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Abstract
In recent years, the Advanced Persistent Threat (APT),

which involves complex and malicious actions over a long pe-
riod, has become one of the biggest threats against the security
of the modern computing environment. As a countermeasure,
data provenance is leveraged to capture the complex relations
between entities in a computing system/network, and uses
such information to detect sophisticated APT attacks. Though
showing promise in countering APT attacks, the existing sys-
tems still cannot achieve a good balance between efficiency,
accuracy, and granularity.

In this work, we design a new anomaly detection system
on provenance graphs, termed PROGRAPHER. To address the
problem of “dependency explosion” of provenance graphs
and achieve high efficiency, PROGRAPHER extracts temporal-
ordered snapshots from the ingested logs and performs detec-
tion on the snapshots. To capture the rich structural proper-
ties of a graph, whole graph embedding and sequence-based
learning are applied. Finally, key indicators are extracted from
the abnormal snapshots and reported to the analysts, so their
workload will be greatly reduced.

We evaluate PROGRAPHER on five real-world datasets. The
results show that PROGRAPHER can detect standard attacks
and APT attacks with high accuracy and outperform the state-
of-the-art detection systems.

1 Introduction

The long-standing war between defenses and attacks in com-
puting systems keeps evolving. Though defenses like Intru-
sion Detection Systems (IDS) and anti-malware software have
been broadly deployed, sophisticated attacks under the theme
of Advanced Persistent Threat (APT) [35] are still able to pen-
etrate organizational networks, causing severe damages [2].
The major reasons for the failures against APT attacks are that
1) the traditional defense systems rely on attack signatures
that can be easily changed by attackers, or 2) they perform de-
tection (e.g., on system logs) without sufficiently leveraging

the causal relations between different entities in a computing
system or network.

To address these two fundamental issues, recently, a num-
ber of defense systems were developed based on data prove-
nance [23]. Data provenance converts the system logs into a
graph representation, which captures the temporal and causal
relations between different types of entities (e.g., processes
and files). On this representation, graph operations like graph
traversal can be performed to detect ongoing attacks or reason
about the root causes of intrusions. With data provenance, de-
tecting APT attacks becomes possible as the rich contextual
information embedded in the logs is well utilized.

Yet, based on our review, none of the existing provenance-
based systems are able to fulfill all the essential deployment
requirements in a complex production environment, includ-
ing detection accuracy, runtime efficiency, “signature-free”,
and fine-granularity. 1) Provenance systems relying on signa-
tures, heuristics, or known attack traces can be evaded when
the attackers adjust their patterns [1, 19]. 2) Some systems
choose to construct a single provenance graph from the logs
and detect malicious entities and events [25, 64], but the over-
head would be prohibitive when a large volume of logs is to
be analyzed, and a large number of false alarms would also
be generated in such a setting. 3) A few systems construct
temporal-ordered snapshots from the logs in a streaming fash-
ion and try to detect abnormal snapshots [17, 37], but the
detection granularity is too coarse as the analysts have to ana-
lyze all entities/interactions within the abnormal snapshots.

In this paper, we present PROGRAPHER, a new provenance-
based anomaly detection system that meets the requirements
mentioned above simultaneously. It follows the direction of
graph-level, learning-based attack detection on provenance
graph [17]. When logs are ingested, PROGRAPHER extracts
snapshots to reduce the computation and memory costs on
the whole provenance graph. On each snapshot, PROGRA-
PHER applies a whole graph embedding technique named
graph2vec [44] to generate rooted subgraph (RSG) as a low-
dimensional representation for each node, and learns the graph
representation by maximizing the co-occurrence likelihood
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between normal snapshots and normal RSGs. To capture the
temporal dynamics between snapshots, a sequence-learning
model named TextRCNN [30] is adopted, so the representa-
tion of a future snapshot can be predicted and the abnormal
snapshot can be detected when it deviates from the prediction.
Previous systems like Unicorn [17] stops at the stage of re-
porting the abnormal snapshots, but PROGRAPHER moves on
to pinpoint the abnormal entities by ranking the RSGs and
reporting the most suspicious ones as attack indicators.

We implement and evaluate PROGRAPHER in 5
log datasets, including StreamSpot [36], ATLAS [48],
DARPA3 [9], an unpublished DARPA ENGAGEMENT
dataset, and logs collected by a commercial Endpoint De-
tection & Response (EDR) product, which cover a wide range
of standard attacks (e.g., sending phishing emails), APT at-
tacks (e.g., Nginx Backdoor), and computing environments
(small lab networks and large enterprise networks). The eval-
uation results show that PROGRAPHER is able to effectively
identify the snapshots containing attacks with high precision
and recall on all datasets (e.g., 1.0 precision, recall and ac-
curacy on DARPA ENGAGEMENT). Compared to the most
relevant baseline system [17], PROGRAPHER gains a large
margin, especially on the production EDR dataset (e.g., 0.943
vs. 0.542 in AUC). The indicator generation process reduces
the workload of analysts by more than 50%. Finally, PROG-
RAPHER is highly efficient in only taking seconds to perform
detection and indicator generation.

The contributions are summarized below:

• We present a novel anomaly detection system PROGRA-
PHER on the provenance graph. It combines whole graph
embedding (through graph2vec) and sequence learning
(through TextRCNN) to analyze snapshots of a prove-
nance graph, which effectively and efficiently learns the
representations of normal system behaviors.

• We introduce a new technique to identify attack indica-
tors from a detected abnormal snapshot based on rooted
subgraph (RSG), which significantly reduces the work-
load of analysts.

• We implement PROGRAPHER and evaluate it on 5
datasets that include traces of standard or APT attacks
in different environments. The results show PROGRA-
PHER achieves high detection precision and recall on
all datasets, and outperforms previous work by a large
margin.

2 Background

We first introduce the background of data provenance in the
context of attack investigation. Then, we focus on the learning-
based approaches that are extensively used by the provenance
systems. Finally, we briefly overview graph embedding, the

main technique used by PROGRAPHER in modeling prove-
nance graphs.

2.1 Data Provenance for Attack Investigation

To enable attack detection and forensics, system logs are
often collected by the system-level auditing tools, such as
Windows ETW [10], Linux Audit [52] and FreeBSD Dtrace
[12], which describe the interactions between system entities
like processes and files. The logs collected on the end hosts
within an organization are often analyzed by a central service
like Security Information and Event Management (SIEM) [3]
to detect sophisticated cross-machine attacks.

On top of system logs, data provenance was proposed to
detect and reason about intrusions, and even long-term Ad-
vanced Persistent Threat (APT) attacks that consist of multiple
stages (e.g., reconnaissance, installation, command & control,
and lateral movement) [35] can be detected. In essence, data
provenance constructs a dependency graph from the system
logs to describe the relationship between events, so detec-
tion and investigation can be transformed into graph-related
operations [23].

Among all the graph-related operations, graph traversal
is likely the most popular choice. One prominent example
is back-tracking, through which the security analyst queries
the provenance graph with a point of interest (POI) entity
and a time window, and the events with time dependency are
returned [28]. However, this simple approach suffers from
“dependency explosion” [6], which can be caused by long-
running processes that interact with many subjects/objects
during their lifetime.

2.2 Learning-based Attack Detection on Prove-
nance Graph

To accurately pinpoint the attack events, a wealth of rule-based
approaches [23] were proposed, which leverage the knowl-
edge of known attack behaviors to search the provenance
graph. However, writing the rules requires considerable effort
from the analysts, and attacks under unseen patterns could be
missed. As a result, recent learning-based approaches, which
train models with normal system behaviors (and malicious
behaviors for supervised learning) to detect abnormal system
executions, started to gain more attention. Though applying
learning-based approaches to capture cyber-attacks is not
new, provenance graph introduces new opportunities to ex-
ploit graph structures and apply new graph-learning methods.
The existing works can be categorized by the granularity of
target: edge/node, path, and graph.

When the target is edge/node, the trained system aims to
tell whether the interaction between a pair of entities or the en-
tity itself is malicious. One example is ShadeWatcher, which
builds a knowledge graph from the system logs and uses
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Graph Neural Networks (GNN)-based recommendation sys-
tem to detect the malicious interactions [64]. SIGL lever-
ages node embedding and an auto-encoder model to tell
whether a process spawned from a software installation graph
(SIG) is malicious [18]. However, achieving high accuracy
for edge/node-based detection is quite challenging when en-
countering a large provenance graph1. Besides, the detection
result does not provide contextual information (e.g., other
activities related to the detected edge/node) that is valuable to
understand the attack campaign.

For path-based detection, paths that fit certain patterns (e.g.,
being associated with POI nodes) are selected from the prove-
nance graph and the trained system classifies the paths. For
example, ProvDetector identifies stealthy malware by apply-
ing word embedding to transform execution paths into vectors
and then clustering them [56]. Atlas applies lemmatization
and word embedding to generate sequences and uses Long
Short-term Memory (LSTM) network to predict whether a
sequence is related to attack [1]. However, these approaches
rely on heuristics to select POI paths (ProvDetector selects
the rare paths tailored to stealthy malware) or nodes (ATLAS
assumes some malicious nodes have been known) first and
then apply learning-based approaches.

For graph-based detection, the provenance graph is either
classified as a whole, or is decomposed into a set of sub-
graphs, on which the classification is performed. For example,
Unicorn [17] slices the logs by a sliding time window and
constructs evolving subgraphs from them. For each subgraph,
graph sketching [61] is performed to convert a histogram that
captures the structural features into a fixed-size vector. Prov-
Gem [25] proposes multi-embedding to capture the varied
contexts of nodes and classifies a graph on the aggregated
node embeddings in a supervised-learning way. The main
problem of graph-based detection is that its detection granu-
larity is too coarse, and the analyst still needs considerable
effort to pinpoint the malicious entities/events from the graph,
which could include thousands of nodes.

PROGRAPHER follows the direction of graph-based de-
tection, but makes prominent improvements in detection ac-
curacy and granularity. In Section 8, we provide a detailed
literature review of the data provenance systems.

2.3 Graph Embedding

To capture the key properties of the provenance graph, graph
embedding is often used by provenance systems. In other
domains like social networks [32], recommendation sys-
tems [53], and life sciences [13], graph embeddings have seen
prominent successes in improving the performance of down-
stream tasks like graph classification, clustering and regres-

1ShadeWatcher achieves high detection accuracy, but it is evaluated
against small graphs (most of the graphs only have hundreds of interac-
tions, as shown in Table I of [64]). The SIGs inspected by SIGL are usually
small.

sion. In essence, graph embedding learns to represent nodes,
edges, subgraphs, or the whole graph by low-dimensional
vectors, which capture the graph structures, vertex-to-vertex
relationships, and other relevant information about graphs.
Two types of graph embedding techniques have been lever-
aged by provenance systems, and we describe them below2:

• Node embedding maps each node of a graph to a low-
dimensional vector that preserves its key information,
like the node’s neighborhood information, the node’s
structural role, and the node’s status. Popular node em-
bedding models include DeepWalk [47], GCN [29],
GraphSage [15], etc. Downstream tasks like node clas-
sification and edge classification, which are relevant to
node-, edge-, and path-based detection, can be performed
by computing node/edge scores from the node embed-
ding and comparing them to thresholds.

• Whole graph embedding represents the whole graph
with a single vector, which aggregates the information
from node representations. Popular whole graph em-
bedding models include DiffPool [63], graph2vec [44],
graph sketching [61], etc. Downstream tasks like graph
classification and clustering, which are relevant to graph-
based detection, can be performed by computation on
the graph vector.

PROGRAPHER applies whole graph embedding to detect
subgraphs that contain attack traces. The key technique lever-
aged by PROGRAPHER is graph2vec, which extends the neu-
ral document embedding models of the NLP domain to the
graph domain. Previous graph-based detection systems like
Unicorn [17] examined relatively simple embedding mod-
els like graph sketching, which only captures the frequency
of sub-structures in a graph. We found that with graph2vec,
complex non-linear substructures are considered, which leads
to more accurate measures of structurally similar graphs. In
Section 4.2, we elaborate on how graph2vec is adapted to
build provenance graph embedding.

3 Overview and Design of PROGRAPHER

In this section, we first formally define the problem and the
threat model. Then, we overview the design of PROGRAPHER
and the challenges. The symbols used in the paper are defined
in Table 1.

3.1 Problem Statement
Here we define the provenance graph to be analyzed as G =
(V ,E ,λ,δ,γ), where V is the set of nodes in G and E is a set
of edges. An edge e = (u,v) ∈ E exists between two entities

2Edge embedding has also been proposed for applications like recom-
mendations in social network [54], but we have not found it to be used by
any provenance system.
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Figure 1: Overview of PROGRAPHER workflow.

Table 1: Main symbols used in the paper.

Term Symbol
Graph G
Edges E
Nodes V

One edge e
One node u,v

Embedding E
Snapshot S

Rooted subgraph R
Snapshot size n

Snapshot sequence length L
Forgetting rate f r

u and v (u,v ∈ V ) when their interactions are logged. We
also assume G is undirected. λ : V → TV is a function that
assigns a label from the node type set TV to each node v ∈ V .
Similarly, δ : E → TE assigns a label from the edge type set
TE to each edge e ∈ E . Examples of node types and edge
types are shown in Table 3. γ : E → Z records the timestamp
of each edge e∈E . To notice, we consider a small set of fields
in the log events (i.e., node type and edge type). This choice
aligns with other related works like Unicorn [17], which only
considers node type and edge type as well. We leave the
utilization of other event fields as future work. The goal of
our system PROGRAPHER is to detect the attack traces by
analyzing the provenance graph, and provide the root-cause
candidates to reduce analysts’ workload.
Threat model. We follow the threat model from the previous
works that conduct log-based anomaly detection [1,17,34,64].
We assume attackers do not manipulate the audit logs col-

lected from the end-host monitors. As such, any attacks that
deliberately compromise the security of the auditing systems
are beyond the scope of this study. Existing works that ensure
log integrity [26, 45] can be leveraged to defend against such
attacks.

3.2 Overview
We envision three design goals (G1 to G3) to be fulfilled by
PROGRAPHER. Noticeably, none of the prior works were able
to meet them all together and we compare PROGRAPHER to
the representative ones in Table 2.

• G1. PROGRAPHER should learn the normal behavior
patterns from the benign logs, so it increases the chances
of detecting attacks that exploit zero-day vulnerabili-
ties. In other words, PROGRAPHER should be built with
unsupervised-learning, without the knowledge of any
attack or event labels.

• G2. Since processing the provenance graph for a long
period3 is resource-consuming, PROGRAPHER should
be able to process subgraphs of the whole provenance
graph that are separated by periods, and leverage the
temporal dynamics between periods for detection.

• G3. PROGRAPHER should be able to accurately identify
the subgraphs with abnormal activities. In addition, PRO-
GRAPHER should point out the entities that are directly

3For example, the whole-system provenance graph built upon DARPA
THEIA dataset [9] consists of over one million nodes and one hundred million
edges.
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Table 2: The comparison with other related works in learning-based provenance analysis.

System Target Embedding Setting
Knowledge of

Streaming1(G2)
Report

Attacks (G1) Granularity (G3)

ShadeWatcher [64] Edge GNN Generic No No Edges
SIGL [18] Node word2vec Software installation No No Nodes
ATLAS [1] Path word-representations [41] Generic Yes No Paths

ProvDetector [56] Path2 doc2vec Stealthy malware Yes No Paths
Prov-Gem [25] Graph GCN Generic Yes No Graphs
Unicorn [17] Graph Graph sketching Generic No Yes Snapshots

PROGRAPHER Graph graph2vec Generic No Yes Nodes
1 whether prediction can be performed incrementally on the ingested logs;2 though ProvDetector has a version to classify graphs, it simply checks if the number of malicious paths is
over a threshold.

related to attacks, which narrows down the investigation
scope.

PROGRAPHER consists of four components to meet G1-
G3: 1) snapshot builder, 2) encoder, 3) anomaly detector, and
4) key indicator generator. The workflow of PROGRAPHER is
shown in Figure 1 and we present the details of each compo-
nent in Section 4.

Specifically, the snapshot builder first extracts nodes and
edges from the audit logs collected from end hosts and then
splits the data into snapshots by the timestamps. The encoder
generates a whole graph embedding on each snapshot to cap-
ture the graph’s structural features. The anomaly detector
trains a prediction model with the embeddings from the snap-
shots that are supposed to contain only benign activities, and
detects the abnormal snapshots. Finally, the key indicator gen-
erator ranks the nodes contained by the abnormal snapshot
and reports the top nodes to analysts.
Challenges of provenance graph embedding. The major
challenge for building PROGRAPHER is how to choose and
adapt the existing graph embedding methods for provenance
graphs. Though whole graph embedding has been examined
by provenance systems, none of them can meet the three
design goals. For example, graph sketching examined by Uni-
corn cannot meet G3 (i.e., cannot pinpoint the malicious en-
tities). Using more complex models powered by GCN like
DiffPool [63] is likely to encounter scalability issues due to
the high overhead in training GCN on large-scale graphs. In
addition, these embedding models work with static graphs
but how to adjust them to capture the temporal dynamics is
unclear. In the end, we found that graph2vec strikes a good
balance between efficiency and accuracy. Yet, directly apply-
ing graph2vec to our problem would lead to unsatisfactory
results. Wang et al. actually tested graph2vec for graph-level
detection, and found its recall is only 0.452, at 0.899 precision
(Table IV of [56]). We speculate that the poor performance
of graph2vec is due to the fact that the benign activities in
the provenance graph usually far exceed the malicious activ-
ities, which may “hide” the malicious activities in the same
graph. We elaborate on how we adjust graph2vec to make it

practical for provenance graph embedding in Section 4.2 and
Section 4.3.

4 Components of PROGRAPHER

4.1 Pre-processing and Snapshot Builder

We consider the log events about the files (e.g., file creation,
file reading, file writing), processes (e.g., creation and priv-
ilege change), network sockets (e.g., network connection),
principal (users or account), etc. The edges are made of events
describing the actions performed by the source entities on the
destination entities (e.g., a process reads a file). An example
is shown in Figure 2. The full list of node types and edge
types considered by PROGRAPHER is shown in Table 3.

Figure 2: An example that includes four types of entities.
Each edge has event type and event timestamp.

To handle the large volume of incoming logs efficiently,
PROGRAPHER constructs snapshots ordered by time. It main-
tains a cache graph when the logs are ingested. For each
incoming log, the event source and destination are added to
the cache graph as nodes, when they are unseen. An edge
is also created between the pair of new nodes, and the log
timestamp is assigned to the nodes. For a pair of existing
nodes, their timestamps are updated. When the number of
nodes reaches n (also termed snapshot size), all n nodes and
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Table 3: Graph elements and their types.

Element Type

Node TV
PROCESS, NETFLOW, PACKETSOCKET, FILE,
PIPELINE, MEMORY, PRINCIPAL

Edge TE

CONNECT, SEND, ACCEPT, LISTEN,
OPEN, READ, WRITE, COPY,
LOAD, UNLINK, MODIFY_ATTRIBUTES,
CLONE, EXECUTE, TERMINATE,
MEMORY_PROTECT, MEMORY_MAP

their edges are saved into the first snapshot. After that, PRO-
GRAPHER adds new nodes from the incoming logs, uses a
forgetting rate ( f r) to retire the n× f r oldest nodes, and saves
the cache graph into a new snapshot when the node num-
ber reaches n× (1+ f r). In other words, a pair of adjacent
snapshots always have 1− f r overlap in nodes.

We repeat this process to produce a sequence of snapshots
{S1,S2, ...,Sk}. With such a design, we ensure that the tem-
poral dynamics can be recovered by comparing the adjacent
snapshots and the size of each snapshot is under control (i.e.,
≤ n). Moreover, the ratio between benign and malicious traces
in a snapshot is expected to be much smaller than the whole
provenance graph, addressing the data imbalance issue. The
pseudo-code is shown in Algorithm 1 of the Appendix.

4.2 Encoder

After a snapshot is generated, the encoder component converts
it to a low-dimensional embedding to capture its key informa-
tion for anomaly detection to be performed later. As explained
in Section 3.2, we choose graph2vec [44] as the encoding
model. In essence, graph2vec considers the rooted subgraphs
(RSGs) that are centered on every node as its vocabulary, and
applies an NLP embedding technique named doc2vec [31] on
the vocabulary to learn the graph representation. Below, we
elaborate on the steps for embedding generation.

In the first step, every node will be enumerated to extract
RSGs of various degrees, which capture the node’s neigh-
borhood information. In graph2vec, Weisfeiler-Lehman (WL)
graph kernel [50,60], which is used to test graph isomorphism,
is leveraged to achieve this goal. Specifically, for a node v,
the WL kernel takes its label and the labels of its connected
edges and nodes as input labels. Then, a new label, which is
termed RSG, is generated for v that is aggregated from the in-
put labels. The whole procedure is repeated d times on every
node v ∈ V to describe its neighborhoods of depth 1, ...,d.

To accommodate the format of provenance graph, we con-
sider the node and edge types as labels (the original WL kernel
only considers node types). Moreover, we found RSGs gener-
ated from a large and dense graph can have a lot of redundant
labels. For efficiency, we only keep the unique labels for each
RSG. In Algorithm 2 of Appendix, we describe the steps of

RSG generation. As a concrete example, the RSGs of the
node “Process2” at d = 0,1,2 in Figure 2 are:

• d = 0: [(Process)].

• d = 1: [(Process), (File), (Principal), LOAD, WRITE,
CREATE, READ].

• d = 2: [(Process, File, Principal, LOAD, WRITE, CRE-
ATE, READ), (Process, Principal, LOAD, CREATE),
(Process, File, READ, WRITE), (Process, Socket, CRE-
ATE, CONNECT, TERMINATE, ACCEPT), LOAD,
WRITE, CREATE, READ].

Next, the embedding ESi of a snapshot Si will be generated.
ESi is initialized as a random vector, and then updated by
maximizing the log-likelihood of the RSGs of all nodes, which
are also represented by embeddings. The embeddings E of all
snapshots {S1,S2, · · · ,Sk} can be updated together through
gradient descent. The updating process follows the skipgram
model [39] used by doc2vec. The objective function we use
is defined as:

J(E) = log Pr(Er j |ESi) = log
exp(Er j ·ESi)

∑rk∈Ri exp(Erk ·ESi)
(1)

where r j is RSG j of Ri = {r1,r2, · · · ,rn×(D+1)}, D is the
maximum degree of RSGs and Er j is the embedding of one
RSG r j.

For training efficiency, we apply negative sampling [40]
like prior works based on unsupervised learning [64].
On a snapshot Si, we randomly select m RSGs R ′

i =
{r1,r2, · · · ,rm} from the whole subgraph set as negative sam-
ples such that R ′

i ∩Ri = /0. The objective function J(E) will
be adjusted to maximize the log-likelihood of Ri and mini-
mize the log-likelihood of R ′

i at the same time. Since R ′
i is a

subset of non-exist RSGs, the training overhead is reduced. In
Algorithm 3 of Appendix, we summarize the whole process
of embedding generation.

4.3 Anomaly Detector

After generating the representations of the snapshots, PRO-
GRAPHER moves on to detect the abnormal snapshots. We
consider the changes between snapshots as an important in-
put for the detection, and examine a sequence of snapshots
{S1,S2, · · · ,Sk} altogether. The bidirectional recurrent struc-
ture and convolution neural network model proposed by Tex-
tRCNN [30], which has been widely used for text classifica-
tion, is chosen for this task.

To train the anomaly detector, we take a set of snapshot
sequences and their associated embeddings as input. The
recurrent structure and convolutional network are used to
obtain a latent representation yi of each snapshot Si in the
input sequence, which is defined below:

yi = tanh(Wxi +b) (2)
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where xi = [le f t(Si);E(Si);right(Si)] is the concatenation of
left-side context vector, the embedding of itself, and right-side
context vector. W is the weight matrix and b is the bias vector.
The left and right context vectors are defined as:

le f t(Si) = Relu(W l le f t(Si−1)+W slE(Si−1)) (3)

right(Si) = Relu(W rright(Si+1)+W srE(Si+1)) (4)

where Relu is the Relu activation function. W r,W l ,W sl ,W sr

are weight matrices.
Then we utilize a maxpool layer and a fully-connected layer

to obtain the final representation of each snapshot sequence.

FS[1:k] =W (
k

max
i=1

(yi))+b (5)

where FS[1:k] is the final representation of the snapshot se-
quence, W is the weight matrix, max is the max pooling layer,
and b is the bias vector.

In the training phase, given a snapshot sequence
{S1,S2, · · · ,Sk}, we predict how likely the sequence would
be related to its followed snapshot Sk+1. So we define the loss
as the distance in terms of the L2 distance as given below.

d(Sk+1,S ′
k+1) =

∥∥∥ESk+1 −FS[1:k]

∥∥∥
2

(6)

where ESk+1 is the embedding of snaoshot Sk+1.
In the testing phase, given a snapshot sequence, we com-

pare its predicted embedding with the ground-truth embed-
ding. If the distance between them exceeds a pre-defined
threshold, we will label it as abnormal.

4.4 Key Indicator Generator
After detecting the abnormal snapshot, the key indicator of
the malicious activities will be generated. We found this step
is missed by other works like Unicorn [17]. As such, their
detection results are coarse-grained. But with the adoption of
graph2vec, finer-grained attack attribution becomes possible
by PROGRAPHER.

According to Equation 1, the objective function J(E) mea-
sures the co-occurrence probability between a snapshot em-
bedding and each RSG. The smaller the value, the smaller the
co-occurrence probability. Since the likelihood is computed
on every RSG of a snapshot, we can order the RSGs by their
probabilities and select the key indicators from them. In partic-
ular, during the testing phase, given a snapshot Si, we compare
the embedding ESi generated from Si to the embedding E ′

Si
predicted from the sequence of k snapshots, and extract the
differences between the two embeddings for every RSG. Af-
ter that, the RSGs are sorted by the loss differences, and the
top K suspicious RSGs are selected. A RSG can be mapped
to multiple nodes because it only stores node and edge types.
Hence, we search the snapshot to locate all nodes matching
the K suspicious RSGs and send them to the analysts.

4.5 A Running Example

Here we use a running example summarized from one attack
of the ATLAS dataset (“Malvertising dominate” exploiting
CVE-2015-3105 [7]) to illustrate how PROGRAPHER works
in practice. In this attack, a user accesses a malicious IP
address and establishes a set of network sessions. Next, a pay-
load file is downloaded to the user’s machine and executed to
collect additional information to be exploited by the attacker.

As shown in Figure 3, S1 and S2 represent the snapshots
before the attack, and S3 represents the initial phase of the
attack. For ease of demonstration, we use a subset of the
snapshots generated from the provenance graph and simplify
each snapshot by removing a lot of unrelated activities and
merging entities among snapshots. The red nodes denote the
malicious entities labeled by the ATLAS dataset.

PROGRAPHER detects the anomalous snapshot, S3, based
on snapshot sequence S1 −S2. After that, PROGRAPHER fur-
ther selects top RSGs as the indicators, represented by their
root nodes. The experiment results show that 3 of them are
related to the attack campaign by that (1) the root node is a
labeled malicious node (“6479_IP_address” and “6492_ses-
sion”), or (2) a labeled malicious node can be found in the
RSG (“6483_process”). Meanwhile, the remaining one is a
false positive.

5 Implementation

We implement all components of PROGRAPHER in Python
3.7 with about 2000 lines of code. For machine-learning com-
ponents, we implement the encoder model with Tensorflow
1.4 and the anomaly detection model with PyTorch 1.10.

To ensure that each snapshot contains sufficient information
to learn its representation, we set the snapshot size n based on
the scale of the dataset. For small graphs with less than 10K
nodes (e.g., the provenance graph of software on a machine), n
is set to 300. For large graphs with nodes more than 10k (e.g.,
the provenance graph of OS), n is set to 900. L is configured
to 32, 128, and 176 for different datasets. During snapshot
building, a forgetting rate f r is used to remove the oldest,
and we set it to 1

3 . For the encoder and anomaly detector, we
choose the hyper-parameters through grid search, and their
optimal values are described below. In Section 6.5, we show
the impact of different snapshot size n, snapshot sequence
length L and forgetting rate f r. Table 4 lists the parameter
values by datasets.

• Encoder. The dimension of graph embedding is 256;
the depth of WL kernel (d) is 3 in small graphs and 4 in
large graphs; the number of negative samples is 15.

• Anomaly detector. The dimension of the hidden layer
is 128; the number of the hidden layer is 5; the initial
learning rate is 3e− 4; early-stopping patience is 30
epochs; the dropout rate is 0.2.
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Figure 3: A running Example. The nodes in red are labeled as malicious in the Atlas dataset.

Table 4: Hyper-parameters of different dataset.

Dataset L n f r d

StreamSpot-DS 176 300 1/3 3
CADETS 128 900 1/3 4

CLEARSCOPE 32 300 1/3 3
THEIA 128 900 1/3 4

ATLAS-DS 32 300 1/3 3
DARPA ENGAGEMENT 128 900 1/3 4

Training and testing are conducted on a server with a 32-
core Inter E5-2640 processor, 256 GB physical memory and
one Nvidia GTX TITAN X GPU. The operating system is
Ubuntu 14.04.6 LTS.

6 Evaluation

In this section, we perform a comprehensive evaluation of
PROGRAPHER. We start by describing the datasets used
for evaluation. Then, we evaluate the component for indi-
cator generation, the runtime overhead of PROGRAPHER, the
impact of parameters, and the robustness of PROGRAPHER
against adaptive attacks.

We choose Unicorn [17] as the baseline system to compare
with, because it also performs graph-level provenance analysis
and its source code is publicly available [16].

6.1 Datasets

We use two log datasets with simulated attacks (StreamSpot
and ATLAS) and two DARPA datasets (DARPA3 and DARPA
ENGAGEMENT) to evaluate how PROGRAPHER performs
in practice. Furthermore, we deploy PROGRAPHER in a pro-
duction environment to analyze the system logs collected by
a commercial EDR product. Below we describe the 5 datasets
in detail.
StreamSpot dataset. The StreamSpot [37] dataset (or
StreamSpot-DS for short) contains 600 benign and attack
graphs derived from 6 scenarios: “YouTube”, “GMail”,

“VGame”, “Drive-by-download Attack”, “Download”, and
“CNN”. Each scenario contains 100 graphs. Five of these sce-
narios only have benign system activities, while the “Drive-
by-download Attack’ scenario involves a drive-by-download
attack that exploits an Adobe Flash vulnerability to gain root
access.

ATLAS dataset. To evaluate more attack scenarios and how
PROGRAPHER performs when benign and malicious activi-
ties are mixed, we use ATLAS dataset [48] (or ATLAS-DS
for short), which is collected in a lab environment and con-
tains 10 types of APT attacks, including different tactics like
malicious email attachments and lateral movement. Various
benign activities, including browsing websites, reading emails,
downloading attachments, connecting to other hosts that hap-
pened before the attack, etc., are simulated together during
the execution of each attack. On average, each scenario has
20,088 unique entities and 249k events. The attack-related
entities are labeled as malicious by the data provider.

DARPA3 dataset. The DARPA3 dataset consists of 5
sub-datasets, including Trace, Fivedirection, CLEARSCOPE,
THEIA, and CADETS, that are built under the DARPA Trans-
parent Computing (TC) program [9]. Each sub-dataset con-
tains 2-week system logs of specific system events (e.g., file
read/write, network connection) on various platforms. Mul-
tiple attack campaigns are performed by red teams after a
“silent” period (only benign activities are performed). The
attack campaigns simulate the known APT attack vectors
like Nginx backdoor, Darkon APT and the Firefox backdoor,
and common attack vectors like sending phishing emails. We
use the same three sub-datasets (CADETS, CLEARSCOPE,
and THEIA) as Unicorn, which represent system activities on
FreeBSD, Android, and Ubuntu Linux, for a fair comparison.

DARPA ENGAGEMENT dataset. We also obtained another
unpublished dataset under the DARPA TC program, called
DARPA ENGAGEMENT. The dataset contains 8-hour system
logs collected from Linux systems. In total, there are about
3M system entities with 120M system events, and its per-hour
system events and entities are much more than the previous
DARPA3 sub-datasets, reflecting a more difficult scenario in
which to perform accurate attack detection. Two APT attacks,
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including Firefox backdoor and Loader Drakon APT, were
performed.
Production EDR dataset. Finally, we evaluate how PROG-
RAPHER performs in a real-world, production environment,
by analyzing the logs collected by a commercial EDR prod-
uct deployed on 18K endpoints (workstations and servers)
from over 100 companies. On average, 2,030 events (1.2 MB)
were collected per day per one endpoint, and overall there are
332,433,377 events (180 GB) analyzed for the duration of 9
days. The data are all stored in the EDR cloud server with
strict access control policies to address privacy concerns. In
the training phase, the security analysts examine the logs and
give us the data with no reported attacks. In the testing phase,
PROGRAPHER aims to capture the attack that was discovered
by the security analysts.

6.2 Effectiveness
We first compare PROGRAPHER with Unicorn on StreamSpot-
DS and three DARPA3 sub-datasets (CADETS, THEIA,
CLEARSCOPE) on the effectiveness. Then, we evaluate PRO-
GRAPHER on ATLAS-DS, DARPA ENGAGEMENT dataset
and production EDR dataset. Before showing the results, we
describe our evaluation metrics.
Evaluation Metrics. Each dataset has a number of graphs
either determined by the data provider (e.g., StreamSpot-DS)
or generated by us (e.g., DARPA3, to be elaborated later), and
we separate each graph into a number of snapshots. Following
the metrics of Unicorn, once we detect at least one abnormal
snapshot, the whole graph will be considered malicious. Oth-
erwise, the graph is considered benign. In this case, we count
a true positive (TP) when an attack graph is detected correctly,
and a false negative (FN) when it is not detected. True neg-
ative (TN) and false positive (FP) are defined on the benign
graphs accordingly. Then, we compute the following metrics:
accuracy, precision, recall, and F1 as:

Accuracy =
T P+T N

T P+FP+T N +FN

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

F1 = 2× Precision×Recall
Precision+Recall

(7)

Table 5 summarizes the information about each dataset.
Each dataset is separated by training, validation and testing,
and we ensure that all of them are disjoint and all benign
graphs in the testing set happen after the training and valida-
tion graphs.
Results on StreamSpot-DS. In this experiment, we randomly
select 75 graphs from each benign scenario as the training set,
5 graphs from each benign scenario as the validation set and
the remaining benign and attack graphs as the testing set. In
total, we have 375 training graphs, 25 validation graphs and

Table 5: Statistics of the datasets. “#Benign” and “#Attack”
are the number of benign and attack graphs. Size is measured

on the graphs after pre-processing, not the raw data.

Dataset #Benign #Attack Size (GB)

StreamSpot-DS 500 100 8.3
DARPA3 (CADETS) 127 4 9.2

DARPA3 (CLEARSCOPE) 116 4 2
DARPA3 (THEIA) 66 3 27

ATLAS-DS 10 10 1.1
DARPA ENGAGEMENT 24 2 38

Production EDR 58,692 486 43

200 testing graphs. For Unicorn, we use their released code
and run the experiment in the same setting.

We ran the experiment 100 times for different data splits
with both PROGRAPHER and Unicorn. As shown in Table 6
(row 1), our model has better precision, accuracy and F1. Both
PROGRAPHER and Unicorn can capture all the attack graphs,
but PROGRAPHER detects less FP 4. It reveals that graph
embedding and temporal modeling by PROGRAPHER are
important to detect abnormal snapshots accurately.
Results on DARPA3. For each sub-dataset, we identify the
attack-related activities and their timestamps with the ground-
truth documents [8]. The benign graphs are generated by
splitting the logs into 2-hour disjoint windows. Each attack
graph captures a complete attack attempt recorded in the
ground-truth documents (e.g., “Nginx Backdoor w/ Drakon
In-Memory” in CADETS). We use the 80% benign graphs to
train PROGRAPHER, 10% benign graphs for validation, and
the remaining 10% benign graphs combined with all attack
graphs as the testing set.

Table 6 (row 2-4) shows the results. Specifically, PROG-
RAPHER detects all attacks in three datasets (1.0 recall) and
only falsely detects one benign graph in CLEARSCOPE as
an anomaly. We investigate further and find that the FP is
mainly caused by insufficient behavioral information in the
training set. Since we only keep the latest event of the same
pair of entities, for CLEARSCOPE, hundreds of events can be
removed per entity pair. Admittedly, such a strategy removes
useful information that can distinguish benign and malicious
behaviors. This also explains why the size of CLEARSCOPE
dataset after pre-processing is small (only 2GB). For compar-
ison, Unicorn performs worse than PROGRAPHER in nearly
every metric5.
Results on ATLAS-DS and DARPA ENGAGEMENT. For

4For Unicorn, though we have not been able to get the same results as in
their paper [17], the results are similar.

5We found the Unicorn result here is worse than its reported result on
paper, due to two reasons. 1) We learned from the authors they used a non-
public benign dataset under DARPA TC for training, to which we do not
have access. 2) We found the Unicorn implementation does not enforce that
the graphs in testing happen after training and validation, which is a common
problem in security systems (“Data Snooping” mentioned by [4]).
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Table 6: Experiment results of Sreamspot-DS and DARPA3.
The numbers are averaged over the 100 runs.

Dataset System Precision Recall Accuracy F1

StreamSpot-DS
Unicorn 0.85 1.0 0.91 0.92

PROGRAPHER 0.90 1.0 0.94 0.94

CADETS
Unicorn 0.31 1.0 0.44 0.47

PROGRAPHER 1.0 1.0 1.0 1.0

CLEARSCOPE
Unicorn 1.0 0.75 0.93 0.86

PROGRAPHER 0.8 1.0 0.93 0.89

THEIA
Unicorn 0.67 0.67 0.8 0.67

PROGRAPHER 1.0 1.0 1.0 1.0

ATLAS-DS, 10 attacks are simulated, resulting in 10 subsets.
We split each subset into a benign graph and a malicious graph.
The malicious graph has all the attack sequences labeled by
the data provider, and the benign graph has the remaining
sequences. Because the number of graphs is small, for each
run, we choose one attack graph and one benign graph from a
subset for testing, one benign graph from another subset for
validation, and all remaining benign graphs for training. For
DARPA ENGAGEMENT, the data splitting follows the same
procedure as DARPA3, but we change the 2-hour window
to half-hour, because the logs only span 12 hours and each
attack is no longer than half an hour.

Table 7 shows that our system successfully detects all the
attacks and does not generate any FP. The result also shows
PROGRAPHER can handle different types of APT attacks.

Table 7: Results of ATLAS-DS and DARPA
ENGAGEMENT.

Dataset Precision Recall Accuracy F1

ATLAS-DS 1.0 1.0 1.0 1.0
DARPA ENGAGEMENT 1.0 1.0 1.0 1.0

Results on Production EDR. We extract around 59K graphs
from the 180GB logs by endpoints. From the first 7 days,
we use 51,119 benign graphs for training (the benign graphs
were selected by the analysts) and 2,889 benign graphs for
validation. For the remaining 2 days, we use 4,684 benign
graphs and 486 attack graphs for testing. Notably, this dataset
has far more graphs than the other datasets.

In Figure 4, we draw the ROC curve to illustrate the re-
lation between TPR and FPR, and compare it with Unicorn.
The result suggests that PROGRAPHER can achieve reason-
able accuracy in a production environment, e.g., 94% TPR at
14% FPR. The detection accuracy of Unicorn is significantly
reduced and lower than PROGRAPHER, e.g., less than 10%
TPR at 20% FPR. The area under the curve (AUC) of PROG-
RAPHER nearly doubles from Unicorn (0.943 vs. 0.542).

Still, we acknowledge that PROGRAPHER is less accurate
in the production environment. The root causes could be 1)
the training set may contain malicious activities not identified
by the analysts, 2) the normal behaviors are more diverse
during the 9-day period.

Figure 4: ROC curve for the production EDR dataset.

6.3 Evaluation on Indicator Generation
PROGRAPHER is designed to infer the attack indicators from
an abnormal snapshot, which is the major difference from
other systems like Unicorn. Here we evaluate this component
under three metrics: effectiveness of indicators, coverage of
the attack, and workload reduction.
Effectiveness of indicators. As described in Section 4.4, we
select top K RSGs from an abnormal snapshot and return all
nodes matching these RSGs. We judge whether the selected
nodes can be an effective indicator with the following metric.
Given a ground-truth attack node, we consider the nodes in the
3-hop neighborhood as valid, and all other nodes as invalid.
We choose 3-hop neighborhood as we set the depth of WL
kernel to 3 for small graphs (4 for large graphs, see Section 5),
as it is a common practice to investigate the neighborhood
entities given an alert [20]. If at least one node of the indicator
belongs to the attack node or the valid neighbors, the indicator
is considered effective. Figure 5 gives an example of these
three types of nodes.

For a dataset, we compute the effectiveness rate as the ratio
between the effective indicators and all indicators identified
by PROGRAPHER. Table 8 shows the rate with various K
(from 1 to 5) for the 3 DARPA3 subsets. As we can see,
even with a small K between 2 and 3, the effectiveness rate is
already quite high (at least 0.94).

Figure 5: Attack nodes, valid attack neighbors and invalid
attack neighbors.

Coverage of attack. We also measure how many ground-truth
attack nodes are covered by the indicators. For one dataset,
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Table 8: Effective rate of indicators on DARPA3.

Dataset
Effectiveness Rate

K=1 K=2 K=3 K=4 K=5

CADETS 0.88 0.94 0.94 1 1
THEIA 0.89 1 1 1 1

CLEARSCOPE 1 1 1 1 1

we define the coverage rate as the ratio between the correctly
identified attack nodes and all ground-truth attack nodes. Ta-
ble 9 shows the coverage rate of each dataset with K ranging
from 1 to 5. All attack nodes are identified for THEIA and
CLEARSCOPE. For CADETS, only 1 attack node is missing
when K ≥ 4.

Table 9: Coverage rate of attack nodes on DARPA3.

Dataset
Coverage Rate

Total K=1 K=2 K=3 K=4 K=5

CADETS 28 0.61 0.67 0.85 0.96 0.96
THEIA 18 1 1 1 1 1

CLEARSCOPE 28 1 1 1 1 1

Workload reduction. In the previous experiments, we mea-
sure the effectiveness and coverage of indicators. Since an
indicator only records node and edge types, it can be mapped
to multiple nodes in a snapshot. We measure the number of
nodes to be investigated and compare it to all nodes of a snap-
shot. We define the reduction rate as 1− Covered

Total (“Covered”
and “Total” are the number of nodes mapped to all indicators
and all nodes in abnormal snapshots).

Table 10: Workload reduction. “Covered” and “Total” are
related to PROGRAPHER. Unicorn’s number is higher than

“Total” because Unicorn predicts larger snapshots as
abnormal.

Dataset Covered Total Reduction Unicorn

CADETS 6,794 16,200 58.1% 51,029
CLEARSCOPE 3,460 7,500 53.9% 21,853

THEIA 6,988 17,100 59.2% 51,147

Average 5,748 13,600 57.7% 41,343

Table 10 shows the work reduction of each DARPA3
dataset with K = 4. On average, the indicator generator re-
duces the workload of security analysts by 58%. By contrast,
the baseline system Unicorn only tells if a snapshot is abnor-
mal, and the analyst has to investigate all of the contained
nodes. We sum the number of nodes from all alerted snapshots
by Unicorn and also show it in Table 10. Unicorn’s number
of nodes to be investigated is 41,343, which is 7.1 times more
than PROGRAPHER.

6.4 Runtime Performance

In this subsection, we measure the runtime overhead of each
component and show the results in Table 11. The results are
averaged across different runs on different DARPA3 datasets.
Then, we discuss how PROGRAPHER scales with the input
volume.
Data processing and training. On average, PROGRAPHER
takes 8.4 minutes to process the one-day logs from one dataset
and 8.3 microseconds to generate snapshot sequences. PRO-
GRAPHER takes 6.29 hours to train the encoder model for
100 epochs. For the anomaly detector, it takes about 20.6
minutes to train. We note that the training is performed in an
one-GPU server, so the overhead is expected to be reduced
when distributed training can be performed.
Inference and indicator generation. PROGRAPHER takes on
average 10.3 seconds to predict the abnormal snapshots and
8.3 seconds to generate the sorted RSGs for each abnormal
snapshot. This result suggests PROGRAPHER is able to detect
abnormal activities in near real-time.

Table 11: Overhead of each component.

Component Mean Duration

Snapshot builder 8.4 mins
Training (encoder) 6.29 hours

Training (anomaly detector) 20.6 mins
Inference 10.3 sec
Indicator 8.3 sec

Scalability. We first measure how the memory consumption
grows with the data volume, by changing the number of train-
ing graphs. For the same data size, the depth of the WL kernel
(d) has the biggest impact, so we vary its value from 2 to
4. Figure 6(a) shows the relationship between data volume
and memory consumption. Since PROGRAPHER performs
training and inference on snapshots rather than on the whole
dataset, the memory consumption is sub-linear to the data
volume. For example, even when 40 GB data is processed
with d set to 4, the maximum memory usage is 12.7 GB, with
10.2 GB to train and store embeddings.

We also measure how training time is impacted by the data
volume, and show the overhead per epoch in Figure 6(b). It
turns out the overhead scales linearly with the data size. The
overhead only increases faster when d = 4 and the data size
is more than 30GB.

6.5 Impact of Key Parameters

We now analyze the impact of key parameters on the effec-
tiveness of PROGRAPHER using StreamSpot-DS, which is
relatively small (8.3GB). Our baseline configurations follow
the same setting as the StreamSpot-DS experiment in Sec-
tion 6.2. Then we vary parameters independently to examine
the impact of each parameter to justify the choices of parame-
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Figure 6: Scalability of PROGRAPHER.

ter values described in Section 5. Figure 7 and Figure 8 show
the experimental results.
Snapshot size (n). In general, if the snapshot size is too small,
the information contained by the snapshot would be insuffi-
cient for accurate detection. But when the size is too large,
more events will be merged per edge, which makes the ab-
normal behaviors less obvious. So the size should be care-
fully chosen. The result shows that the overall best result is
achieved when n is set to 300 for StreamSpot-DS.
Forgetting rate ( f r). This determines the proportion of the
snapshot to be forgotten each time. If f r is too small, adjacent
snapshots will be more similar, thus obscuring the temporal
patterns. However, if f r is too large, the useful contextual
information will be lost, which leads to a higher FPR. The
result shows when f r = 1

3 , best result can be achieved.
Snapshot sequence length (L). Like snapshot size, this pa-
rameter has to be carefully chosen to provide sufficient but
not excessive contextual information for accurate detection.
We found best result can be achieved when L = 176 for
StreamSpot-DS, as shown in Figure 8. Yet, the optimal L
is smaller for other datasets (e.g., 32 for CLEARSCOPE),
though StreamSpot-DS is a smaller dataset. We speculate a
large L is needed for StreamSpot-DS because the simulated
benign activities on the testing set are diverse but the training
data are limited. Hence, more information coming from the
snapshot sequences is needed.

Figure 7: Impact of snapshot size n and forgetting rate f r
measured on StreamSpot-DS.

Figure 8: Impact of snapshot sequence length L on
StreamSpot-DS and CLEARSCOPE.

6.6 Robustness
The attacker may want to evade PROGRAPHER by adjusting
the attack behaviors. One approach is to insert many random
events before and after the attack events in order to hide the
real attack. We simulate this strategy by conducting a new
experiment on ATLAS-DS.

Specifically, for each ground-truth attack node in the testing
set, we randomly insert events between it and the other nodes
within a 10-minute time window with a probability p. After
that, we perform the same training and testing procedures. We
examined p = 10%, 20%, and 50%, and found the precision,
recall and F1 did not change (all stay at 1.0, as shown in
Table 7). We speculate this is because the space for benign
behaviors is large, and it is difficult to choose the right ones
(and their combinations) that are observed during training. On
the other hand, the number of benign snapshot sequences is
dropped (60, 58, 57 for p = 10%, 20%, and 50%) because the
more benign entities are interacting with the attack nodes.

We acknowledge that the attacker strategies simulated by
us are not exhaustive. We discuss this limitation and potential
solutions in Section 7.

7 Discussion and Limitation

Changes of normal behaviors. Since PROGRAPHER is de-
signed as an anomaly detection system on the provenance
graph, it will issue an alert when unseen behaviors are ob-
served. However, the changes in normal behaviors (e.g., an
employee logs onto a new internal server) are likely to be con-
sidered as abnormal, which could introduce false positives.
This problem can be seen as a concept-drift problem, which
can be partially mitigated by retraining PROGRAPHER with
updated data. It is critical to detect when concept drift hap-
pens, so that the costly retrain does not need to be executed
frequently. Recent works like [5, 24, 62] can be leveraged to
this end.
Transductive and inductive Learning. The current design
of PROGRAPHER follows the transducitve learning mode,
which assumes all RSGs in the testing stage have been seen
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in the training stage. When new RSGs are encountered, PRO-
GRAPHER has to be retrained. Though we reduce the chances
of seeing new RSGs by constructing them with only node and
edge types, retraining is still needed in the production envi-
ronment. This limitation also persists in the existing graph-
learning-based security systems like Euler [27] and Shade-
Watcher [64]. To address this problem, we can explore the
inductive learning mode, which is able to generate the embed-
ding of a new node from its neighborhood on the fly, without
retraining. However, in this case, a different encoder model,
e.g., GraphSage [14], has to be chosen, and we leave this
implementation as our future work.
More adaptive attacks. We have evaluated the robustness
of PROGRAPHER against random events injection in Sec-
tion 6.6. However, the attacker can choose a more advanced
strategy by simulating benign behaviors that have been used
in the training phase of PROGRAPHER. Such a strategy can be
seen as mimicry attack [55] being implemented on the prove-
nance graph. Previous works [17] mentioned this threat and
argued that it is more difficult to carry out mimicry attacks
on the provenance graph because generating valid benign be-
haviors that can capture the right contextual information is
hard. Besides, PROGRAPHER generates the representation of
each snapshot based on the extracted RSGs, and considers
the possibility of co-occurrence both in spatial and temporal
dimensions, which further raises the bar for mimicry attacks.

Another adversarial strategy is to inject duplicate events
to fill the cache used to build a snapshot. In Section 6.2,
we found that false negatives on the CLEARSCOPE dataset
are caused by event aggregation. The issue exists in other
provenance systems that aggregate events (e.g., [64]). One
potential solution is to keep more information after event
aggregation (e.g., distribution of certain event fields).

Finally, we assume the training phase is “attack free”, but it
is possible that attack events are embedded in the training set.
In fact, our production EDR dataset is unlikely to be clean,
but PROGRAPHER still achieves satisfactory performance and
outperforms the baseline system.

8 Related Work

Learning-based provenance analysis. Section 2.2 has de-
scribed a few exemplary works based on edge-, path-, and
graph-level learning [1, 17, 18, 25, 56, 64]. Here we overview
the other relevant works. HERCULE uses a semi-supervised
community detection algorithm to correlate attack events and
reconstruct attacks [46]. Streamspot extracts local graph fea-
tures through bread-first search and clusters the snapshots to
detect the abnormal ones [37]. P-Gaussian applies the Gaus-
sian distribution principle to compute the similarity between
intrusion behavior and its variants [58]. Log2vec constructs a
heterogeneous graph from the logs and applies graph embed-
ding to detect abnormal activities [33]. However, as described

in Section 3.2, none of the prior works are able to achieve the
three goals fulfilled by PROGRAPHER.
Heuristics-based provenance analysis. To solve the prob-
lem of “dependency explosion”, another direction is to apply
human-written rules to prioritize investigations, as described
in Section 2.2. A number of prior works perform graph traver-
sal (e.g., breadth-first search) from the POI events and select
the suspicious paths by rules. For example, NoDoze uses his-
torical information to assign threat scores to alerts within
provenance graphs and then identify anomalous paths [20].
PrioTracker accelerates forward tracing by computing the
rareness score of an event to prioritize abnormal events [34].
Padoga [57] considers the anomaly degree of both a single
path and the whole provenance graph to identify intrusions.
SLEUTH and Morse use tag-based information flow tech-
niques to reconstruct attack scenarios [21, 22].

Alternatively, an analyst can query the provenance graph
with the attack signatures, e.g., Indicators of Compromises
(IoCs), and analyze similar subgraphs. τ-calculus proposes a
new domain-specific language (DSL) to make the query more
intuitive and efficient to threat analysts [51]. Poirot models
the problem as a graph pattern matching (GPM) problem and
proposes a new graph alignment method for it [42].

Finally, a few works were developed to abstract a summary
graph from the fine-grained provenance graph to ease the in-
vestigation. RapSheet and Holmes rely on a knowledge base
of adversarial Tactics, Techniques, and Procedures (TTPs)
to construct the summary graph [19, 43]. DepComm [59]
summarizes provenance graphs based on process-centric com-
munities and extracts info-paths for attack investigation.
Anomaly detection on logs. PROGRAPHER relies on
graph2vec, which adapts NLP techniques like doc2vec and
word2vec, for graph embedding. Similar NLP techniques have
also been applied to detect abnormal logs. Deeplog treats the
audit logs as sentences and utilizes LSTM models to detect ab-
normal events [11]. LogAnomaly applies word2vec to extract
the semantic information hidden in the log templates to detect
log anomalies [38]. Attack2Vec uses temporal word embed-
dings to model and track the evolution of attack steps [49].

9 Conclusion

In this paper, we present PROGRAPHER, a learning-based
system that leverages data provenance to detect abnormal
activities from system logs. PROGRAPHER employs a novel
combination of techniques in graph embedding, sequence
learning, and indicator extraction, for accurate and unsuper-
vised anomaly detection at the graph level. We evaluate PRO-
GRAPHER on 4 simulated datasets and 1 dataset from a pro-
duction environment. The result shows PROGRAPHER is able
to achieve high accuracy in finding abnormal snapshots and
significantly reduce analysts’ workload in finding the root
cause of the anomalies.
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A Pseudo-code of PROGRAPHER components

The pseudo-code of snapshot generation is shown in Al-
gorithm 1. The algorithm takes event logs, forgetting rate f r
of logs and snapshot size n as input. For each event in event
logs, lines 6-8 extract the node and edge information and then
add nodes and edges to the created graph. When the graph
size meets the predefined size n, lines 9-13 output the current
graph as the first snapshot. After that, whenever the graph size
reaches limit size n× (1+ f r), lines 15-16 sort all nodes by
timestamp values and remove n× f r older nodes with smaller
timestamps, then line 17 exports the graph as a snapshot. Fi-
nally, the result of the snapshot generation algorithm is the
snapshot sequence {S1,S2, . . . ,Sk}.

Algorithm 1 Snapshot Generation

Input: Event logs, forgetting rate f r, snapshot size n
Output: snapshot sequence {S1,S2, . . . ,Sk}

1: S = {} ▷ initialize the snapshot list
2: k = 0 ▷ initialize the snapshot index
3: f irst_ f lag = True ▷ check first snapshot
4: G = Graph() ▷ empty graph
5: for each event ∈ Event logs do
6: G.add_node_ f rom(event.src)
7: G.add_node_ f rom(event.dest)
8: G.add_edge_ f rom(event)
9: if ( f irst_ f lag)&(len(G.nodes)>= n) then

10: S[k] = G
11: k = k+1
12: f irst_ f lag = False
13: end if
14: if len(G.nodes)>= n× (1+ f r) then
15: older = sort(G.nodes,G.timestamps)[: n× f r] ▷

sort by timestamp
16: G.remove_nodes_ f rom(older)
17: S[k] = G
18: k = k+1
19: end if
20: end for
21: return {S1,S2, . . . ,Sk}
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The pseudo-code for RSG generation is shown in Algo-
rithm 2. This algorithm takes a graph G , the neighborhood
hop d and the centric node v as input. When d = 0, only the
node type λ of v is used to construct the RSG. When d > 0,
the RSG R d

v is constructed by examining the neighborhood
recursively. Line 6 obtains RSG F d

v at depth d −1 for all the
neighborhoods of node v. Line 7 retrieves the edge types I d

v
between v and its neighborhood nodes v′. Finally in Line 8,
we sort F d

v and I d
v , remove the duplicated labels (through

set(·)), concatenate them with RSG at d −1 hop (through ⊕)
to obtain the final RSG for v. The output of the RSG genera-
tion function is the rooted subgraph R d

v for node v with hop
number d.

Algorithm 2 RSG Generation for a node

Input: G = (V ,E ,λ,δ,γ), hop number d, centric node v
Output: Rooted Subgraph for a node R d

v .
1: R d

v = {}
2: if d == 0 then
3: r = generate_graph(λv)
4: R d

v .append(r)
5: else
6: F d

v = {R d−1
u | u ∈ v.neighbors} ▷ collect all the

neighbors’ RSG of node v
7: I d

v = {δe | e ∈ (v,v.neighbors)} ▷ collet the edges’
types connecting to the node v

8: R d
v = R d

v ∪ RSG_Genetration(G ,(d − 1),v) ⊕
set(sort(F d

v ))⊕ set(sort(I d
v ))

9: end if
10: return R d

v .

The pseudo-code for embedding generation is shown
in Algorithm 3. We learn the embeddings of all the input
snapshots in a limited number of epochs. Line 1 initializes the
embedding matrix E and line 3 randomly shuffles the snapshot
sequence. In the following steps, line 7 extracts RSGs for each
node from the corresponding snapshot, line 8 selects negative
samples based on extracted RSGs, and lines 9-10 learn the
embedding of the corresponding snapshot. Finally, lines 2-14
repeat this process to obtain the final embedding matrix E
after a given number of epochs.

Algorithm 3 The process to generate the embeddings for all
snapshots

Input: Snapshot Sequence {S1,S2, · · · ,Sk} with correspond-
ing initial embedding matrix E, learning rate α, epoch
number epochs, node set V , maximum degree of root
subgraph D.

Output: the embeddings matrix E
1: initialize E
2: for _ in range(epochs) do
3: S = randomly_shuffle({S1,S2, · · · ,Sk})
4: for each Si ∈ S do
5: for each v ∈ V do
6: for d = 0 → D do
7: R d

v = RSG_Generation(Si,d,v)
8: R ′d

v = negative_sampling(R d
v )

9: loss =−∑R d
v +R ′d

v
J(E)

10: E = E −α
∂loss
∂E

11: end for
12: end for
13: end for
14: end for
15: return E
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