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Abstract
Secret sharing is an essential tool for many distributed appli-
cations, including distributed key generation and multiparty
computation. For many practical applications, we would
like to tolerate network churn, meaning participants can
dynamically enter and leave the pool of protocol participants
as they please. Such protocols, called Dynamic-committee
Proactive Secret Sharing (DPSS) have recently been studied;
however, existing DPSS protocols do not gracefully handle
faults: the presence of even one unexpectedly slow node can
often slow down the whole protocol by a factor of O(n).

In this work, we explore optimally fault-tolerant asyn-
chronous DPSS that is not slowed down by crash faults and
even handles byzantine faults while maintaining the same
performance. We first introduce the first high-threshold
DPSS, which offers favorable characteristics relative to
prior non-synchronous works in the presence of faults while
simultaneously supporting higher privacy thresholds. We
then batch-amortize this scheme along with a parallel non-
high-threshold scheme which achieves optimal bandwidth
characteristics. We implement our schemes and demon-
strate that they can compete with prior work in best-case
performance while outperforming it in non-optimal settings.

1 Introduction

Secret sharing [44] is an essential primitive in many
fault-tolerant distributed applications, where a committee of
nodes each hold a share of a secret and the secret can only
be recovered once a threshold of the nodes reveal their shares.
Secret shared data can also be used as input to a confidential
computation using secure multiparty computation (MPC)
without having to reveal the secret data at all.

For many long-running applications where the secret shared
data persists over a long period of time, we need to consider
practical aspects such as network churn, where the committee
membership needs to change periodically due to nodes going
offline. Additionally we may consider stronger adversary
models, like a mobile adversary that may gradually corrupt

even more than the threshold number of nodes. Ordinary se-
cret sharing schemes are no longer secure under these settings.
To overcome these difficulties, previous works [23,40,43,50]
propose and study a generalization of secret sharing called
Dynamic-committee Proactive Secret Sharing (DPSS), where
the secret shares can be refreshed among a possibly different
set of committee nodes, while keeping the secret unchanged.

A limitation of most previous works is that they assume a
perfectly synchronous network, e.g., a synchronous broadcast
primitive or a blockchain. The consequence of this assump-
tion is that these protocols are unsafe under asynchrony. A
node that experiences a temporary network outage must be
ejected after a timeout and deducted from the fault tolerance
threshold; the protocol can be rerun without the ejected
node, but now with a lower fault tolerance. For partially
synchronous or asynchronous settings, very few DPSS pro-
tocols [43,50] have been designed until very recently [45,47].
However, these protocols either incur a high communication
cost (O(n4) to reshare a secret), or lose liveness under
asynchrony [45], or compromise for non-optimal fault
tolerance [47]. In contrast, this work aims to build protocols
which are not only concretely efficient, but also highly robust,
meaning that they perform well even in worst-case scenarios.

Our contributions.

• We design the first asynchronous DPSS protocol which
achieves an O(n3) network bandwidth complexity and
simultaneously achieves optimal fault tolerance and
maintain our performance even under byzantine faults.
This protocol additionally functions as the first realiza-
tion of high-threshold resharing in a DPSS protocol.

• We additionally provide a batch-amortized version of
our high-threshold scheme which achieves a network
complexity of O(n2) and a third scheme which no
longer supports high-threshold secrets but achieves an
optimal O(n) amortized network bandwidth even under
byzantine faults. All three schemes are implemented
and the source code is made available.
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• We provide a security analysis of our protocols under
the UC framework.

• We survey and discuss numerous applications of our
DPSS schemes, such as in confidential blockchains and
MPC. We additionally introduce a new application,
"BMR escape hatches", in which DPSS-persisted pre-
computation can be leveraged to allow for the speedy exe-
cution of MPC programs (in our example, an MPC Auto-
mated Market Maker) in periods of high network activity.

1.1 Related Work

We begin with a survey (summarized in Table 1) of prior
DPSS works under a variety of fault and network assump-
tions. While all of these works offer an asymptotic best case
performance value, few actually analyze how their protocols
perform in the presence of multiple crash faults (let alone
byzantine faults). Consequently, many of the asymptotic
performances of prior works under faults in Table 1 are the
result of our own estimates.

Synchronous DPSS schemes. The problem of proactive
secret sharing was first introduced by Herzberg et al. [32],
where a mobile adversary which gradually corrupted different
members of a static committee holding some shared secret
could be defended against via periodic share refreshes, each at
communication cost of O(n3). Desmedt et al. [23] initiated the
study of dynamic proactive secret sharing under synchrony,
however, their protocol only considers a passive adversary
which merely observes the protocol, but does not attempt to
interfere with it. Wong et al. [46] proposed a verifiable DPSS
solution extending the work of Desmedt et al. [23]. However,
their solution requires all new committee members are honest,
and has an exponential communication cost in the worst case.

The work of Baron et al. [7] provides statistical (rather
than cryptographic) security but with a non-optimal re-
silience threshold t < (1/2− ε)n. They can achieve O(n3)
communication for the single-secret setting, and O(1) for the
batch setting thanks to the use of virtualization techniques.
However, these virtualization techniques are impractical in
actual implementations as they require extraordinarily-large
groups to function (to use an epsilon value small enough
to achieve a t < n/3 fault tolerance would require 576
committees of 576 nodes each running maliciously secure
MPC. More discussion of this can be found in [40]).
Additionally, the secrets in this scheme are all packed into
the same polynomial and can not be used independently.

CHURP [40] uses asymmetric bivariate polynomials to
refresh a secret with cost O(n2) in the best case (when there
are no faults), and cost O(n3) in the worst case. Goyal et
al. [29] recently proposed the state-of-the-art synchronous
DPSS scheme that improves the cost of CHURP by a factor
of O(n) in the batch setting. Similar to CHURP, their protocol
optimizes the optimistic-case cost to O(n2), but has worst-
case cost O(n3) for the single-secret setting or O(n2) for the

batch setting. Similar to our scheme, they use a randomness
extraction technique [10] for the batch setting. Benhamouda et
al. [11] also designed a DPSS scheme with a guarantee called
player replaceability that ensures the committee is anonymous
until it performs any action. As a result, the DPSS protocol can
be run in small committees and has a communication cost that
is polynomial in the security parameter and independent of the
total number of nodes. They consider a fully mobile adversary
and thus the solution tolerates only (1−

√
0.5)n corruptions.

Partially synchronous DPSS schemes. The only par-
tially synchronous DPSS schemes we are aware of are
Schultz-MPSS [43] and the very recent work COBRA [45].
Schultz-MPSS [43] follows the primary-based approach
where every iteration a primary node will determine a
proposal containing the blinding polynomials (Herzberg et
al. [32]). Practical Byzantine Fault Tolerance (PBFT) [18] is
used to ensure agreement among all nodes. Similar to PBFT,
malicious primaries need to be replaced via view-change, and
the protocol only makes progress during periods of synchrony.

COBRA [45] uses Verifiable Secret Sharing (VSS) to
generate blinding polynomials to facilitate resharing. Notably,
as VSS does not guarantee that all honest parties receive
shares, COBRA implements a share recovery mechanism
in which for each player Pi requesting a missing share, a
random polynomial R(·) is generated where R(i) = 0 and
shares of φ(·)+R(·) are sent to Pi. However, this recovery
protocol costs O(n3) network communication per recovered
share and t honest parties may need to run it if some dealers
crashed during the resharing phase. By using Asynchronous
Complete Secret Sharing (ACSS), which guarantees that if
one honest party outputs successfully then eventually all will,
we are able to avoid this issue completely.
Asynchronous DPSS schemes. Cachin et al. [15] initiated
the study of PSS under asynchronous networks, with a O(n4)
cost solution based on resharing the shares of the secret via
AVSS and agreeing on the resharing via Validated Byzantine
Agreement (VBA). Their scheme inspires our first DPSS
construction. Zhou et al. [50] proposed the first dynamic-
committee PSS scheme but with exponential cost. Then, the
communication cost of asynchronous DPSS was improved to
O(n3logn) very recently by Shanrang [47]. However, Shan-
rang has non-optimal resilience of t <n/4 and defaults to a
synchronous fallback in the presence of byzantine behaviour.

Moreover, all existing asynchronous DPSS schemes do
not consider high-threshold secrets, and do not attempt
to achieve better amortized cost for the batch setting. In
contrast, our work improves the communication cost of the
state-of-the-art asynchronous DPSS protocol, while providing
many desirable features such as optimal resilience, no trusted
setup (i.e. no Structured Reference String is required to
use the protocol), high-threshold reconstruction and batch
amortization. For low-threshold secrets, our protocol can
even achieve amortized linear cost assuming the trusted setup
of KZG [33] polynomial commitments.
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Table 1: Comparison to Existing DPSS Schemes. For “Reshare Amortized”, the faults are Byzantine, and “—” means the cost
is the same as “Reshare Byzantine”. For other places, “—” means not applicable.

Scheme Network
Fault

Tolerance
Dynamic

High-
Threshold

Reshare
Best-case

Reshare
Crash

Reshare
Byzantine

Reshare
Amortized

No Trusted
Setup

Herzberg et al. [32] Sync n/2 ✗ ✗ O(n3) O(n3) O(n3) — ✓

Desmedt et al. [23] 1 Sync n/2 ✓ ✗ O(n2) — — — ✓

Wong et al. [46] Sync n/2 ✓ ✗ exp(n) exp(n) exp(n) — ✓

Baron et al. [7] Sync (1/2−ε)n ✓ ✗ O(n3) O(n3) O(n3) O(1) 2 ✓

CHURP [40] Sync n/2 ✓ ✓ 3 O(n2) O(n3) O(n3) — ✗

Benhamouda [5] Sync (1−
√

0.5)n ✓ ✗ poly(κ) poly(κ) poly(κ) — ✓

Goyal et al. [29] Sync n/2 ✓ ✗ O(n2) O(n3) O(n3) O(n2) ✗

Schultz-MPSS [43] P. Sync 4 n/3 ✓ ✗ O(n4) O(n4) O(n4) — ✓

COBRA [45] P. Sync n/3 ✓ ✗ O(n3) O(n4) O(n4) — ✗ 5

Cachin et al. [15] Async n/3 ✗ ✗ O(n4) O(n4) O(n4) — ✗

Zhou et al. [50] Async n/3 ✓ ✗ exp(n) exp(n) exp(n) — ✓

Shanrang [47] Async n/4 ✓ ✗ O(n3logn) O(n3logn) O(n4) — ✗

This work Async n/3 ✓ ✓ O(n3) O(n3) O(n3) O(n2) ✓

This work Async n/3 ✓ ✗ — — — O(n) ✗

1 Desmedt et al. [23] is not verifiable, and
assumes passive adversary.

2 Requires impractically-large committee
sizes.

3 CHURP [40] only supports dual-threshold.
4 Schultz-MPSS [43] claims asynchrony but

their protocol uses PBFT [18] and requires
eventual synchrony for liveness.

5 COBRA [45] uses KZG commitments [33],
but it is possible to use other commitment
schemes with no trusted setup, while keeping
the same asymptotic cost.

2 Preliminaries

System Model. We assume an asynchronous network of
interconnected nodes, such that each pair of nodes can commu-
nicate over a reliable authenticated channel which guarantees
eventual correct transmission. We assume a static Probabilis-
tic Polynomial Time adversary A which can arbitrarily delay
any message but can not read messages sent between honest
nodes nor prevent them from eventually arriving. The adver-
sary also controls t nodes in the old committee C and t ′ nodes
in the new committee C′ such that t< |C|/3 and t ′< |C′|/3.

The new committee can contain any number of the same
members as the old committee (however, they must use new
public keys) and A can choose which nodes to corrupt in
each. In the case of static committees, this is equivalent
to a mobile adversary who can over the course of several
refresh periods corrupt every node (though no more than t
in one epoch). Our epoch definition and the corresponding
constraint on the adversary follows MPSS [43] with the
important distinction that a node corrupted at the beginning
of Resharing in epoch i is considered corrupted in epoch i+1.
More details can be found in the full version of this paper.

Notation. Let g and h be independent generators of a prime
order cyclic group G with order p in which the discrete log
problem is believed to be hard and let Zp be a finite field
of order p. For a given secret s ∈ Zp, we use [s] to refer to
a secret share of s. Additionally we may use [s]d to specify
a d-sharing of s, meaning that d + 1 shares are needed to
reconstruct it. Lastly, [s]id refers to the specific d-sharing of

s held by player Pi.
In order to achieve our secrecy properties, it is often

necessary to pair a given secret s with a blinding secret ŝ,
such as the case where the Pedersen commitment (gshŝ) is
visible to the adversary. We use theˆsymbol generally to refer
to a blinding object, such as a blinding polynomial φ̂(x). Any
object with the ˆ symbol above it is assumed to be sampled
uniformly randomly.

Additionally, we may use parentheses around an operation
to clarify that only the output is public. For example, in
the Pedersen commitment (gshŝ), gs and hŝ are not known
individually. Similarly (s+r) indicates that only the sum of
s and r is known.

When defining a polynomial, we may use x and y as free
variables and i and j as indices. For example, φ(x) is a
polynomial, φ(i) is a point, φ(x,y) is a bivariate polynomial,
and φ(x, j) is a univariate polynomial.

Lastly we use C to refer to the old committee of nodes
which is set to transfer their shares to a new committee C′.
More generally, we use ′ when an object is held by one or
more members of C′: φ′(x) is a polynomial held by C′, and
[ŝ′] j

d is the share of the d-shared blinding secret of s held by
P′j, the j’th member of C′.

2.1 Asynchronous Complete Secret Sharing

Asynchronous Complete Secret Sharing (ACSS) is a protocol
in which a dealer distributes shares of some secret s, such
that any d+1 correct shares can be combined to recreate s.
A controls t nodes and in the general case d = t, but in the
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high-threshold setting, t≤d≤n−t−1. Compared to ordinary
Shamir Secret Sharing, an ACSS adds a completeness
property which guarantees that if the ACSS protocol
terminates, then every honest party will eventually receive
a correct share of s. Moreover, this will be the case even
if network messages can be arbitrarily delayed. An ACSS
scheme consists of the following subprotocols:

• Share(C,t,d,s)→⟨{[s]id}Pi∈[C],aux⟩: A dealer D shares
some secret s to a committee C with t corrupt nodes,
such that d + 1 shares will be needed to reconstruct s.
Some auxiliary information aux may also be output and
used to guarantee the success of Rec.

• Rec(C,t,d,{[s]id}Pi∈[C],aux)→ ⟨s⟩: Each party Pi ∈ C
uses their share [s]id (and possibly some auxiliary infor-
mation aux) to publicly reconstruct s.

Secret Sharing protocols are often defined in terms of the
properties they achieve. In this work, we describe properties
for our schemes to achieve along with an ideal functionality
which realizes them. For a protocol with a Share and Rec in-
terface to provide ACSS, it must have the following properties

• Correctness: If D is correct, then Share will result in
correct parties eventually outputting [s]id . Once Share is
complete, if all honest parties perform Rec, they will output
s as long as at most t players are corrupt.

• Secrecy: If D is correct, then for any non-uniform PPT
adversary A controlling up to t members of C, there
exists a PPT simulator S such that the output of S and
A’s view in the real-world protocol are computationally
indistinguishable.

• Agreement: If any correct party outputs in Share, then there
exists a canonical secret s̃ such that each correct party Pi
eventually outputs ⟨[s̃]id ,aux⟩ and s̃ is guaranteed to be cor-
rectly reconstructed in Rec. Moreover, if D is honest, s̃=s.

A high-threshold ACSS scheme additionally has the
following property:

• High-Threshold: The privacy threshold d can be different
from the correctness threshold t. Specifically, d can be
between t and |C|− t−1. Thus, the protocol can tolerate
t byzantine corruptions and an additional d−t honest-but
curious corruptions.

2.2 Dynamic-committee Proactive Secret
Sharing

We next describe a protocol to transfer an already-shared se-
cret from one committee to another. Previous work originally
defined Proactive Secret Sharing as a mechanism by which
a committee holding shares of some secret s could refresh the
shares, i.e. generate a new set of random shares that recon-
struct to the same secret. This was done to defend against a

mobile adversary who could eventually compromise all nodes,
but never more than a fixed percentage at a time. Later work
added a dynamic-committee property in which the committee
holding the new set of shares could contain a different set of
nodes than the old committee, optionally with some overlap.

We define Dynamic-Committee Proactive Secret Sharing
(DPSS) as an ACSS protocol with an additional Reshare
function:

• Reshare(C,C′,t,t ′,d,d′,{[s]id}Pi∈[C],aux)→
⟨{[s] j

d}P′j∈[C′],aux′⟩: The old committee C creates a new
d′-sharing of s for the new committee C′

This Reshare function should have the following
properties:

• Correctness: C′ will receive a sharing [s′]d′ such that
invoking Rec will reveal that s′=s.

• Secrecy: For every non-uniform PPT adversary A control-
ling t members of C and t ′ members of C′, there exists a PPT
simulator S such that the output of S and A’s view in the
real-world protocol are computationally indistinguishable.

• Liveness: If a byzantine PPT adversary A controls up to
t parties in C and t ′ parties in C′, and additionally controls
all message ordering, A can not prevent Reshare from
completing.

A DPSS scheme can additionally be resizable:

• Resizability: |C| and |C′| can be different as long
as t ′ < |C′|/3 and d′ = t ′ in the normal setting or
t ′≤d′≤|C′|−t ′−1 in the high-threshold setting.

We additionally define a functionality FDPSS in Appendix A
which realizes these properties and which we use to prove the
secrecy of our scheme. As it is often useful for different appli-
cations, our FDPSS provides an interface by which to homo-
morphically combine shares from different Share instances
(as an arbitrary linear combination) and either reshare or re-
construct the result. We will elaborate more in Section 3.4.

2.3 Multi-valued Validated Byzantine Agree-
ment

Multi-valued validated Byzantine agreement (MVBA) [16]
is a Byzantine fault-tolerant agreement protocol where a
set of protocol nodes each with an input value can agree on
the same value satisfying a predefined external predicate
f (v) : {0, 1}|v| → {0, 1} globally known to all the nodes.
An MVBA protocol with predicate f (·) should provide the
following guarantees except for negligible probability.

• Agreement: All honest nodes output the same value.

• External Validity: If an honest node outputs v, then
f (v)=1.

• Termination: If all honest nodes input a value satisfying
the predicate, all honest nodes eventually output.
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Our protocol uses an MVBA with slightly strong validity
requirement, where the predicate f (v,e) additionally can have
some variable e depending on the execution state of the node
as the input. We will explain more details in Section 3.2.

2.4 Reliable Broadcast

A protocol for a set of nodes where a designated broadcaster
holds an input M, is a reliable broadcast protocol, if the
following properties hold:

• Agreement: If an honest node outputs a message M′ and
another honest node outputs M′′, then M′=M′′.

• Validity: If the broadcaster is honest, all honest nodes
eventually output the message M.

• Totality: If an honest node outputs a message, then every
honest node eventually outputs a message.

Our high-threshold ACSS protocol of Section 3.1 uses the
reliable broadcast protocol of Das et al. [21], which only
assumes collision-resistant hash functions of output size
κ and has a communication complexity O(n|M|+ κn2) to
broadcast a message M.

3 High-Threshold Share Transfer

We first introduce a DPSS protocol which functions with
high-threshold shares, meaning it can support privacy
thresholds between t+1 and n−t. To construct it, we need
both a high-threshold ACSS protocol and a Multi-valued
Validated Byzantine Agreement (MVBA) protocol.

3.1 High-Threshold ACSS

The recent work of Das et al. [22] introduced a high-threshold
ACSS scheme with a total network bandwidth of O(n2).
To summarize, for each share [s], the dealer uses Reliable-
Broadcast to send a discrete log commitment g[s], a Paillier
encryption Enc([s]) under the intended receiver’s public key,
and a Zero Knowledge Proof of Knowledge (ZKPoK) of a
value which is both the discrete log of the commitment and
the result of decrypting the ciphertext. Receivers then check
if every proof is valid and that the discrete log commitments
correspond to a degree ≤ d polynomial. If so, they can
decrypt their share and output.

This protocol, while simple, has very desirable com-
pleteness and bandwidth-overhead properties. However, it
assumes that the secret s is uniformly random (otherwise, gs

would reveal information about s) and therefore is somewhat
limited in its uses. We propose a modified version which
can be thought of as the "Pedersen" version of this scheme:
Essentially, we add a second blinding value ŝ for the dealer
to share alongside s, replace g[s] with g[s]h[ŝ] and create a new
ZKPoK (detailed in full version) to relate this value to the
Paillier-encrypted shares. We present our modified protocol

in Algorithms 1 and 2 along with a proof sketch that these
realize an ACSS algorithm in the full version.

Algorithm 1 High-Threshold ACSS Share
Public Inputs: g,h,C,d,{PKi}Pi∈C
Private Inputs: The dealer D holds a secret s
Public Outputs: {(g[s]id h[ŝ]

i
d )}i∈[n]

Private Outputs: Pi holds [s]id ,[ŝ]
i
d

SHARE(s,d) (as D):
101: Sample two random degree d polynomials, φ(·), φ̂(·) and set

φ(0)=s
102: for i∈ [n] do
103: vi←EncPKi(φ(i)),v̂i←EncPKi(φ̂(i)),ci←gφ(i)hφ̂(i)

104: πi ← ZK{(φ(i), φ̂(i)) : vi = EncPKi(φ(i)) ∧ v̂i =

EncPKi(φ̂(i))∧ci=gφ(i)hφ̂(i)}
105: ReliableBroadcast({vi,v̂i,ci,πi}i∈n)

SHARE→([s]id ,[ŝ]
i
d ,c) (as Pi):

201: upon receiving {v j,v̂ j,c j,π j} j∈n from ReliableBroadcast do
202: if DegreeCheck({c j} j∈[n]) ̸=1 then
203: Abort
204: for j∈ [n] do
205: if Verify(v j,v̂ j,c j,PK j,π j) ̸=1 then
206: Abort
207: [s]id←DecryptSKi

(vi),[ŝ]id←DecryptSKi
(v̂i),

208: Output [s]id ,[ŝ]
i
d ,c :{(g[s]

j
d h[ĥ]

j
d )} j∈[n]

3.2 MVBA

Since first proposed by Cachin et al. [16], several recent
improvements have been made for MVBA [5, 31]. The state-
of-the-art MVBA protocol is sMVBA [31], which has O(κn2)
bit complexity and 12 asynchronous rounds as the expected
worst-case round complexity. As mentioned in section 2.3,
our protocols uses MVBA with slightly strengthened validity
requirement, defined by the state-aware predicate below.

Definition 1 (State-aware Predicate). A state-aware predicate
function is f (v,e) : {0,1}|v|×{0,1}|e|→{0,1} where v is the
input value and e is some variable dependent on the execution
state, satisfying that once f (v,e)=1 for some execution state
at a node, it remains 1 for any future execution state.

Compared to the standard MVBA definition, it uses a
state-aware predicate that can also input some execution state
dependent variables. We will first explain the predicate used
in our protocol, and then show how to use existing MVBA
protocols for our purpose. Finally, we will discuss setup
assumptions and efficiency aspects of MVBA.

In our protocols, each node i locally maintains a set Ti
to record the indexes of terminated ACSS instances, i.e.,
Ti←Ti∪{ j}whenever j-th ACSS with valid commitment out-
puts. When d′+1 ACSS terminates, node i inputs the above
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set to the MVBA, with the state-aware predicate function that
also includes Ti as the input. As shown in Algorithm 3, for any
other node j’s input T ′j , the predicate f (T ′j ,Ti) immediately
returns 0 if |T ′j | ̸=d′+1, and returns 1 once T ′j ⊆Ti, meaning
that the terminated d′+1 ACSS instances proposed by node
j are also terminated at node i. Hence, the predicate may not
return immediately. Instead, when the set of ACSS instances
are not yet all terminated at i, node i will hold the predicate
check and re-evaluate whenever its Ti grows. Once the condi-
tion is satisfied, the predicate returns 1. Note that it is possible
that the predicate never returns for a value from Byzantine
node, by proposing ACSS instances that are never terminated;
but for any honest nodes i and j, due to the agreement
property of ACSS, eventually T ′j ⊆Ti and thus f (T ′j ,Ti)=1.

Algorithm 2 High-Threshold ACSS Reconstruct

Public Inputs: g,h,C,d,{(g[s]id h[ŝ]
i
d )}i∈[n]

Private Inputs: Pi holds [s]id ,[ŝ]
i
d

Public Outputs: s

REC→s (as Pi):
301: Multicast ([s]id ,[ŝ]

i
d) to all parties

302: upon Receiving m j,m̂ j from Pj do
303: if gm j hm̂ j =(g[s]

i
d h[ŝ]

i
d ) then

304: Set [s] j
d =m j

305: upon Receiving d+1 valid shares do
306: Interpolate and output s

Our protocols can directly use existing MVBA protocols in
a black-box manner, by plugging in the state-aware predicate
as defined in Algorithm 3. The obtained MVBA satisfies the
validity property that if an honest node output v at time T ,
then f (v,e)= 1 for at least one honest node at time T . Now
we briefly argue why the agreement, termination and validity
properties of MVBA holds. The validity property holds due to
the external validity of the underlying MVBA. For agreement,
the strengthening of the validity predicate has no effect on the
safety argument. For termination, note that the predicates at
all honest nodes eventually return 1 for any input from honest
nodes. For an input from a Byzantine node, the predicate
may not return, and it is equivalent as the Byzantine node
never inputs to MVBA, so the termination is also preserved.

The state-of-the-art MVBA protocol, sMVBA [31], (along
with many other MVBA protocols) requires a high-threshold
non-interactive threshold signature setup to reduce commu-
nication and perform leader election [17]. To setup these
threshold signatures, we can either assume a trusted dealer
that equips all the committees with such setup, or use exist-
ing asynchronous distributed key generation (ADKG) proto-
cols [4,21,22,27,35] to lift the trusted dealer assumption. The
(special-purpose) ADKG protocols of Gao et al. [27] and Das
et al. [21] achieve O(κn3) cost and O(1) expected worst-case
asynchronous rounds, but generates a secret key that is a group
element rather than a field element. To be compatible with ex-

isting threshold signature schemes [13], the (general-purpose)
ADKG protocol of Das et al. [22] generates a field element
as the secret key, at the same cost of O(κn3) but O(log n)
expected worst-case rounds (and O(1) expected rounds in
common-case when there are no faults and network is syn-
chronous). Theoretically, it is possible to obtain a worst-case
expected constant-round general-purpose ADKG protocol, by
replacing the n instances of parallel ABA’s of Das et al. [22]
with one instance of MVBA (which has constant rounds), and
bootstrapping its shared randomness using special-purpose
ADKG protocols such as [21,27]. Then, the total network cost
will remain cubic and the latency can be reduced to constant.
However, such a construction may not be concretely efficient,
and in the common-case when there are no faults and the net-
work is synchronous, may perform worse than Das et al. [22].

3.3 High-Threshold Share Transfer

We present our high-threshold DPSS protocol in Algorithm 3.
Relative to previous works it is the first to achieve optimal
fault tolerance in asynchrony with a polynomial bit complex-
ity, and does so without the need for trusted setup (which
is needed for the KZG polynomial commitments [33] used
in many other DPSS works). We additionally note that this
protocol is a more general version of DKG transfer: if ŝ=0,
then this reduces to a scheme with discrete-log commitments
which are used to facilitate threshold signing with signature
schemes such as BLS [14].

We will now describe the operation of our protocol. The
core mathematical component is that if some committee C
holds shares of some degree d polynomial, they can create
new shares for some new committee C′ who wishes for shares
of some degree d′ polynomial by having d+1 members of
C d′-share their shares with C′. We can then use each of these
polynomials to define a degree d,d′ bivariate polynomial
B(x,y) where B(i,y) would be the polynomial which Pi ∈C
shared to C′. Note that relative to this bivariate, each party
Pi ∈C held B(i,0), meaning that B(0,0) = s. As a result of
these sharings P′j ∈ C′ receives {B(i, j)}i∈|C|, from which
she can derive B(0, j), a point on a degree d′ univariate
polynomial which encodes the same secret s. The high level
takeaway of this is that the new committee derives rerandom-
ized shares of a specified degree as a linear combination of
d+1 instances of a member of C secret sharing their share.

A concise outline of the protocol strategy then is 1) Have
all members of C secret share their shares to C′, 2) Have
all members of C′ agree on d + 1 such instances which
succeeded, 3) Use the outputs of these instances to allow C′

to derive new rerandomized shares.
A few questions still need to be answered to create a

maliciously-secure protocol. By answering them one at a
time and modifying the protocol accordingly, we arrive at
a full derivation of Algorithm 3.

How Do We Ensure All Parties in C′ Get A Share? If we

5418    32nd USENIX Security Symposium USENIX Association



Algorithm 3 High-Threshold Asynchronous DPSS
Private Inputs: Pi holds [s]id ,[ŝ]

i
d

Public Inputs: c :{(g[s]id h[ŝ]
i
d}) for i∈ [n]

Private Outputs: P′i holds [s]id′ ,[ŝ]
i
d′

Public Outputs: c′ :{(g[s]
i
d′ h[ŝ]

i
d′ )} for i∈ [n′]

//Old Committee Portion
RESHARE([s]id ,[ŝ]

i
d ,d
′) (as Pi):

101: Sample two degree-d′ polynomials {χi(x), χ̂i(x)} s.t.
χi(0)=[s]id ,χ̂i(0)=[ŝ]id

102: Use ACSS to share these polynomials with the new committee

//New Committee Portion
RESHARE→([s]id′ ,[ŝ]

i
d′ ,c
′) (as P′i ):

201: Ti←{}
202: upon outputting in j-th ACSS sessions where

(gχ j(0)hχ̂ j(0))=(g[s]
j
d h[ŝ]

j
d ) do

203: Ti←Ti∪{ j}
204: if |Ti|=d′+1 then
205: T ′i ←Ti
206: Invoke MBVA(T ′i ) with predicate f (T ′j ,Ti) // T ′j is the

input value of some node j, Ti is i’s local variable defined above.
f (T ′j ,Ti) is defined below.

207: upon MBVA outputting T do
Let B(x, y) be a degree d,d′ bivariate where B(0,0) = s and
B( j,y)=χ j(y) for ∀ j∈T
Let B̂(x, y) be a degree d,d′ bivariate where B̂(0,0) = ŝ and
B̂( j,y)= χ̂ j(y) for ∀ j∈T

208: Interpolate [s]id′ = B(0,i),[s]id′ = B̂(0,i) from the shares in
the subset

209: Similarly, interpolate {(g[s]
j
d′ h[ŝ]

j
d′ )} for j∈ [n]

210: Output Private: {[s]id′ ,[ŝ]
i
d′}, Public: c′ : {(g[s]

j
d′ h[ŝ]

j
d′ )} for

j∈ [n′]

Predicate f (T ′j ,Ti) for MBVA (as P′i ):

301: if |T ′j | ̸=d′+1 then
302: return 0
303: upon T ′j ⊆Ti do
304: return 1

used simple Shamir Sharing, we would have no guarantees
about the correctness or eventual arrival of the shares that
C′ needs to receive from C. Previous works address this
using Verifiable Secret Sharing, in which termination of
the Sharing phase of the protocol guarantees that the secret
will be reconstructable. However, this does not necessarily
imply that all honest parties will receive a share and previous
works which relied on this needed a more expensive fallback
mechanism to recover missing shares [8, 45].

Instead, we sidestep this issue by using Asynchronous
Complete Secret Sharing, in which an honest party outputting
guarantees that all honest parties will do so successfully.

How Does C Prove They Are Resharing The Correct
Shares? To prevent a malicious member of C from resharing

anything besides their share, we utilize public commitments.
Say that all honest members of C agree on some set of discrete
log commitments {g[s]1 ,g[s]2 ,...g[s]n} that correspond to each
privately held share. Then we utilize an ACSS scheme, such as
the one by Das et al. [22], which includes a discrete log com-
mitment to the secret being shared. C could transfer the set of
commitments to C′, who could then use them to individually
check that each member of C is sharing the correct value.

Das et al.’s ACSS scheme also includes discrete log com-
mitments to each share that every other party receives. These
commitment strings from each ACSS session can also be
combined via the same linear operations that derive the new
shares, resulting in each node being able to homomorphically
calculate commitments to the new shares of all other nodes in
C′. This thus completes the invariant of a committee knowing
public commitments which correspond to its shares, which
can be used to facilitate the next share transfer.

How Do We Handle High Thresholds? Most secret
sharing schemes that assume t corrupt parties will also use
degree t polynomials, such that t + 1 shares are needed to
reconstruct the secret. This privacy threshold works nicely in
the n=3t+1 setting, as it means that during reconstruction
a robust decoding algorithm such as Berlekamp-Welch or
Gao’s Algorithm [26] can be used to find and correct faulty
shares without relying on cryptography.

However, for larger privacy thresholds, these robust de-
coding techniques no longer work and it becomes necessary
to be able to detect faulty shares individually. The share
commitments discussed earlier are sufficient for this purpose
and allow polynomials of degree up to n − t − 1 to be
reconstructed successfully.

How Do We Handle Non-Uniform Secrets? The discrete
log commitments discussed previously are only compu-
tationally hiding if the committed values are uniformly
random. And while secret shares should in fact be uniformly
random, the additive homomorphism property of discrete
log commitments means than an attacker who can see d+1
different share commitments can derive a commitment
to the secret. If the secret is non-uniform (say, a single
bit in the extreme case), an adversary can guess possible
decommitments until she finds one which matches.

To avoid this, it is necessary to use a perfectly hiding
commitment such as a Pedersen Commitment of the form
gshr where h is a second generator of the same cyclic group
as g, but the relationship between g and h is unknown (which
is necessary for the commitment to be computationally
binding). Then, as long as r is uniformly random, the
commitment protects the secrecy of a non-uniform s.

Lastly, we need these commitments to be openable even
after being transferred and recalculated. To facilitate this, we
replace r with a "blinding secret" ŝ shared on a polynomial
of the same degree as s. For every operation performed with
a share of s, a parallel one should take place with a share of ŝ,
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and any discrete log commitment g[s]
i
should be replaced with

Pedersen commitment g[s]
i
h[ŝ]

i
. We modify the ACSS protocol

from earlier as well as our DPSS to incorporate these changes.

How Does C′ Decide Which ACSS Instances To Use?
Before the honest nodes in the new committee C′ can
interpolate the new shares for the secret, the protocol needs
to provide two guarantees: (i) honest nodes in C′ agree on
the same set of ACSS instances for interpolation, and (ii)
the above set of ACSS will eventually terminate at all honest
nodes, so that they can receive their shares for interpolation.
For (i), our design uses a multi-valued Byzantine agreement
(MVBA), where each node i can input the set Ti of finished
ACSS instances to the MVBA, and MVBA ensures that all
honest nodes will agree on the same set of ACSS. However,
since malicious nodes can input any set of ACSS instances,
including those that will never terminate, running MVBA
naively does not guarantee (ii).

To ensure the agreement only on the set of ACSS that will
eventually terminate at all honest nodes, in MVBA, honest
nodes should only consider a set of ACSS instances valid
if all the instances in the set have terminated locally. More
specifically, we modify the validity predicate function of
existing MVBAs to also take the node’s local execution state
(the set of finished ACSS instances) into account. Then, a
node considers an input of ACSS set to be valid, only when
all the instances in the set have terminated locally. Since the
output of MVBA is valid to at least one honest node, meaning
the set of ACSS have been terminated at that honest node, due
to the Agreement property of ACSS, the agreed set of ACSS
instances will eventually terminate at all honest nodes as well.

3.4 Security Analysis

In this section, we show that the DPSS protocol in Al-
gorithm 3 implements the FDPSSHT functionality (c.f.
Appendix A), assuming the ACSS protocol is secret and the
Pedersen commitments are hiding. In the main body, we only
present a high-level analysis. We do not explicitly model the
party corruption process. We assume once the environment
instructs the adversary to corrupt a party, the adversary learns
the memory of the party and the party becomes a proxy of the
adversary. Namely, the adversary sends and receives messages
on behalf of the party. For simplicity, we omit some interac-
tions that can be inferred from the context, and we assume
authenticated asynchronous channels between the entities.

In principle the sequence of resharing and reconstruction
commands that are run could be chosen by any process, such
as a consensus protocol or a smart contract. All that matters
for our protocol is that honest parties agree on this sequence.
To simplify our formal model we designate a specific party
called the coordinator to decide each command. When the
coordinator is honest, this gives the environment full ability to
adaptively choose the commands. To ensure all honest parties
agree even when the coordinator is corrupt, we precede each

Env

Sim

Adv

(a) Ideal

Env

Adv

(b) Real

Figure 1: UC Security — The setup in ideal and real worlds.
The adversarial entities are shaded in red. We omit the
communications between the environment and the other
entities to make the figure clean.

Env

Adv

Sim

Figure 2: Proof Idea — Run ΠDPSS with simulated honest
parties and use fake encryptions and fake correctness proofs
for honest party data which the simulator does not know.

command with an instance of reliable broadcast.
In the UC model, we say a protocol π UC-realizes a

functionality F if and only if there exists a simulator
such that, in the ideal and real worlds shown in Figure 1,
the adversary cannot distinguish which world he/she is
interacting with by sending and receiving messages.

Theorem 1. Assuming a trusted setup generating the PKI keys,
the Pedersen setup (random curve elements g and h), the NIZK
setup, and an MVBA protocol, the protocol in Algorithm 3
UC-realizes the functionality FDPSSHT if Algorithm 1 and
Algorithm 2 satisfy the ACSS properties.

We illustrate the high-level proof idea in Figure 2. The
simulator samples its own PKI and creates a simulated honest
party in mind for each real honest party and lets the simulated
honest parties play with the external corrupted parties, han-
dling faults in a similar manner to the real world protocol. If
the ACSS dealer is corrupt, the simulator can decrypt all of the
shares and save the full polynomials. Otherwise if the dealer
is honest, the simulator sees only the corrupt party shares, but
is able to use commitments provided by the functionality, fake
encryptions, and fake NIZK proofs via a programmable ran-
dom oracle to create an indistinguishable view. In reconstruc-
tion, the functionality provides full polynomials that match
the commitments that the simulator used earlier. Even with
this information, the environment can not tell whether or not
the encryptions and NIZK proofs were fake.

Resharing uses similar techniques but allows the adversary
a small degree of control over the rerandomization process,
similar to what it has in a real world protocol where it can
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influence the output of MVBA by choosing message arrival
orderings. We include a more detailed proof in Appendix B.

3.5 Performance Analysis

The protocol presented in Algorithm 3 has communication
complexity of O(n3), since each node invokes an ACSS
instance of cost O(n2) (thus O(n3) in total), and participates
in one MVBA instance which has cost O(n2) and requires
O(n3) to generate the public DKG parameters without
trusted setup. The overall round complexity is constant
if a constant-round MVBA is used, which can itself be
instantiated by a constant-round asynchronous DKG protocol.
Alternatively, if n concurrent ABA protocols are used instead,
then the best case round complexity is still O(1) but the worst
case is reduced to O(logn).

The presence of byzantine behaviour does not meaning-
fully affect the performance of our protocol. If a byzantine
ACSS dealer provides an invalid sharing or proof, their
malfeasance is immediately identified by all honest parties
and their messages are simply ignored. The MVBA is
guaranteed to have enough valid ACSS instance inputs to
form a subset of valid instances which fully define the shares
that the new committee receives. Once the subset has been
defined, honest parties are guaranteed to eventually receive
all shares simply by waiting for them to arrive.

Computationally, each node in the protocol is expected to
perform O(n2) work due to the need to check n different cor-
rectness proofs in each of the n ACSS instances. While a lucky
node may only need to check the proofs in d+1 instances,
this does not change the overall asymptotic behaviour.

4 Batch-Amortized Share Transfer

For many applications, such as distributed Key Value stores
or more generally Multiparty Computation, it would be
beneficial to be able to transfer a large number of secrets
from one committee to the next in a more bandwidth-efficient
manner. However, the high-threshold DPSS scheme we
introduced previously relies on the availability of Pedersen
commitments to every share generated in the share-resharing
process which we use to realize DPSS. Unfortunately this
reliance requires all n parties to receive n commitments from
each of the n−1 other parties, imposing a cubic bandwidth
overhead for the whole network.

To get around this, we switch away from using share-
resharing to facilitate share transfer and instead look to a
classic MPC technique for inspiration:

Given three independent secret sharings [s], [r], [r′] where
r=r′ and r←Zp∗

[s+r]=[s]+[r]

(s+r)←Open([s+r])

[s′]=(s+r)−[r′]

Essentially, if we can create some paired sharing ([r],[r′])
such that the old committee holds r and the new committee
holds r′, we can have the old committee reconstruct (s+r)
and the new committee can use this information to derive
new rerandomized shares of s.

A key challenge here is that r needs to be uniformly
random and not known to any party. One solution is for each
party to share their own locally sampled random value [ri] and
add together a set of such values to derive a globally random
[r]=∑i[ri], where the set of [ri] values to use is determined by
MVBA. The issue with this approach is that it does not result
in a bandwidth savings: A cubic bandwidth is required to use
ACSS to secret share the O(n) local secrets that constitute r.

Instead, we leverage a classic randomness extraction
technique using hyperinvertible matrices [10]. In short,
by performing a series of local linear operations to a set
of m locally-random shared secrets, we can extract m − t
globally-random secrets. Thus if our starting subset of
[ri] values contained n− t entries, we could extract n− 2t
globally-random outputs, a linear yield in the optimally
byzantine fault-tolerant asynchronous protocol setting. We
can also leverage a Batch Reconstruction technique from
the same work to efficiently open many (s+r) values at once
with an amortized network overhead of O(n) per opening.

The last major obstacle to overcome is the following: How
do we create a shared random value which is held by both the
old and new committees? The recent work of [29] offers a
solution, but it requires the use of an a synchronous broadcast
channel to publish shares and accuse faulty nodes. Instead we
introduce a general technique to turn an ACSS protocol into
what we call a dual-committee ACSS, the goal of which is to
share a secret to two committees at once (one polynomial per
committee) such that one honest player outputting implies
that all honest parties in both committees will eventually
receive shares that will reconstruct the same secret.

We present our dual-committee ACSS modification
in Algorithm 4. We remark that the construction is very
straightforward. Given an ACSS scheme which produces
a commitment to the secret which can be verified to be
correct, a Dealer executes two ACSS instances (one for
each Committee) in which it shares the same secret. Upon
terminating their local ACSS instance, a player in one
committee sends the commitment to the secret com to every
player in the other committee. Upon receiving t +1 copies
of this same com from the other committee, we know that at
least one must have come from an honest party, implying that
all honest parties will eventually receive shares of the same
secret per the Agreement property of ACSS. At this point an
honest node can safely output their share and use it elsewhere.

With the requisite building blocks described, we now
present our batch-amortized high-threshold DPSS scheme
in Algorithm 5. Given a batch size B, each member of C
needs to share enough locally random values that there will
be enough globally random shares to open each (s+r) and
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Algorithm 4 Dual-Committee ACSS Share
Let C∗ denote the joint committee of both C and C′

Public Inputs: C,C′,d,d′

Private Inputs: D holds a secret s
Private Outputs: Pi holds ([s]id ,[ŝ]

i
d), P′j holds ([s] j

d′ ,[ŝ]
j
d′)

Public Outputs: c :{(g[s]id h[ŝ]
i
d )} for i∈ [n],c′ :{(g[s]

i
d′ h[ŝ]

i
d′ )} for i∈ [n′]

SHARE(s,d,d′) (as D):
Select an ACSS scheme which produces a commitment com to
the secret and proves that Decommit(com)=s

101: ACSS(s)→C, ACSS(s)→C′

SHARE→([s]i,[ŝ]i,c,c′) (as either Pi or P′i ):
201: upon outputting ([s]i,[ŝ]i,com) in the local copy of ACSS do
202: Multicast com to all parties in the other committee
203: Store com locally
204: upon Receiving ¯com from the other committee t+1 times do
205: Output ([s]i,[ŝ]i,com, ¯com)

(ŝ + r̂). After sharing their random values, C runs MVBA
with a similar predicate to before in order to agree on n−t
players from whom to use output. C can then calculate all
of the (s+ r) and (ŝ+ r̂) openings and send them to C′. C′,
by virtue of using the Dual Committee ACSS, does not need
to perform its own agreement subprotocol, as the node ids
agreed upon by C should all eventually deliver shares to C′

which can be used to calculate the final output.
After amortizing, Algorithm 5 still requires O(n) constant-

sized share commitments to be known by everybody for each
secret in the batch, making the amortized network cost O(n2).

Batch-Amortized Share Transfer With Linear Network
Overhead. The previous DPSS protocols we presented
require a O(n)-sized set of commitments to be public in
order to function, resulting in an O(n2) network bandwidth
bottleneck per secret. While this appears to be necessary
in order to facilitate a high-threshold share transfer, it is
not necessary when dealing with secrets which are merely
t-shared. In this section, we introduce a third DPSS protocol
which is not high-threshold but which achieves an amortized
linear network overhead per share.

To achieve this, we utilize the batch amortized
hbACSS [49] secret sharing scheme which achieves a
linear network overhead per secret when instantiated with
the KZG [33] polynomial commitment scheme, which
unfortunately comes with a trusted setup assumption (though
we note that KZG is used in most recent DPSS schemes).

As this third and final scheme is no longer concerned
with high-threshold secrets, it is no longer necessary for
there to be public commitments relating to the values being
transferred. This is because opening a t-shared value in the
asynchronous n = 3t + 1 setting is possible using a simple
error correction algorithm such as Berlekamp-Welch or Gao’s
algorithm [26], rather than relying on the ability to validate

Algorithm 5 Batch-Amortized High-Threshold DPSS
Let B be the number of degree d (secret, blind) pairs ([s],[ŝ]) to be
transferred
Private Inputs: Pi holds {[s j]

i
d ,[ŝ j]

i
d} for j∈ [B]

Public Inputs: {{(g[s j ]
k
d h[ŝ j ]

k
d )} for k∈ [n]} for j∈ [B]

Private Outputs: P′i holds {[s′j]id′ ,[ŝ
′
j]

i
d′} for j∈ [B]

Public Outputs: {{(g[s
′
j ]

k
d′ h[ŝ

′
j ]

k
d′ )} for k∈ [n′]} for j∈ [B]

//Old Committee Portion
RESHARE({[s j]

i
d ,[ŝ j]

i
d} for j∈ [B],d′) (as Pi):

101: Sample B/(n−t) random (r, r̂) pairs and use a Dual-Committee
ACSS to share them with a degree d polynomial for C and degree
d′ polynomial for C′.

102: Use MVBA to agree on n−t players for whom all DC-ACSS
instances terminated successfully.

103: Use a hyperinvertible matrix to extract B globally random
sharings from the subset

104: Use BatchReconstruct to open {(s j+r j),(ŝ j+ r̂ j)} for j∈ [B]
(shares can be individually validated by checking against
(g[s+r]h[ŝ+r̂])) and send these openings to C′

//New Committee Portion
RESHARE→({[s′j]id′ ,[ŝ

′
j]

i
d′} for j∈ [B],c′) (as P′i ):

201: upon receiving {(s j+r j),(ŝ j+r̂ j)} for j∈ [B] from C do
202: for j∈ [B] do
203: [s′j]

i
d′=(s j+r j)−[r′j]id′ ,[ŝ

′
j]

i
d′=(ŝ j+r̂ j)−[r̂′j]id′

204: for k∈ [n′] do
205: (g[s

′
j ]

k
h[ŝ
′
j ]

k
)=(g(s j+r j)h(ŝ j+r̂ j))/(g[r

′
j ]

k
h[r̂
′
j ]

k
)

206: Output {[s′j]id′ ,[ŝ
′
j]

i
d′} for j∈ [B], {{(g[s

′
j ]

k
d′ h[ŝ

′
j ]

k
d′ )} for k∈ [n′]}

for j∈ [B]

shares individually. Consequently, relative to Algorithm 5,
the main changes needed here are to switch the ACSS scheme
to hbACSS, drop the usage of public share commitments,
and to use a Structured Reference String (SRS) for KZG
polynomial commitments.

hbACSS utilizes polynomial commitments in order to
function. Given an appropriate polynomial commitment
scheme, a dealer commits to their sharing polynomial,
broadcasts this commitment, and then can send (via a
verifiable communication channel) a receiver their share
along with a proof that the share is a point on the committed
polynomial. In the case of a malicious dealer, share recovery
is also handled in a batch-amortized way which does not
result in any worsened asymptotics.

The KZG PolyCommit paper presents two schemes: Poly-
CommitDL and PolyCommitPed. In the former, a prover com-
mits to a polynomial φ(·) by calculating gφ(α), which itself is
calculated using a SRS of the form {g,gα,gα2

,...gαt} where α

is an unknown value generated during trusted setup. In Poly-
CommitPed, a second blinding polynomial φ̂(·) is sampled
and used to calculate the commitment gφ(α)hφ̂(α). In order to
reshare nonrandom secrets, we need to use PolyCommitPed,
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which allows us to verify the correctness of the commitment
gshŝ as required by our Dual-Committee ACSS construction.

5 Applications

5.1 An Upgrade To Previous Applications

Confidentiality in BFT State Machine Replication. The
recent work Vassantlal et al. [45] introduced COBRA as a
DPSS protocol to facilitate the storage of private information
in State Machine Replication (SMR) systems. The core
idea is that an application like a Key-Value store can be
realized by a decentralized committee which collectively
maintains a public state (say the Keys in a KV store) along
side a per-node private state (the secret shares which can be
combined to reconstruct the Value in a KV store). Protecting
data confidentiality in a replicated system has been studied
for decades, but most of the works only focus on static
committees, such as DepSpace [12], Belisarius [42] and Basu
et al. [8] building upon PBFT [18] under partial synchrony,
and Secure Store [36], CODEX [41] building upon Byzantine
Quorum Systems [39] under asynchrony.

For dynamic committees, the recent works of Goyal et
al. [29] and Benhamouda et al. [11] design new synchronous
DPSS schemes for storing secrets on blockchains, while
COBRA builds upon HotStuff [48] under partial synchrony.
CALYPSO [34] also proposes a verifiable data-management
framework based on blockchain and threshold encryption,
for a different use case where some authorized parties can
access the secret data via an access-control blockchain.

Regardless of whether the application calls for a secret-
shared threshold decryption key or for the private data itself
to be secret-shared (so to possibly facilitate computations
over the data), the usage of DPSS to either refresh or transfer
the secret information remains the same. By improving upon
DPSS itself, we therefore offer two mechanisms by which
our work can help improve upon state of the art applications.
The first is that our asynchronous protocols can offer better
performance in less-than-optimal network conditions. While
relying on a synchronous DPSS will weaken the properties
of systems built on practical partially-synchronous consensus
such as PBFT [18], even state of the art partially synchronous
DPSS protocols like COBRA suffer asymptotic performance
hits (from O(n3) to O(n4)) during period of asynchrony.
Alternatively, using a similar-performing asynchronous
DPSS protocol (like our O(n3) DPSS scheme) can limit the
damage done by slowness or network partitions, even if other
parts of the system make stronger network assumptions.

Secondly, by offering a high-threshold DPSS scheme, we
can improve the privacy offered by distributed KV stores
over prior solutions. By encoding secrets in high-degree
polynomials, a passive adversary would need to corrupt over
2/3 of the network at once to compromise the privacy of
the stored information. While an active attacker controlling

the majority of the network could stop the protocol from
operating (and fundamentally this is impossible to fix), any
such interference could easily be detected and a new protocol
instance could be started with new nodes.

Extractable Witness Encryption. Goyal et al. [29] also
utilize the combination of DPSS and State Machine Replica-
tion, but they use it to build a primitive which is functionally
equivalent to extractable witness encryption [28]. Roughly
speaking, a witness encryption scheme for an NP language L
allows a user to encrypt a message with respect to a problem
instance x. The decryptor is able to decrypt the message
if x ∈ L and the decryptor knows a witness w that x ∈ L.
For instance, the problem instance x can be any NP search
problem and w can be any valid solution to the problem. If a
witness encryption scheme is extractable, then any adversary
that is able to distinguish two ciphertexts encrypted to the
same x is also able to provide a witness w for x∈L.

Goyal et al. [29] introduce the extractable Witness
Encryption on Blockchain (eWEB), where any depositor that
wants to deposit a secret with some releasing condition can
distribute the encoded secrets among the miners via threshold
secret sharing schemes. The set of miners will be constantly
changing, thus a hand-off procedure using DPSS is period-
ically executed by the miners to ensure the secret is properly
stored and can be released. Any requester with a valid witness
to the release condition of the secret can learn the secret from
the miners securely via reconstruction. Our DPSS protocols
can further enhance the robustness the eWEB scheme, by
tolerating arbitrary network delays and adversarial schedule
of message delivery. Moreover, our high-threshold DPSS
scheme can provide better privacy guarantees and achieve the
same single-secret cost and amortized cost without trusted
setup. On the other hand, our low-threshold DPSS scheme
reduces the amortized cost by a factor of O(n) compared to
Goyal et al. [29] under the same setup assumption.

5.2 Transferable MPC Computations

MPC-as-a-Service. In an MPC-as-a-Service setting, a
group of N servers evaluates some function of private user
inputs. This can be divided into two parts: an offline phase
in which precomputation is performed continuously and an
online phase which utilizes this precomputation to evaluate
a circuit upon receiving client inputs. Previous works such
as HoneyBadgerMPC [38] utilized a non-robust offline
phase in which precomputation attempts could fail but would
be assumed to succeed eventually. Once successful, this
precomputation could be used for a robust online phase,
which is guaranteed to terminate successfully even in the
presence of byzantine faults and asynchrony. The use of
DPSS extends this successful termination guarantee to
applications with network churn or mobile adversaries.

BMR Escape Hatch. The ability to proactively reshare offers
the potential of a tradeoff where an expensive preprocessing
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Table 2: Asymptotic and Concrete Costs of BMR Escape
Hatch vs Gate-by-Gate MPC for AMM application

Rounds Mults Rounds Mults
Gate by Gate O(d) O(C) 50 2025
BMR Offline O(1) O(C) 258 1.1·108

BMR Online O(1) O(I+O) 18 1281

phase that is not needed in the typical case can be gener-
ated when network utilization is low and persisted for a long
duration. For example, in an MPC-based automated market
application, an "escape hatch" may be used only to accelerate
transactions in the online phase during periods of anomalously
high usage, such as during a flash crash or price spike.

The BMR [9] MPC protocol is a multi-party variant of
Yao’s Garbled Circuits in which players jointly compute and
evaluate circuits. An ordinary MPC that is used to generate
wire labels and garbled gates is run in parallel for each gate in
the boolean circuit, resulting in a constant round complexity
independent of the circuit and committee size.

Once generated, these garbled circuits can be evaluated
locally at a low cost. An MPC function evaluation can thus be
split into a relatively-high cost offline precomputation which
generates the garbled circuit and a low-cost online phase in
which inputs are mapped to input wires, circuits are evaluated
locally, and output wire labels are mapped to results.

Typically, to avoid a blow-up associated with emulating
encryption using arithmetic circuits, BMR protocols use a
distributed encryption due to Damgård and Ishai [19, 20]. On
the other hand, for large committees like what we consider,
it is eventually more efficient (and in any case simpler) to
use MPC-friendly symmetric encryption and accept this
cost. The pseudocode for the later approach is described in
Algorithm 6. Here COND(s,a 7→ x,b 7→ y) is implemented
as (s − b)/(a − b) · x + (s − a)/(b − a) · y where any of
these values may be public or secret shared. Concretely, if
we take MiMC as the MPC-friendly PRF (parameterized
with k= 64 rounds), the overhead is approximately ≈ 6400
multiplications per gate in the program circuit. Note that this
does not depend on the number of parties n.

In Table 2 we give a comparison based on an MPC auto-
mated market making task (specifically, we reimplemented*

the Trade function from HoneyBadgerSwap [37]). For a
gate-by-gate algorithm, we wrote a version of the program
which uses built-in arithmetic routines from MP-SPDZ in the
malicious-secure Shamir sharing mode. This takes 50 rounds
and requires 2025 total multiplications with Beaver triples,
mainly due to the need to split a finite-field element into bits
in order to perform division. We also used MP-SPDZ to im-
plement the BMR Escape Hatch program from Algorithm 6
and used this to garble a boolean circuit which implements the
same Trade function. For the asymptotic analysis, we consider
a boolean circuit with I input bits, O output bits, C total gates,

*Code available at https://github.com/tyurek/bmr-escape-demo

Algorithm 6 BMR Escape Hatch
Garbling Phase (BMR Offline)
Public inputs: Circuit C
Public outputs: {eg,x,y}x,y∈{0,1} for each gate g
Secret shared outputs: [mi],{[wi,x]}x∈{0,1}2 for each input i,
[mo],{[wo,x]x∈{0,1} for each output o
Garble (as Pi):
101: For each wire j, sample [w j,0],[w j,1]

$←F, [m j]
$←{0,1}

102: For each NAND gate g with input wires a,b and output c,
103: For each x,y∈{0,1}2,
104: [zg,x,y] :=NAND(x⊕[ma],y⊕[mb])⊕[mc]
105: [wg,x,y] :=COND([zg,x,y],0 7→ [wc,0],1 7→ [wc,1])
106: [eg,x,y] :=DualEnc([wa,x],[wb,y],[wg,x,y])
107: Reveal and output eg,x,y
108: Output [mi],{[wi,x]}x∈{0,1}2 for each input wire i,
109: Output [mo],{[wo,x]}x∈{0,1}2 for each output wire o

Input Mapping Phase (BMR Online)
Secret shared inputs: [vi∈{0,1}],
[mi],{[wi,x]}x∈{0,1} for each input wire i
Public outputs: wi,vi⊕mi for each input wire i
InputMap (as Pi):
201: For each input wire i
202: [wi,vi⊕mi ] :=COND([vi]⊕[mi],0 7→wi,0,1 7→wi,1)
203: Reveal and output wi,vi⊕mi

Local Evaluation Phase (BMR Online)
Public inputs: wi,vi⊕mi for each input wire i,
{eg,x,y}x,y∈{0,1}2 for each gate g
Public outputs: wo,vo⊕mo for each output wire o
Evaluate (as Pi):
301: For each input wire i, k[i] :=wi,vi⊕mi

302: For each gate g with input wires a, b, output c,
303: For each x,y∈{0,1}2,
304: if w←DualDec(k[a],k[b],eg,x,y) ̸=⊥
305: then k[c] :=w
306: Output k[o] for each output o

Output Mapping Phase (BMR Online)
Public inputs: wo,vo⊕mo for each output wire o
Secret shared inputs: [mo],{[wo,x]}x∈{0,1} for each output wire o
Secret shared outputs: [vo∈{0,1}] for each output wire o
OutputMap (as Pi):
401: For each output wire o
402: [vo] :=[mo]⊕COND(wo,vo ,[wo,0] 7→0,[wo,1] 7→1)
403: Output [vo]

and depth d. The online cost savings would be even greater
for a circuit that is larger relative to the input/output size.

6 Evaluation

We implemented† all of our asynchronous DPSS protocols
and characterize their performance in this section. For a con-
crete example, we evaluate the cost of resharing the "escape
hatch" for our MPC Automated Market Maker application.

†Repo available at https://github.com/tyurek/dpss
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6.1 Experimental Setup

Our implementations were done primarily in python (forking
from the codebase of [22]), while core cryptographic oper-
ations rely on libraries written in rust. In particular, we used
the ristretto group implementation of curve25519_dalek [1]
and a Paillier modulus of 2048 bits (corresponding to
112 bits of security per NIST guidlines [6]) to instantiate
our high-threshold DPSS protocols and we used ZCash’s
bls12-381 library [30] as the backend for our t-threshold
DPSS. This is because our t-threshold scheme requires the
use of pairings to implement KZG polynomial commitments,
while our high-threshold scheme uses different cryptography
which does not require pairings.

Additionally, we remark that although our high-threshold
constructions are UC secure and rely on a NIZK, our
simulator proof (Appendix B) does not rely on extracting any
values from the NIZK and so we can utilize the Fiat-Shamir
heuristic [24] rather then a Fichlin transformation [25].

All of our programs were evaluated on a consumer-grade
laptop with an Intel i5-1135G7 processor and 64GB of RAM.
All benchmarks are run on a single core and players are
modeled as asyncio tasks sending serialized messages.

6.2 Network Considerations

Although we do not evaluate our protocols on a geo-
distributed network, we argue that the primary bottleneck
in evaluations should be computational, rather than related
to bandwidth and network latency. We first observe that the
round complexity of our protocols is not affected by the
number of shares being transferred, so in the case where
a sizable batch of shares are used, the throughput lost to
round-trip times is vanishing. This is especially true in the
case where a constant-round MVBA is used to achieve an
overall constant round complexity (notably, our prototype
implementation uses N concurrent ABA instances instead,
which, while constant-rounded in the absence of byzantine
faults, leads to a worst case O(log n) round complexity).
Given the latency across different AWS regions is typically
at most 300− 400ms [2], and our protocols have constant
round complexity with small constants (less than 20), the
running time caused by network latency is several orders of
magnitude smaller than the computation time (as in Table 3)
for a moderate committee size.

We next observe that the amount of bandwidth required per
secret transferred is quite low: For the t-threshold DPSS, each
party needs to receive two 32-byte field elements (a share and
a blinding share) and two 48-byte bls12-381 G1 elements
(a KZG polycommit and witness). The distribution of these
values via a batch-amortized Asynchronous Verifiable
Information Dispersal algorithm adds a constant factor of
roughly 6x, while the costs of randomness extraction impart
another 3x overhead factor. Using speedtest.net’s global
median upload speed for April 2022 of 27.06 Mbps [3], this

n
Low-Threshold

No Crashes / t Crashes
High-Threshold

No Crashes / t Crashes
4 13.28 / 9.31 3172.75 / 2456.61
10 24.38 / 21.25 7687.48 / 5703.75
19 37.91 / 36.26 14557.51 / 10366.71
31 61.56 / 58.83 -

Table 3: Computation time (in seconds) required for a mem-
ber of a committee to receive 1000 shares from the previous
committee and then transfer 1000 shares to a new committee

would imply a throughput of over 1200 shares per second (or
roughly an order of magnitude faster than our fastest result)
if computation were not an issue.

Notably, our high-threshold DPSS protocol has an amor-
tized network bandwidth of O(n2) and therefore may be more
susceptible to bandwidth limitations. In our implementation
we measured that two Paillier ciphertexts, a Pedersen com-
mitment, and a proof about the correctness of the ciphertexts
measured roughly 10KB. Each participant in the DPSS needs
to process roughly 3n of these tuples per share transferred
and incur a roughly 3x overhead on top of this for the reliable
broadcast mechanism. Even in this case however, the compu-
tational costs of the protocol dominate by a significant margin.

6.3 Experimental Results

Our primary results in Table 3 show the amortized amount
of computation required for a node to receive a share from
an old committee and then transfer it to a new committee
when all committees are of size n. We observe that while
our high-threshold protocol comes with a meaningful
performance penalty relative to our t-threshold protocol, it
also enables a new class of applications and an increase in
privacy that practitioners may find worthwhile.

We evaluate our protocols in both the fault-free setting and
with t nodes crashing in each committee. As expected, the
difference in performance is minimal, with the t-crash case
actually performing slightly better. This is likely because in
our crash-fault setup, nodes crash instantly and consequently,
honest nodes do not waste time participating in ACSS
instances which do not end up in the final subset.

We additionally evaluate the concrete costs of proactivizing
the precomputation for our AMM escape hatch. The program
in question has two player inputs (desired amount of Token
A, slippage allowance), four system inputs (user and pool bal-
ances of both tokens in the trading pair), and four outputs (the
updated user and pool balances). Each input/output is 64 bits
in length, and every input/output bit corresponds to two secret
shared wire labels and a secret shared mask bit, meaning that
resharing this computation requires resharing 1920 different
shared secrets, the costs of which are given in Table 4.
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n 4 10 19 31
time 25.50 46.81 72.79 118.20

Table 4: Computation time (in seconds) required for a user
to refresh their Escape Hatch with a new committee of size
n in the fault-free setting

6.4 Discussion

Relative Slowness of High-Threshold Scheme. Upon im-
plementing our high-threshold DPSS scheme, we discovered
that the vast majority (above 80%) of the computation is spent
performing the modular exponentiations needed to generate
Paillier encryptions as well as prove and verify their cor-
rectness. We note that unlike many other applications which
utilize Paillier encryption, we do not require the ciphertexts to
be additively homomorphic, and that it may be more efficient
to use a different cryptosystem when proving knowledge
about the correspondence between plaintexts and committed
values in Pedersen commitments. However, we are not aware
of an instantiation of this proof in any other cryptosystem.

Comparison With Other Works. The recent work of
COBRA evaluates their DPSS scheme on a local network of
up to ten servers and benchmarks the refreshing of 100,000
shares in a time of 743.8 seconds for the ten server case,
claiming a roughly 5x speedup over the prior state of the
art MPSS [43]. Though this corresponds to a 3.28x greater
throughput, we argue that this difference is explainable as
an artifact of the experimental setup, as their benchmarks
were run on servers as an 8-threaded program, while our im-
plementation is single threaded. While in principle we could
improve our benchmarks in a number of ways including using
multiple cores, implementing persistent precomputation for
multiexponentations, and optimizing polynomial operations,
this would yield misleading results: Both our scheme and
COBRA (as well as several others [29, 40, 47]) utilize KZG
polynomial commitments as a subcomponent, which often
then becomes the primary computational bottleneck.

7 Conclusion

In this work, we designed and implemented three asyn-
chronous DPSS schemes, each of which achieved new
asymptotic bounds while also incorporating useful new
properties such as supporting high privacy thresholds.
Moreover, we demonstrated that asynchronous and robust
DPSS protocols can compete with prior work in good-case
scenarios and outperform them in the presence of faults.
Leveraging this, we recalled prior applications which used
DPSS and show how they how they can be better equipped to
handle more adversarial environments. We additionally used
batch-amortized DPSS to refresh and transfer precomputed
data in a novel "BMR escape hatch". We hope that these
advancements allow future practitioners to build awesome

resilient applications for use on a decentralized internet.
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A High Threshold DPSS Functionality
This section presents the high-threshold DPSS functionality
FDPSSHT , which serves as the primary security specification
for our main construction. To simplify our model, we have
a designated party, the coordinator, issue the signals for the
Reconstructing and Resharing events. This party ensures
unanimous agreement amongst honest parties that a given pro-
tocol has started, as otherwise some properties of our DPSS
would not hold. In a real deployment, such coordination would
be implemented using a bulletin board or broadcast protocol.

In our analysis, the coordinator must use ReliableBroadcast
to notify all parties of new protocol-beginning events and
is not restricted in how it decides which events to run. This
ensures that if any honest party receives the broadcast suc-
cessfully, then all honest parties eventually will do so as well.

We further assume that the session identifier sid contains
the identity of the corresponding dealer.
Output Modeling. When designing FDPSSHT , we make the
explicit choice for the functionality to give secret shares to
honest parties, rather than simply giving them the result of
reconstruction. We justify this decision by presenting two
different modeling choices.

• Option A (what we do): Honest parties receive shares
directly from the functionality after Share and Reshare,
and receive the secret from Reconstruct.

• Option B (FDPSSHT doesn’t send honest parties shares): Hon-
est parties receive only the message "OK" following Share
and Reshare, but still receive the secret from Reconstruct.

Why should we prefer Option A? While it’s true that some
applications (like many MPC applications) can be modeled
using secret inputs and public outputs, with no need for
intermediate details about shares in the functionality, not
all applications end in reconstruction and may instead rely
on share outputs. For example, in threshold signatures, the
master secret is never reconstructed, and instead the shares
themselves are used to sign messages. Using Option A allows
the same functionality to be used, regardless of whether or
not an application needs to call Reconstruct.
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FDPSSHT

Share

On receiving (SHARE,sid :={C,d},s) from an honest dealer (only once per sid):

• Sample random degree-d polynomials φ(·),φ̂(·) and set φ(0)=s

On receiving (SHARE,sid :={C,d},φ(·),φ̂(·)) from a corrupt dealer (only once per sid):

• Abort if either polynomial has degree >d or d>N−t−1.

In either case, compute polynomials={φ(·),φ̂(·)}, c={gφ(i)hφ̂(i)}i∈[0,N], and store (polynomials,c,sid)→storage.

Send (SHARE,sid,φ(i),φ̂(i),c) to each party Pi∈CCorrupt and eventually to each party Pi∈CHonest.

Reconstruct

On receiving (REC,rid :={(sidi,coeffi),C′}) from the Coordinator where each pair (sidi,coeffi) defines a term to use in a linear combination
of outputs of Share, and C′ receives the reconstruction:

• If the committee C is not the same in every sid, ignore the request.

• If any share ID sidi is not available in the memory, wait for the share from the dealer.

After receiving all the shares referred by sidi’s in the message,

• Compute polynomials φ(·)=∑
i
(coeffi ·φsidi←storage[sidi]), φ̂(·)=∑

i
(coeffi ·φ̂sidi←storage[sidi])

• Send (REC,rid,φ(·),φ̂(·)) to each party Pi∈C′Corrupt and eventually to each party Pi∈C′Honest.

Reshare

On receiving (RESHARE,rid :={(sidi,coeffi),d′,C′}) from the Coordinator, where C′ is the set of the new committee:

• If the committee C is not the same in every sid, ignore the request.

• If any share ID sidi is not available in the memory, wait for the share from the dealer.

After receiving all the shares referred by sidi’s in the message,

• Compute polynomials φ(·)=∑
i
(coeffi ·φsidi←storage[sidi]), φ̂(·)=∑

i
(coeffi ·φ̂sidi←storage[sidi])

• For each (φ(i),φ̂(i)) held by an honest party in C, sample degree d′ polynomials φi(·),φ̂i(·) where φi(0)=φ(i),φ̂i(0)= φ̂(i).

• Send (LEAK,rid, {{(φi( j),φ̂i( j),c′i)}i∈CHonest} j∈C′Corrupt
) to A .

• Allow A to input degree d′ polynomials φi(·),φ̂i(·) for any adversarial Pi, and verify φi(0)=φ(i),φ̂i(0)= φ̂(i).

• Let A choose a set S of d+1 polynomials {φi}i∈S to use to calculate the output. If A does not specify, then eventually choose an arbitrary S.

• Let B(·,·) and B̂(·,·) be degree d,d′ bivariate polynomials defined by {B(i,·)=φi(·))}i∈S, {B̂(i,·)= φ̂i(·))}i∈S

• Calculate φ(·)=B(0,·), φ̂(·)= B̂(0,·), c′={gφ′(i)hφ̂′(i)}i∈[|C′|].

• Eventually send (RESHARE,rid,φ′(i),φ̂′(i),c′) to each party P′i ∈C′.

Share. The Share portion of FDPSSHT allows the dealer to
distribute shares of a secret to the committee of recipients.
In the case of an honest dealer, the sharing polynomial will
be of the specified degree d and have uniformly random
coefficients, which are sampled by the functionality. However,
a dishonest dealer can, in the real world, choose any (possibly
non-random) sharing polynomial provided it satisfies the
protocol’s degree bound, and so FDPSSHT accounts for this.

Additionally, FDPSSHT calculates and exposes Pedersen
commitments to shares. The motivation for this is that some
sort of consistent information like this is needed in order to
use high-threshold shares in many applications (the privacy
threshold is too high to use error correcting algorithms
to account for faulty shares, so instead there needs to be

something to individually check shares against).
Lastly, the functionality leaks outputs to A before it sends

them to honest parties, so to model the control A is given
over message ordering in our asynchronous network model.

Reconstruct. The Reconstruct portion of FDPSSHT allows
for the public revealing of shared secrets to all parties in a
given committee. In many secret sharing applications (such
as multiparty computation) it is desirable to also be able to
reconstruct a sum (or more generally a linear combination)
of secrets, rather than revealing each secret individually. To
account for this, the Reconstruct portion has the coordinator
specify one or more secrets to reconstruct, along with
coefficients for each to use in a linear combination.

If multiple secrets are specified, no action is taken until all
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of the secrets are submitted to the functionality by their respec-
tive dealers. Here a dealer submitting a secret to the functional-
ity corresponds to the real world dealer sending enough infor-
mation to guarantee that the protocol terminates successfully.

Reshare. As with Reconstruct, Reshare can also be used
on a linear combination of sharings, rather than resharing
all of them individually. Similarly, the functionality must
wait until all of the inputs are received before proceeding and
should leak results to the adversary first.

Some additional complexity comes from the influence that
the real world adversary has over MVBA, which determines
which polynomials are used to randomize shares. To model
this, we allow A to directly choose which polynomials are
used after seeing their shares and all of the commitments.

Relation to Property-Based Definition. In Sections 2.1
and 2.2, we gave descriptions of Share, Reconstruct, and
Reshare and defined properties that characterized their
performance. We will now briefly relate these properties to
those provided by FDPSSHT .

• Correctness: Correctness for Share and Reconstruct is
defined such that if an honest Dealer inputs s in Share,
then Reconstruct will successfully reveal s to all honest
parties. This is captured by FDPSSHT logging polynomials
encoding s and sending them to all parties.
In Reshare, Correctness implies that the new committee
will receive shares that also lead to s being output in
Reconstruct. Here FDPSSHT creates new polynomials which
encode the same secret and gives them to C′.

• Secrecy: Secrecy for both Share and Reshare is defined in
terms of the existence of a simulator for our functionality.

• Agreement: Our Agreement property ensures that if an hon-
est party receives output in Share, then some value has actu-
ally been shared and can be reconstructed. If the last line of
Share in FDPSSHT is reached, then there must be degree-d
sharing polynomials which all parties receive shares of.

• Liveness: Reshare has a liveness property that guarantees
that an adversary in unable to prevent the protocol from
finishing as long as all honest parties agree to start
it. A similar property is encoded into Correctness for
Reconstruct and Share (when the Dealer is honest).
In FDPSSHT , we capture this as the coordinator signaling
the starts of Reconstruct and Reshare (all honest parties
will eventually receive this message and agree to start
if the message is valid). If the coordinator’s message is
valid, then there is no mechanism to prevent FDPSSHT from
delivering outputs for either of these subprotocols.
For Share this is even simpler: Once the dealer gives a valid
input, the functionality eventually outputs to all parties.

• High-Threshold and Resizability: We define FDPSSHT as
allowing the coordinator to specify an arbitrary polynomial
degree for both Share and Reshare. We note that our real
world protocol is only simulatable when t≤d≤|C|−t−1
and t ′≤d′≤|C′|−t ′−1.

B Proof of Theorem 1

We construct the following simulator Sim with the ability
to program the random oracle and thus simulate proofs
for the NIZK proof used in Algorithm 3. We assume a
static corruption model, namely, that at the beginning of
the protocol the simulator Sim knows the identities of the t
Byzantine corrupted parties and the d−t additional parties
which A can observe but not control. These parties will be
collectively referred to as CCorrupt.

The general simulation strategy used here is for the
simulator to run local copies of all of the honest parties in
the network, including the simulator. As our asynchronous
network model assumes that messages can be ordered
adversarially, the simulator only adds messages to the
message queues of the simulated parties. The environment
chooses when these messages are actually sent.
Share. During sharing, if the dealer is corrupted, the simula-
tor will receive a reliable broadcast from the corrupted parties,
which might not follow the protocol at all. The simulator lets
the simulated honest parties run the Share function (as Pi) in
Algorithm 1 and store the shares [s]id ,[ŝ]

i
d . Note that the Share

function might abort due to degree check failures or verifi-
cation failures. In this case, the simulator aborts. Otherwise,
it forwards the sharing polynomials to the functionality.

If the dealer is honest, the simulator will receive the shares
for the corrupted parties and commitments for all parties from
the functionality. In this case, its job is to simulate a Dealer
who will eventually distribute correctly encrypted shares to
corrupted nodes via ReliableBroadcast. The ReliableBroad-
cast input also includes the commitments received from the
functionality, along with encryptions of 0 and fake correctness
proofs for all the positions occupied by honest nodes. Note
here that our simulator only needs to be able to create fake
NIZK proofs and does not require any online extraction.

Because the functionality outputs shares to honest
parties, the environment will always know the full sharing
polynomials. However, our simulator does not ever need to
sample fake shares, only fake encryptions and correctness
proofs, both of which can be done with no knowledge of
the shares. Because the proofs are zero knowledge and the
encryptions are semantically secure, the environment can not
distinguish them from their real-world equivalents. Finally,
the other simulated receiver nodes should output messages
indicating that they accept these proofs.
Reconstruct. If the coordinator is honest, then when the
simulator receives a REC message from the functionality, it
needs to simulate a coordinator that would have sent the mes-
sage which triggered this reconstruction. If the coordinator is
corrupted, the simulator needs to run the receiving algorithm
for ReliableBroadcast on each simulated honest party and
send the result to the functionality if successful.

Once the functionality begins returning results, the
simulator learns the full reconstruction polynomials and
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Simulator Sim for FDPSSHT

Initially, sample n private keys SK1,SK2,...,SKn, and an honest dealer’s public key.

Share

If the dealer is corrupt, begin by running the ReliableBroadcast algorithm on all simulated honest nodes.

On receiving (sid,{vi,v̂i,ci,πi}i∈C) from a corrupted dealer via ReliableBroadcast:

• Run Algorithm 1 starting at line 201 to verify that all proofs are correct and that the commitments correspond to a degree d polynomial.

• If the checks pass, decrypt d+1 of the pairs of shares, interpolate φ(·),φ̂(·), and send (SHARE,sid,φ(·),φ̂(·),d) to FDPSSHT .

If the dealer is honest:

• Intercept each (SHARE,sid,φ(i),φ̂(i),c) destined for a corrupted Pi.

• Simulate a honest dealer running Algorithm 1. For each recipient Pi...

– If Pi is corrupted, then use φ(i) and φ̂(i) to calculate vi,v̂i,ci,πi as in Algorithm 1 lines 103-104

– If Pi is honest, set vi =Enc(0),v̂i =Enc(0),ci =c[i]. For πi, create a "fake proof" for ΠComDecEq by programming the random oracle

• The simulated honest dealer should run ReliableBroadcast with this payload. Upon completion, set the internal state of each honest
receiver such that it accepts the payload as non-faulty.

Reconstruct

If the coordinator is honest, on receiving (REC,rid,φ(·),φ̂(·)) from F , have the simulated coordinator send (REC,rid) via ReliableBroadcast.

If the coordinator is corrupted, on a simulated honest party receiving (REC,rid) from the coordinator’s ReliableBroadcast, send (REC,rid)
to F and await the message (REC,rid,φ(·),φ̂(·)).
When simulated honest party Pi outputs in the coordinator’s ReliableBroadcast, set its outbound message queue to include messages sending
φ(i) and φ̂(i) to every player (including adversary-controlled ones) as per Algorithm 2.

Reshare

If the coordinator is corrupted, on a simulated honest party receiving (RESHARE, rid) from the coordinator’s ReliableBroadcast, send
(REC,rid) to the functionality.

On receiving (LEAK,rid,{{(φi( j),φ̂i( j),c′i)}i∈CHonest} j∈C′Corrupt
) from the functionality

• If the coorinator is honest, have the simulated coordinator initiate ReliableBroadcast with the message (RESHARE,rid)

• Begin simulating honest parties in C (once they have heard from the coordinator) resharing their shares to C′ via ACSS as in Algorithm 3,
using fake proofs and encryptions of 0 for shares destined for honest nodes.

• Similarly, begin running MVBA on simulated honest nodes of C′ once they have heard from the coordinator and have them start listening
for ACSS messages from corrupted nodes, responding as they would in Algorithm 3.

On a simulated honest party in C′ outputting in MVBA:

• Input any polynomials chosen by A which made it into the MVBA output, and then send the output set to the functionality

it can easily program the simulated honest parties to be
ready to send the appropriate shares once they hear from the
coordinator. From the perspective of the environment, the
messages sent in the real and ideal worlds are identical.

Reshare. As with the Reconstruct protocol, the simulator
runs ReliableBroadcast in the case of a corrupted coordinator
and learns which protocol is being run from the functionality
in the case of an honest coordinator.

Once the Reshare protocol starts, the functionality will
leak shares and commitments to the simulator. The simulator
then initiates ACSS Dealer sessions in simulated honest
parties once they have received all of their input shares and
heard from the coordinator. As before, these ACSS sessions

will include encryptions of 0 and fake correctness proofs for
indexes occupied by honest parties in the new committee.

The simulator also programs simulated honest parties to
begin running MVBA (when appropriate) to agree on a set of
polynomials to use to build the final resharing. Once MVBA
outputs for one honest node, it is guaranteed that all honest
nodes will receive the same output, and so the output can
be fed into the functionality. At this point, the corrupted
nodes have all the messages they need to output and the
non-simulated ideal world honest parties will eventually
receive their correct results, so no further action is needed.
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