrics
described previously. The fifth command will output the
metrics for each system so that a comparison between
the systems is possible.

Results: The results will be printed in standard output.
You should see the below output:

Metrics for image 1 across the compared
re-hosting systems

System: pandawan

Executed programs: 23, Unique BBs: 11463
Total KOs: 75, Loaded KOs: 35, Persistent
crashes: 0

Unique KO TBs: 881

System: firmsolo

Executed programs: 23, Unique BBs: 11510
Total KOs: 75, Loaded KOs: 35, Persistent
crashes: 0

Unique KO TBs: 787

System: firmae

Executed programs: 23, Unique BBs: 11862
System firmae does not load KOs

System firmae does not execute KO code
System: firmadyne

Executed programs: 23, Unique BBs: 11209
System firmadyne does not load KOs

System firmadyne does not execute KO code

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 369

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

