
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

ARI: Attestation of Real-time Mission
Execution Integrity

Jinwen Wang, Yujie Wang, and Ao Li, Washington University in St. Louis;
Yang Xiao, University of Kentucky; Ruide Zhang, Wenjing Lou, and
Y. Thomas Hou, Virginia Polytechnic Institute and State University;

Ning Zhang, Washington University in St. Louis
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-jinwen

ARI: Attestation of Real-time Mission Execution Integrity

Jinwen Wang∗, Yujie Wang∗, Ao Li∗, Yang Xiao†,
Ruide Zhang‡, Wenjing Lou‡, Y. Thomas Hou ‡, Ning Zhang∗

∗ Washington University in St. Louis
† University of Kentucky

‡ Virginia Polytechnic Institute and State University

Abstract
With the proliferation of autonomous safety-critical cyber-
physical systems (CPS) in our daily life, their security is be-
coming ever more important. Remote attestation is a powerful
mechanism to enable remote verification of system integrity.
While recent developments have made it possible to efficiently
attest IoT operations, autonomous systems that are built on
top of real-time cyber-physical control loops and execute mis-
sions independently present new unique challenges.

In this paper, we formulate a new security property, Real-
time Mission Execution Integrity (RMEI) to provide proof of
correct and timely execution of the missions. While it is an at-
tractive property, measuring it can incur prohibitive overhead
for the real-time autonomous system. To tackle this challenge,
we propose policy-based attestation of compartments to en-
able a trade-off between the level of details in measurement
and runtime overhead. To further minimize the impact on
real-time responsiveness, multiple techniques were developed
to improve the performance, including customized software
instrumentation and timing recovery through re-execution.
We implemented a prototype of ARI and evaluated its per-
formance on five CPS platforms. A user study involving 21
developers with different skill sets was conducted to under-
stand the usability of our solution.

1 Introduction

With recent advances in computing, embedded systems are
playing an increasingly important role in society from smart
home appliances to automobiles. The commercialization of
these autonomous systems is no longer a science fiction story,
with the deployment of self-driving cars and drone delivery
services [1]. Modern autonomous systems often need to sup-
port complex mission control functionalities using intercon-
nected sensors, actuators, and processors [2]. Upon receiving
a high-level command, the autonomous system has to operate
through various uncertainties in the physical environment to
accomplish the mission independently. Even though a cyber

attack on these safety-critical autonomous systems can lead to
catastrophic physical world consequences, existing back-end
controllers often gain little visibility into the integrity of these
remote autonomous systems.

Remote Attestation: Remote attestation, which allows a de-
vice to prove its integrity to a remote verifier, is a powerful
security mechanism to ensure the correctness of a remote
system [3–13]. In a remote attestation protocol, the prover
needs to send his/her system measurements to the verifier,
who can then confirm the integrity of the prover. While ear-
lier remote attestation systems often focus on verification of
static memory content [14–16], recent advances aim to also
verify the runtime properties, such as control flow (CF) and
data flow (DF) [3–5, 9–13]. A driving motivation behind run-
time property verification is the capability to prove faithful
execution of individual external commands [6–8].

Limitations for Real-time Autonomous CPS: Existing
operation-based runtime property attestation systems [3,5] are
often designed for Cloud-based IoT environments, where the
Cloud-based controller is part of the control loop, remotely op-
erating each sensing and actuation operation. However, attes-
tation on autonomous systems faces two new challenges. First,
system timing is important for real-time CPSs, as recently
demonstrated by the newly emerged timing attacks [17–19],
but none of the existing approaches considers the temporal
property of the execution. Second, autonomous systems are
often expected to operate independently to accomplish the
mission, such as flying to a household location to drop off the
package. Measurements have to be collected over the entire
mission, even when there are no explicit commands from the
remote controller.

Our Solution: To bridge this gap, we propose a new security
property, Real-time Mission Execution Integrity (RMEI), and
its attestation system, ARI (Attestation of Real-time mission
execution Integrity) in this paper. Inspired by the idea of a
flight recorder (black box) on an aircraft, instead of attesting
the processing of a single command, ARI aims to provide an
attestation of system integrity as well as its real-time property

USENIX Association 32nd USENIX Security Symposium 2761

throughout the entire mission. While the vision of mission
attestation is attractive, it also brings new unique challenges.

First, there are more properties to measure for mission in-
tegrity. RMEI is principally derived from program behavior
integrity via measurement of control flow and/or data flow
events, as well as temporal characteristics via accurate time
measurements for different stages of execution. The overhead
can increase significantly with the additional instructions for
fine-grained temporal property measurement, such as record-
ing the timestamp of each control flow event. Second, there are
substantially more events due to high-frequency control loops.
For example, there are more than 3.1 million control flow
events that need to be recorded per second in ArduCopter [20]
controllers during a test flight mission. Furthermore, all these
events also have to be passed to the secure domain for stor-
age and signature, increasing runtime overhead significantly.
However, the majority of autonomous systems are real-time
systems in which missing a deadline for safety-critical tasks
can be fatal. Thus, it is important that the attestation system
does not significantly change the temporal profile of the sys-
tem. Nonetheless, as detailed in Section 2, adapting existing
attestation approaches naively, even without the addition of
temporal attribute measurement, is expensive enough to stop
the drone from flying at 522.11% runtime overhead.

To tackle this challenge, we build on top of the observa-
tion that attestation on non-critical functionality of the sys-
tem, such as tone processing of video, may not be necessary,
thereby significantly reducing the number of events to be
measured. However, when only a subset of code is attested,
it becomes impossible to assess the security property of the
execution, since security violations in the subsets that are
not measured can impact the subsets that are measured. For
example, an attacker can hijack the control flow in the tone
processing library to call the release package command in
mid-flight on a delivery drone. To enable the selective focus
of attestation, we propose to leverage software compartmen-
talization to isolate different functionalities of the system,
such that selective measurement of information flow events
can offer the evidence for mission verification. Under this
design, attestation events (control flow or data flow) can be
measured at the inter and/or intra-compartment levels.

While selective attestation via software compartmentaliza-
tion offers an opportunity to trade off the security of non-
critical compartments for performance, existing system mea-
surement techniques still impose prohibitive runtime over-
head for real-time CPS. To minimize the timing impact of
attestation on the real-time responsiveness of the system, we
developed a set of techniques to reduce runtime overhead. To
avoid context switching when storing the attestation events,
we use the software fault isolation (SFI) technique to sandbox
each compartment such that metadata can be stored directly
within the application memory space without the need to trap
into privilege code. To minimize the impact from temporal
measurement, we proposed time recovery via re-execution

where only the start and end time of critical compartment
execution is recorded, and the temporal behavior within the
compartment is recovered using the recorded control flow.
Lastly, to minimize the logging impact on the real-time prop-
erties, we leveraged a ring buffer to enable the recording of the
logs asynchronously. Furthermore, an independent real-time
task is used to perform batch processing, and this task has to
be taken into consideration in the schedulability analysis.

Since the high-level operational semantics and the desired
level of protection for the compartments are often different
for each platform and mission, the proposed approach has
to be flexible enough to allow platform-mission-specific cus-
tomization. ARI adapts a policy-based approach to enable
customizable selective attestation of mission integrity. Using
the user-defined policy, ARI automatically partitions the soft-
ware and selects different levels of measurement granularity
for individual compartments and their interactions.

We implemented ARI on both ARM Cortex-A and Cortex-
M platforms. Using three concrete attack cases (on timing,
control, and control flow), we show how ARI can be used for
attestation of RMEI. We evaluated the performance on four
real-time CPS applications, including drone, rover, syringe
pump, and oxygen concentrator, over 20 different policies. For
copters powered by ArduPilot, our system incurs only 10.7%
runtime overhead when the safety-critical attitude controller
is placed in the critical compartments, and no real-time tasks
exceed their deadlines. In summary, we make the following
contributions:

• We formulate a new security property, real-time mission
execution integrity, that attests the integrity and timeli-
ness of an autonomous CPS over the mission execution.

• We design and implement ARI, a policy-guided system
to automatically compartmentalize and instrument the
CPS software to provide measurements and verification
for real-time mission execution integrity.

• We show three concrete use cases and evaluate ARI on
four real-world embedded programs on two platforms un-
der 20 different policies to demonstrate its performance
and practicality. We also conducted a user study involv-
ing 21 developers of different skill levels to understand
the usability.

2 Background and Motivation

2.1 Real-time System Security

Real-time Systems: For many systems that interact with the
physical world, timing is of great importance to security and
safety because the physical world clock continues to elapse.
Considering the collision avoidance system on autonomous
vehicles, a correct but untimely result from the proximity cal-
culation does not offer much utility. Contrary to the popular

2762 32nd USENIX Security Symposium USENIX Association

belief that real-time tasks have to be completed as quickly
as possible, it is more important that real-time tasks are com-
pleted before the deadline. Real-time systems are often cat-
egorized into soft real-time and hard real-time systems [21].
In soft real-time systems, deadline misses should be mini-
mized, but occasional misses are acceptable. In hard real-time
systems, tasks cannot exceed the deadlines.

Software Security: Software instrumentation is a common
technique to insert in-line reference monitors into the soft-
ware. Compiler passes are used to insert assemblies into the
program to enforce a specific security policy, such as control
flow integrity (CFI) or data flow integrity. Software instrumen-
tation can also be used for software fault isolation (SFI) [22]
by sanitizing the destination of data access and control flow
transfer instructions. More background is available in several
seminal systematization of knowledge (SoK) papers [23, 24].

Timing Attacks: Besides conventional memory corruption
attacks, real-time systems are also vulnerable to timing ma-
nipulation. Existing attacks that target system timing behavior
often focus on either increasing task latency to cause deadline
misses [17, 18, 25] or increasing task jitter to destabilize the
control system [19,26]. In a latency attack [17,18], an attacker
often leverages resource contention (such as cache pollution)
to cause a significant delay in the victim task. In a jitter attack,
an attacker aims to manipulate the timing of the system to
cause jitter in the completion time of a task. Even though not
all jitters are harmful, jitters in control actuation can lead to
destabilization of the system [26]. In Butterfly attack [19], the
attacker manipulates the GPS signal to influence the comple-
tion time of the actuation task, which causes the system to fail
due to the control jitter. Existing defenses against attacks on
jitter often involve injecting dummy tasks to prevent jitter in
the task execution [27] or utilizing multiple controllers in the
system [28]. However, they cannot detect or defend against
control jitters introduced by compromised CPS software. ARI
complements the existing defense systems by providing a
mechanism to attest on the temporal properties and uncover
attacks, even if the software is compromised.

2.2 Why Real-time Mission Integrity?

Recognizing the need to verify the integrity of externally-
triggered actions in IoT [5] and CPS [4], recent efforts on re-
mote attestation often focus on proof of correct execution that
can detect control-flow and data-flow-related violations [3–5].
However, though such interaction paradigm is common for
IoT, autonomous real-time CPS presents unique challenges.

Continuous Measurement on the Mission (Operations)
Integrity is Important: Using a delivery done running Ar-
duCopter [29] as an example, the request to re-route the drone
to fly to a different waypoint to pick up an additional package
will finish within several function calls, involving only the
insertion of several waypoints. However, the exploitation of

gcs_check_input

update_GPS

gcs_send_deferre
d

gcs_data_stre
am_send

compass_cal_update

throttle
_loop

update_batt_compass
0

500

1000

1500

2000

2500

C
F

 R
e

c
o

rd
in

g
 O

v
e

rh
e

a
d

 (
u

s
)

Original

Instrumentation

Max Exe Time

15.3

180

372

62

200

2459

8.4

550

752

23

550

2237

16

120

538

2.5
4

100

195
75

99

Figure 1: Control Flow Recording Overhead

waypoint controller via malicious waypoint data can happen
much later in the mission. Furthermore, previous works [30]
have also considered peripheral manipulation as a potential
attack vector during the mission. Since autonomous systems
have to defend against various attacks during the entirety of
the mission to guarantee security and safety, it is important to
consider the mission as the integration of all autonomous ac-
tions and examine its integrity with continuous measurement
throughout the mission.

Temporal Property is also Important: Timeliness is re-
flected in ARI from two aspects. First, temporal behaviors
need to be attested. The temporal measurement of the system
has to capture not only the task completion latency (to ensure
no deadline misses) but also jitter (to ensure there is no desta-
bilizing control jitter). Second, the measurement process for
attestation needs to have minimized and predictable impact
on the temporal behavior of the system. All real-time tasks
should still meet their deadlines. To understand the extent of
the impact, we measured the overhead from direct applica-
tion of existing approach for program behavior attestation. As
shown in Fig. 1, when control-flow (CF) attestation is directly
adapted to measure ArduCopter, many real-time tasks exceed
their deadlines. A key factor contributing to such prohibitive
overhead is the high frequency control loop for reading from
sensors and writing to actuators continuously throughout the
mission. For example, fastloop in ArduPilot runs at 400Hz.

2.3 Real-time Mission Execution Integrity

Intuitively, real-time mission execution integrity, RMEI, im-
plies that the autonomous system shall execute the mission
without deviating from the expected behavior (control/data
flow behavior and temporal behavior). Different from exist-
ing literature on program execution attestation [4, 5] where
there is a concise definition for the security properties such
as control-flow (CF) and data-flow (DF) integrity, the mea-
surement of RMEI has to make the trade-off between the
level of details in the measurement and an acceptable level of
runtime overhead for the real-time CPS. To enable this trade-
off, the CPS software is decomposed into multiple loosely
coupled logical compartments and only the information flow

USENIX Association 32nd USENIX Security Symposium 2763

source
codes

policy

Compartmentalization

compartments

mission info.
recording

control flow
data flow

event timing

sandboxing

code
data

code
data

Instrumentation

Mission
Events
Sealer

Mission
Events

Recording
Engine

control flow

event timing
Protected
Meta Data

Runtime

Verification
Engine

Disk

CF/DF
mission semantic

timing

Mission
Verification

task
synthesis

program
analysis

Po
lic

y
D

efi
ni

tio
n

data flow

Figure 2: Overview of ARI

events between these compartments and within each critical
compartment are recorded for verification. To ensure that com-
partments cannot tamper with each other, they are isolated
using either memory controller or software instrumentation.
By default, ARI measures the following mission execution at-
tributes, 1) control flow in critical compartments and data flow
on critical variables, 2) transfers among the compartments,
and 3) timestamp of each compartment transfer.

A key observation is that every mission has its own unique
requirement on how the system should be compartmentalized
and what critical compartments or control variables should be
measured. Inspired by recent developments in policy-driven
compartmentalization techniques [31, 32], we propose to de-
couple the attestation policy from the actual implementation
of the mechanisms. Based on the policy, ARI automatically
compartmentalizes the software and inserts the instrumenta-
tion for measurement. Using the measurements, a verifier can
then determine if there is any violation of RMEI.

3 Threat Model

Following the threat model in existing remote attestation work
[3–5, 33, 34], we make the assumption that instrumentations
cannot be bypassed or modified. We further assume that the
trust anchor and clock are secure. The anchor can be ARM
TrustZone [35] or RISC-V keystone [36], or the dedicated
hardware design such as VRASED [37] or TrustLite [38].
As a result, our TCB includes instrumentation, the system
that protects the instrumentation (such as the privileged code
that operates MMU or MPU [31]), trust anchor, and the hard-
ware. In practice, the code in the TCB that enables ARI, such
as time measurement and measurement signing, should be
attested as well. We assume the attacker can exploit vulnera-
bilities inside the CPS software stack to perform control flow
hijacking or data-only attacks. He/she may also exploit weak-
nesses in system implementations to adversarially manipulate
execution timing [19, 39–41]. Similar to other solutions that
attest cyber-only behaviors [3–5, 33, 34], ARI is only able to
detect program behavior violations on either program control
(CF/DF) or temporal characteristic (delay/jitter). Leveraging
the ability to record critical control variables and the timing
profile, ARI can also be used to improve the possibility of
detecting sensor attack [42] by recognizing the inconsistency
in cyber domain with existing methods [43], but is unable to
confirm the attack nevertheless.

4 ARI Design

Design Overview: ARI is a policy-guided real-time mission
execution integrity attestation system. It builds on the intu-
ition that by compartmentalizing the CPS application and
measuring the high-level information flow between the com-
partments, it is possible to strike the balance between the
fidelity of the program behavior and real-time performance.

Policy in ARI can be used to specify: 1) How to compart-
mentalize the software, 2) the criticality of functions and vari-
ables, where critical functions, and variables, as well as their
dependencies, are always measured by default, 3) the type of
program events to measure for each critical compartment, in-
cluding control flow events, value-based data flow protection,
execution timing, etc., and 4) the type of program events to
measure between each pair of compartments. Depending on
the level of customization desired by the user, ARI provides
three ways of specifying the policy. Specifically, experienced
users, such as software developers, can specify every option
for each compartment. Users who are not familiar with the
target software can use the built-in policies for compartmental-
ization and critical functions/variables annotation. Additional
details on the API are available in Appendix B.1.

Given a policy, the high-level workflow of ARI is shown
in Fig. 2. There are four main steps. At compile time, the
program is first partitioned into different compartments us-
ing the source code and compartment policy. Instrumentation
for compartment sandboxing and event measurement is then
added using a customized compiler based on LLVM. At run-
time, the system states are measured using these instrumenta-
tions. The measured events are then signed and stored using a
runtime library in the TCB. When the logs are collected (often
at the end of the mission if network connectivity is limited),
the verification engine then verifies the mission integrity.

Key Challenges and Approaches: There are two key chal-
lenges in the design of ARI, from the perspectives of scal-
ability (due to mission-level attestation) and real-time per-
formance overhead (due to security measurements). Scala-
bility is addressed by measuring only events inside critical
compartments and at the inter-compartment level. Compart-
mentalization techniques are used to prevent the unmeasured
non-critical compartments from impacting the safety-critical
controls in the critical compartments. Even with the reduction
in the number of measurable events, the impact on real-time
performance is still significant. To address this challenge, ARI

2764 32nd USENIX Security Symposium USENIX Association

leverages a set of techniques including customized encoding,
verification by re-execution, instruction-based time estimate,
and batch processing to meet the real-time constraints.

4.1 From Policy to Compartments

Compartmentalization is essential to the design of ARI. Its
ability to prevent vulnerability in one compartment from influ-
encing another is the foundation for the trade-off mechanism
in ARI. It allows the system designer to have different levels
of granularity in program behavior measurement across differ-
ent compartments, empowering the design space exploration
on the trade-off between performance and security.

A compartment is defined as an isolated code and data
region. Each function belongs to exactly one compartment.
Different from previous efforts [31, 32] that attempt to max-
imize the security protection based on the principle of least
privilege, there is an additional dimension of consideration
for real-time performance overhead in ARI. Smaller compart-
ments can lead to prohibitive performance overhead for the
real-time system, even though it may provide finer-grained
program behavior measurements for attestation. As a result,
it is important that the program is carefully partitioned.

Policy Generation: Similar to the existing software compart-
mentalization approach, a policy empowers system designers
to build customized protection for the target while abstract-
ing the complexity of the protection mechanisms [32, 44].
However, defining a policy requires careful consideration of
the concrete threats to the system under protection. Existing
autonomous CPSs often operate in diverse environments fac-
ing unique threats in different missions. To facilitate a more
effective generation of policies for the system designers, ARI
provides different levels of customization through various
APIs. Expert users can write a script to fully specify how
compartments should be generated, their criticality, as well
as the granularity of measurement on the program behaviors.
Alternatively, users can also directly use the built-in parti-
tion and criticality annotation policies. File-name-based or
module-based built-in partition policy places functions under
the same file or directory in the same compartment. Controller-
based or peripheral-based partition policy gathers codes of a
controller or a peripheral operation into a compartment. With
a built-in partition policy, ARI can also automatically merge
compartments that have the most frequent control flow trans-
fers if users choose to specify the number of compartments to
reduce inter-compartment communication. Controller-based,
actuator-based, and sensor-based built-in annotation policies
label the functions related to controllers, actuators, and sen-
sors as critical ones. Variables used in critical functions are
also annotated as critical by default.

Compartment Generation and Labeling: ARI automati-
cally partitions the software into different compartments and
then labels their criticality. Based on the given policy, ARI

first partitions the program dependency graph (PDG) into
subgraphs. The basic blocks that form the structure of the
compartments are then grouped into the same logical section
with their local data dependencies, to which an isolation mech-
anism can be added. Each compartment that has functions or
variables annotated as mission-critical/safety-critical, either
manually by the developer or automatically by ARI, is labeled
as critical. By default, inter-compartment events as well as
critical intra-compartment events are measured and signed.

4.2 Compartment Isolation
Since program execution is not measured in non-critical
compartments due to the real-time constraint, it is crucial
to enforce strong isolation between measured (critical/secure)
and unmeasured (non-critical/non-secure) compartments for
the attestation to be meaningful. Existing approaches to-
wards isolation generally rely on either hardware security fea-
tures [31, 32] or privilege separation [44]. However, adopting
these approaches to autonomous CPS presents two new chal-
lenges. First, hardware platforms on CPS are diverse. Some
hardware features used in existing work may not be available.
Second, existing works often store metadata in higher priv-
ilege memory (either privilege/kernel mode or TEE). This
can be too expensive for real-time CPS due to costly context
switches. To tackle these challenges, software fault isolation
(SFI) [22] is used to enforce compartmentalization in ARI.
This enables metadata storage without context switches, min-
imizing the impact on the real-time property. Furthermore, it
can be generalized to different hardware platforms including
ARM Cortex-A and Cortex-M. There are three key isolation
efforts, control flow, data flow, and stack respectively.

Control Flow Isolation: In ARI, control flows have two addi-
tional dimensions. Besides forward or backward, control flows
can also be intra-compartment or inter-compartment, and
the compartments can be critical/secure or non-critical/non-
secure. Since program behaviors are not attested inside non-
critical compartments for performance, all control transfers
(indirect/direct) from non-critical compartments to critical
compartments are measured, such that control flows can be at-
tested in critical compartments. Depending on the granularity
of mission integrity, control flows between non-critical com-
partments can also be recorded. The idea is that compartment-
level transfers can provide additional mission semantics. The
most direct design is to add instrumentation at each indi-
rect branching instruction to distinguish if it is an inter-
compartment transfer or an intra-compartment transfer. How-
ever, this significantly increases the performance overhead.
After analyzing the root cause, we found that many function
returns are intra-compartment call returns and can be directly
sandboxed. However, they can also be invoked externally.
To reduce the return indirect branching checking, we create
stub wrappers for the external invocations to avoid destination
checking on function returns.

USENIX Association 32nd USENIX Security Symposium 2765

Data Flow Isolation: Data flow isolation is motivated by sev-
eral requirements in ARI. First, metadata has to be protected.
However, storing them in the secure world or privileged mem-
ory introduces prohibitive runtime overhead CPSs. As a result,
all memory access instructions have to be sandboxed to en-
able secure storage. Second, critical variables also have to be
protected, we adapt the value-based data flow protection tech-
nique [5] to enable this protection. Lastly, the sandbox can
also harden the system by enforcing isolation according to
the principle of least privilege among different compartments.
Following existing SFI mechanisms [22, 45], ARI makes use
of a mask register to implement the mechanism. However,
different from conventional SFI that aims to sandbox a single
piece of code, often without the need to access the external
memory, ARI has to use address masking to create multiple
compartments while facilitating access to shared memory.
The existing approach to accomplish this is to reserve more
general-purpose registers for masking [46]. To avoid this, we
leverage static analysis to recognize instructions with memory
access destination outside the compartment and add instruc-
tions to update the mask before the access. Since the number
of such instructions is much smaller, the performance over-
head is substantially smaller than monopolizing additional
general-purpose registers for masking. The trade-off is that
attacker will have one more gadget for memory tampering,
however, all access remains confined within the sandbox.

Stack Isolation: ARI needs to isolate stack between different
compartments. To efficiently accomplish this, a separate stack
is allocated for each compartment adjacent to the compart-
ment’s code in memory. Such design enables control flow and
stack isolation using a single reserved register. There are two
challenges when isolating compartments’ stacks using SFI.
First, local variable accesses are frequent in CPS, (e.g., 50%
write instructions using stack pointer (SP) relative addressing
in ArduCopter). Thus, masking every SP address still incurs
significant overhead. To minimize the performance overhead,
only SP-changing instructions are masked. To prevent attack-
ers from accessing memory outside the sandbox using SP
relative addressing instructions, ARI puts redzone around
each stack. The size of the redzone in each compartment
is the maximum relative address in SP relative addressing
instructions. However, the relative address can be large for
some compartments. This significantly increases the memory
overhead due to the insertion of redzones. To further narrow
down the memory overhead, a subset of relative addressing
instructions is also masked to avoid unnecessarily increasing
the size of the redzone. Second, the sandbox prevents memory
access across stacks. ARI solves this problem by replacing
cross-stack memory accesses with instrumented trampolines.

4.3 Real-time Attested Event Measurement
Besides information flows, temporal behavior also has to be
measured, while meeting the real-time constraints.

Non Critical C. Critical C. Non Critical C.

conditional jmp
fwd indirect jmp
return

0|1|0|0|1|1…

hash(h ⊕ ret addr)
addr1|addr2|…

Intra-compartment

ret cond. jmp

indir. jmp

Mission Events Recording Engine

Inter-compartment
time t1s|t1e|t2s|…
C. tsf c1|c2|…

basic
block

C.: Compartment, cond. jmp: conditional jump,
indir. jmp: indirect jump, fwd.: forward, addr: address

h: hash of previous return addresses

Figure 3: Inter/Intra-Compartment Events Recording

Measurement of Inter/Intra Compartment Flows: Em-
bedded CPS can execute a complex control loop that produces
a significant amount of CF events (e.g., 3.1M CF events per
second on ArduCopter). Therefore, recording every CF event
can lead to a prohibitive runtime overhead. To address this
challenge, only the inter-compartment CF events and critical
intra-compartment CF events are recorded by default. For an
inter-compartment CF event, ARI measures the source and
destination of the event. To measure an intra-compartment-
level CF event, conditional jump decisions, forward indirect
jump targets, and the hash of return addresses are measured
to allow for the reconstruction of CF, as shown in Fig. 3. To
reduce measurement log size, all return addresses are hashed
into one hash value and only this hash value is recorded.

Measurement DoS Prevention: When the control flow attes-
tation requirement is relaxed in the non-critical compartments,
it is possible for an attacker to overwhelm the measurement
process by repetitively branching between two non-critical
compartments to create a large number of events to be mea-
sured. While none of the existing work, including ARI, can
prevent this type of DoS attack, ARI leverages the unique
control loop design and predictability in CPS systems to miti-
gate the risk by imposing a maximum measurement log size
on each control loop. Such maximum measurement log size
can be conservatively estimated. This mitigation ensures that
the mission log continues even if the system might be under
attack for continuing attestation.

Measurement of Temporal Behaviors: Temporal property
is critical to real-time cyber-physical systems, due to the
unique requirement to perform timely sensing and actuation.
A key aspect of RMEI is the attestation of the temporal char-
acteristics of the CPS. As discussed in the timing attacks, the
latest developments in this direction have evolved beyond
simple DoS that causes real-time tasks to miss their dead-
lines [18, 19, 40, 41]. As a result, similar to how attestation on
program behaviors needs to capture dynamic program behav-
iors beyond the checksum of code pages, attestation on pro-
gram temporal behaviors needs to capture more fine-grained
timing information that will allow the verifier to understand

2766 32nd USENIX Security Symposium USENIX Association

other temporal attributes, such as control jitter [28].

To obtain instruction-level temporal properties, the func-
tion that consists of multiple instructions for clock reading
and timestamp storage has to be added per instruction. How-
ever, this design not only adds prohibitive runtime delay to the
system, causing a significant impact on the real-time property,
but also introduces a large number of measurements that can
easily overwhelm the real-time CPS. Inspired by the approach
that conducts control flow attestation verification through re-
execution [5], we propose timing through re-execution to
tackle this challenge. More specifically, since all the control
flow information is recorded in the critical compartments to
allow for the reconstruction of execution traces for attestation,
it is possible to re-estimate the execution timing of individual
basic blocks via the re-execution as long as the time of entry
and exit is recorded. Using the duration and control flow of
the program, as well as a profile of instruction time cost, it is
possible to attribute the time of execution to a much finer gran-
ularity like basic block and instruction. It is important to note
that the recovery of time through control flow only provides
an estimation, since both the inputs and architectural/system
states can also impact timing, but are not recorded. Another
challenge is the impact of interrupts. However, timing vari-
ation from interrupts is often taken into consideration for
real-time systems. Unless there is a significant shift in the
distribution, its ability to harm the system is limited [47].

Minimizing the Recording Overhead: There are two pri-
mary efforts in minimizing runtime overhead from recording.
1) Measurement Event Encoding: A naive representation
of a recorded event can be a pair of source and destination
addresses. To reduce the log size, we encode the event to
eliminate redundant information. 2) Using SFI to securely
record without context switching: Existing approaches gener-
ally record measurements synchronously and store them in
the memory space of privileged software [3, 5]. ARI lever-
ages the isolation provided by the SFI to store the measured
events securely in the same address space using a lock-free
structure, which is then transferred to the TCB for signature.
More details are available in Appendix B.3.

Understanding the Real-time Impact of ARI: It is impor-
tant to ensure the attestation system does not cause excessive
run-time overhead leading to the violation of real-time guar-
antee. For hard real-time systems, tasks have strict deadlines.
In order to determine if a performance overhead is acceptable,
schedulability analysis using the worst-case execution time
(WCET) of each task is used to ensure that the system will re-
main schedulable after the software instrumentation is added
for the attestation. To enable the schedulability analysis, ARI
provides analysis on the runtime overhead due to attestation
by estimating the WCET of a task based on the worst case
execution path (WCEP) using tools such as aiT [48]. The
developer can then use the new post-instrumentation WCET
to determine if the system can tolerate the overhead using

schedulability analysis [49]. For all of the policies in our eval-
uation, the system remains schedulable. For a soft real-time
system, ARI calculates the average runtime overhead aggre-
gated over the expected missions. It is also common for CPS
developers to experimentally profile the program in the target
environment, which is shown in our evaluation.

4.4 Verification on the Measurement
By default, ARI verifies inter-compartment control transfers,
intra-critical-compartment indirect jumps, policy-specified
variable values, and critical compartment execution timing
during the verification phase, as shown in Fig. 4. In order to
balance security and real-time performance, users may select
a subset of the above mission events to verify. For both the
inter-compartment and the intra-compartment forward jumps,
the target is checked against the offline generated CFG. Even
though the inter-compartment forward direct transfer can only
branch to valid deterministic targets, measuring the inter-
compartment forward direct jump is still useful since control
flow details inside the non-critical compartments are not mea-
sured. The integrity of the inter-compartment backward return
address is checked against the measured inter-compartment
forward jump to ensure an inter-compartment return can only
return to the compartment where it jumps from. The integrity
of intra-compartment returns is verified in a different man-
ner. Specifically, ARI compares the recorded hash value with
the reconstructed hash value of intra-compartment return ad-
dresses. To reconstruct the correct intra-critical-compartment
return address hash, ARI emulates mission execution on ap-
plication binary from the mission entry point. The execution
path of a critical compartment in the executed mission is
reconstructed with the help of control flow measurement logs.

To verify the modified value of policy-specified critical
values and timing, the verification engine checks whether
the recorded value and timing satisfy the expected mission-
specific patterns. More specifically, the execution profile of
each basic block in the critical compartments is compared
against the measured record, the verification passes only if the
measured execution time falls in the execution profile. While
the execution profiles can be mission-specific, common func-
tions such as updates on Kalman Filter [50], that provides
estimates of some unknown variables based on history, often
have very small variations. It is important to note that even
though it is possible to detect deviation from expected behav-
ior in the software system, an attestation system often cannot
provide root cause analysis or attribute the attack. It has to be
used in conjunction with tools, such as Mayday [51].

5 Implementation

ARI implementation includes three parts, application com-
partment generation, program instrumentation, and mission
integrity verification engine. More details are in Appendix B.

USENIX Association 32nd USENIX Security Symposium 2767

Timing Profiling

ret

cond. jmp

indir. jmp

Application Re-execution

Non Crit. C. Non Crit. C.

CFE Records

H = hash(h ⊕ ret addr)

fwd. verif.
CFG

bwd. verif. Recalculate Hash

Timing Records

Return Hash

Crit. Variables Records Crit. Variables Rangesvar. verif.

time verif.

R
u

n
tim

e
 R

e
c
o

rd
s

return hashingbranch referring target referring

C.: Compartment, Crit.: critical, cond. jmp: conditional jump, indir.
jmp: indirect jump, fwd.: forward, bwd.: backward,var.: variables,

verif.: verification, h: hash of previous return addresses

Crit. C.

potential CFbasic block executed CF

Figure 4: Verification on Measurement

Compartment Generation: Two LLVM passes and a Python
script are implemented for automatic compartment generation.
The first front-end LLVM pass is for the generation of the
PDG in policy definition. The second front-end LLVM pass
is used to group functions and variables of the same logical
compartment into the same ELF section. Lastly, the compiled
object files are linked together using the linker script. Due to
the masking technique for SFI, both the starting address and
the size of the compartments are aligned to a power of 2 .
Program Instrumentation: A front-end LLVM pass and a
back-end ARM LLVM pass are used for program instrumen-
tation. The front-end LLVM pass is used to identify and label
the locations of compartment transfers, global data accesses,
and cross-stack memory accesses. While the back-end ARM
LLVM pass is used to insert compartment transfer trampo-
lines, control flow recording, critical data flow checking, tim-
ing recording functionalities, and inlined address masking
used in SFI. The measurement is sealed and saved using
trusted application supported by OP-TEE [52].
Verification Engine: The verification engine is implemented
based on Capstone [53]. The assembly is traversed to emulate
mission re-execution. Forward control flow and temporal mea-
surement are attested during re-execution. Backward control
flow is attested by comparing return hash in the measure-
ment and the reconstructed one. Critical variables are verified
through comparing expected value to recording from critical
variable instrumentation.
Difference between Cortex-A and Cortex-M: Our prototype
is implemented on both Cortex-A53 and Cortex-M33. Since
Cortex-A and Cortex-M have different instruction sets and sys-
tem service supports, the differences in the implementations
mainly include back-end pass implementation, timestamp-
getting methods, and TEE supports. For example, the times-
tamp is obtained by invoking system calls on Cortex-A53 and
by directly reading MMIO registers on Cortex-M33. For TEE
supports, ARI uses OP-TEE as the secure OS on Cortex-A
and the vendor provided OS for Cortex-M.

6 Case Study on Autonomous Drone

We conducted three case studies on drone to showcase how
ARI can attest mission integrity without causing deadline
misses in real-time tasks. In this section, the discussion will
focus on the timing attack. Additional cases on control and
software can be found in Appendix A.

Butterfly Attack - Temporal Violation: Minimizing control
jitter is important for CPS [28]. Butterfly attack [19] adver-
sarially manipulates the control task’s scheduling jitters to
destabilize the target CPS. Concretely, an adversary may ma-
nipulate inputs to reduce the computation of a non-critical
task to cause the completion time of critical control tasks to
be moved forward. By alternating between early termination
and regular execution of the non-critical task, the attacker
can cause jitters in the completion time of control task, thus
the actuation. When the actuation jitters exceed the tolerable
range, the system will start to destabilize.

Attack implementation: We follow the same configuration
in [19], and implemented the butterfly attack on ArduCopter,
where an adversary jams the GPS signals such that a non-
critical task that updates GPS data will be skipped. We simu-
late GPS signal jamming by setting the value of gps_updated
flag which indicates the availability of GPS messages. By set-
ting this variable to false, the program will skip the function
camera.update(), which leads the task update_GPS() to fin-
ish earlier. The earlier termination of update_GPS() leads to
early invocation of run_nav_updates(), which is responsible
for actuating command. Following [19], every three out of
four GPS messages are jammed.

Detection implementation: To detect timing anomaly, we de-
ploy ARI using controller-based compartmentalization with
navigation feature in ArduCopter labeled as a critical. With
the recorded entry and exit time of run_nav_updates(), there
is a clear evidence of jitters from the invocation time, indi-
cating a possible attack. There is, however, a 7.43% runtime
overhead and a 4.27% memory overhead. Though there are
other detection mechanisms [54, 55], they make the assump-
tion of trusted software. ARI is robust against the combination
of butterfly attack and memory corruption.

7 Evaluation

In this section, we try to answer the following questions: (1)
What is runtime and memory overhead of ARI? (2) How
scalable is ARI? (3) How much manual effort is required to
use ARI? To answer the above questions, (1) we measure
runtime and memory overhead under different policies on
both Cortex-A and Cortex-M platforms; (2) we show real-time
task runtime and memory overhead when the policy specifies
different numbers of compartments and critical compartments;
and (3) we conduct a user study to understand the level of
manual efforts required.

2768 32nd USENIX Security Symposium USENIX Association

Experiment Setup: To demonstrate the generalizability of
ARI, we choose two relatively complex and widely used au-
tonomous systems, i.e., ArduCopter (AC) [20], ArduRover
(AR) [20], and three small code base embedded systems, i.e.,
House Alarm (HA), Oxygen Concentrator (OC), and open
Syringe Pump (SP) as test applications and evaluated them
on both Cortex-A and Cortex-M platforms. The deadlines of
real-time applications can be inferred from source codes. On
Cortex-A platforms, ArduCopter and ArduRover run on Rpi3
with NAVIO2 daughter board in simulation. Syringe pump
and house alarm run on Rpi3. We also run ArduCopter on a
self-built real-life drone. On Cortex-M platform, we migrate
the syringe pump and oxygen concentrator into FreeRTOS on
NXP LPCXpresso55S69 development board. Our verification
engine runs on a workstation with 32 GB memory and Intel
Xeon W-2123 CPU.

7.1 System Overhead

Experiment Policies: To evaluate ARI performance over-
head under different policies, we use four different policies
in each application.

Compartmentalization Policy: Peripheral-based (peri.) or
controller-based (cont.) policies groups functions based on
the peripheral the code is operating on or the controller the
code belongs to. We applied these two to ArduCopter and
ArduRover, due to the complex control in these systems.
File-based (file), operation-based (oper.), and module-based
(modu.) compartmentalization policies group functions based
on the file they belong to, the operations they support, and the
module they are in respectively. These policies are applied to
smaller applications including the syringe pump, house alarm,
and oxygen concentrator, due to the relatively simple program
structures in these applications.

Critical Compartments and Variables: Autonomous vehicles,
such as ArduCopter and ArduRover, highly depend on atti-
tude controllers and fail-safe controllers to function properly.
Thus, for ArduCopter, we label the compartments that con-
tain the fail-safe controller (fs) and attitude controller (at) as
critical. For ArduRover, the fail-safe controller (fs) and the
crash-check controller (cc) are marked as critical. CPS often
comprises sensing, actuating (I/O), and controlling (command
decision) phases. Thus, the command decision and I/O com-
partments are annotated as critical ones for syringe pump,
house alarm, and oxygen concentrator. Specifically, the bolus
(bl) and serial (sr) compartments are marked as critical for
syringe pump, as they perform injection and serial process-
ing. Similarly, I/O control and command (cmd) execution
are marked as critical for house alarm. Valve control (vc) and
serial processing (sr) are marked as critical for oxygen concen-
trators. Furthermore, all control variables and I/O operation
variables are also annotated as critical.

Missions: To evaluate system overhead generated by ARI, we

execute different missions on different platforms as follows.
On Cortex-A platform, we run ArduCopter and ArduRover
with CMAC-circuit (the built-in circle cruising test) mission
trajectory for 1 hour, and syringe pump 10000 times. On
Cortex-M platform, we run oxygen concentrator for 1 hour.
The syringe pump and house alarm are executed 10000 times.
The real-time tasks and real-time parameters, such as the
deadline, are extracted from application source codes.

rc
_l
oo

p

th
ro

ttl
e_

lo
op

up
da

te
_G

PS

up
da

te
_b

at
t_

co
m

pa
ss

ar
m

_m
ot

or
s_

ch
ec

k

au
to

_d
is
ar

m
_c

he
ck

au
to

_t
rim

up
da

te
_a

lti
tu

de

ru
n_

na
v_

up
da

te
s

up
da

te
_t

hr
ot

tle
_h

ov
er

th
re

e_
hz

_l
oo

p

ek
f_

ch
ec

k

gp
sg

lit
ch

_c
he

ck

lo
st
_v

eh
ic
le
_c

he
ck

ch
ec

k_
in
pu

t

gc
s_

se
nd

_h
ea

rtb
ea

t

gc
s_

se
nd

_d
ef

er
re

d

gc
s_

ch
ec

k_
in
pu

t

gc
s_

da
ta

_s
tre

am
_s

en
d

co
m

pa
ss

_c
al
_u

pd
at

e

ac
ce

l_
ca

l_
up

da
te

fa
st
_l
oo

p

10
0

10
2

10
4

E
x
e

c
u

ti
o

n
 T

im
e

 (
u

s
)

Max Execution Time

W/O ARI

ARI
180

75

200
120

50 50
75 100 100 90 75 100

50 50

180
110

550550

100 100

2500

130

5.01%

6.05%

28.24%

19.70%3.98%

15.29%

29.82%

10.57%

23.08%
12.66%

17.17%

4.26%
15.60%

3.33% 5.30%
4.95%

12.40%
14.29%

7.71%

6.00%

17.73%

8.27%

Figure 5: Tasks Execution Runtime Overhead in ArduCopter
(controller-based policy with attitude controller as critical)

Run-time Overhead: Using average task execution time, we
aim to understand the overhead of ARI on the CPS on Ar-
duCopter, ArduRover, syringe pump, and oxygen concentrator.
For house alarm the operation execution time is used due to its
operation-based design. As shown in Tab. 1, the highest run-
time overhead on Cortex-A and Cortex-M platform are 17.2%
(on ArduCopter) and 15.8% (on syringe pump) respectively.
Generally, the policy that attests more complex critical com-
partment or with more compartments incurs higher runtime
overhead.

Real-time Performance Impact: To evaluate the real-time
performance, we measure the deadline miss rates and conduct
the schedulability analysis.

Real-time Deadline Miss for Soft Real-time Systems: We mea-
sure each real-time task execution time by dynamically run-
ning the same 1-hour mission 10 times or operation 10000
times, and check whether the average task execution time ex-
ceeds its maximum execution time. We measure the execution
time of 22 ArduCopter real-time tasks before and after deploy-
ing ARI on a real-life quadcopter. To show the worst case un-
der our tested policies, we choose control-based compartment
policy with attitude controller marked as critical, which has
the highest runtime overhead in Tab. 1. As shown in Fig. 5, the
runtime overhead of each task ranges from 3.98% to 29.82%
and none of the 22 tasks exceed its maximal execution time.
In addition to ArduCopter, we run ArduRover, syringe pump
on Pi3, syringe pump, oxygen concentrator on NXP LPCX-
presso55S69 development board. None of real-time tasks in
ArduRover, syringe pump, and oxygen concentrator miss their
deadlines. More details can be found in Appendix C.

USENIX Association 32nd USENIX Security Symposium 2769

Table 1: Application Manual Effort Statistics and Runtime Overhead ARI

CPS Policy #Cpt. Manual Effort Statistics System Overhead Statistics
Cpt. Crit. scr. size func. vari. Verification Log Size ↓ Execution Time ↑ Memory Size (MB) ↑

ArduCopter(AC)
cont. fs 12 36 4 5 1.35 min 0.32/1.16 GB (27.3%) 79.3/69.6 ms (13.9%) 4.31/4.13 (4.36%)

at 12 11 18 10.37 min 0.65/1.16 GB (56.2%) 81.6/69.6 ms (17.2%) 4.31/4.13 (4.36%)

peri. fs 8 78 4 5 1.22 min 0.03/1.16 GB (2.2%) 74.4/69.6 ms (6.7%) 4.30/4.13 (4.12%)
at 8 11 18 8.88 min 0.39/1.16 GB (33.4%) 77.6/69.6 ms (10.7%) 4.30/4.13 (4.12%)

ArduRover(AR)
cont. fs 11 36 4 2 1.08 min 4.82/999 MB (0.4%) 23.2/20.1 ms (15.4%) 4.01/3.87 (3.62%)

cc 11 4 4 9.33 min 1.45/999 MB (0.1%) 22.6/20.1 ms (12.4%) 4.01/3.87 (3.62%)

peri. fs 6 78 4 2 1.16 min 76.5/999 MB (7.7%) 22.8/20.1 ms (13.4%) 3.99/3.87 (3.10%)
cc 6 4 4 7.64 min 80.6/999 MB (8.0%) 22.0/20.1 ms (9.5%) 3.99/3.87 (3.10%)

Syringe Pump(SP/A)
file bl 4 61 2 6 1.7 s 11/12 B (91.7%) 119/109 ms (9.2%) 0.037/0.034 (8.82%)

sr 4 4 9 0.8 s 2/12 B (16.7%) 117/109 ms (7.3%) 0.037/0.034 (8.82%)

oper. bl 3 46 2 6 1.7 s 10/12 B (83.3%) 113/109 ms (3.7%) 0.036/0.034 (5.88%)
sr 3 4 9 0.8 s 2/12 B (6.5%) 112/109 ms (2.8%) 0.036/0.034 (5.88%)

House Alarm(HA)
file I/O 8 61 6 2 0.51 s 16/17 B (94.1%) 2.067/2.066 s (0.04%) 0.029/0.027 (7.41%)

cmd 8 9 3 0.53 s 5/17 B (29.4%) 2.068/2.066 s (0.09%) 0.029/0.027 (7.41%)

oper. I/O 6 46 6 2 0.45 s 9/17 B (52.9%) 2.067/2.066 s (0.04%) 0.029/0.027 (7.41%)
cmd 6 9 3 0.49 s 7/17 B (41.2%) 2.068/2.066 s (0.09%) 0.029/0.027 (7.41%)

Syringe Pump(SP/M)
file bl 4 61 4 6 1.7 s 11/12 B (91.7%) 132/114 ms (15.8%) 0.036/0.032 (12.5%)

sr 4 8 9 0.8 s 2/12 B (16.7%) 127/114 ms (13.1%) 0.036/0.032 (12.5%)

oper. bl 3 46 4 6 1.7 s 10/12 B (93.3%) 129/114 ms (13.2%) 0.035/0.032 (9.4%)
sr 3 8 9 0.8 s 2/12 B (16.7%) 121/114 ms (6.1%) 0.036/0.032 (12.5%)

Oxygen Concent(OC)
file vc 13 61 3 6 10.0 s 1.68/10.4 MB (16.2%) 1.949/1.873 ms (4.06%) 0.358/0.325 (10.2%)

psa 13 5 7 10.8 s 1.74/10.4 MB (16.7%) 1.937/1.873 ms (3.42%) 0.359/0.325 (10.5%)

modu. vc 7 46 3 6 9.6 s 1.53/10.4 MB (1.47%) 1.931/1.873 ms (3.10%) 0.355/0.325 (9.2%)
psa 7 5 7 10.7 s 1.64/10.4 MB (1.58%) 1.908/1.873 ms (1.87%) 0.355/0.325 (9.2%)

cont.(controller), peri.(peripheral), file(file name), oper.(operation), modu.(module), fs(fail safe), at(attitude), cc(crash checker), bl(bolus), sr(serial),
cmd(command), vc(valve control), Cpt.(Compartment), Crit.(Critical Compartment), var.(variables), func.(functions), scr.(script). ↑ means percentage
of increment. ↓ means percentage of decrement.

Table 2: Schedulability Analysis Result

CPS Task WCET WCET* Period Alg. BW BW*

SP Inj 247 ms 277 ms 2000 ms EDF 14.5% 16.0%SL 72 us N/A 1583 ms

OC

PSA 11.1 us 11.2 us 100 ms

RM 27.0% 32.5%SR 543 us 545 us 25 ms
DO 2541 us 2569 us 100 ms
SL 72 us N/A 137 us

Inj(Medicine Injection), SL(Measurement Sealer), PSA(Pressure Swing Ad-
sorption), DO(Device Operation), SR(Sensor Read), BW(CPU Bandwidth),
Alg.(Scheduling Algorithm), EDF(Earliest Deadline First), RM(Rate Monotonic),
* with ARI

Schedulability Analysis for Hard Real-time Systems: To under-
stand the real-time impact of ARI on hard real-time system,
we analyze the schedulability with the additional security
provided by ARI. More specifically, the new WCET time is
obtained using aiT WCET Analyzers [48], an industry-level
WCET tool for two hard real-time applications, i.e., syringe
pump and oxygen concentrator. We then use CARTS [49]
which is a compositional scheduling analysis tool with task
WCET, deadline, and the scheduling algorithm from the soft-
ware as inputs. As shown in Tab. 2, both syringe pump and
oxygen concentrator are schedulable with ARI.

Memory Overhead: We measure memory usage, i.e., RAM
usage size on Cortex-A, sum of RAM and Flash usage size
on Cortex-M, of different applications. As shown in Tab. 1,
ARI increases memory size by at most 8.82% and 12.5% on
Cortex-A and Cortex-M platforms respectively. The mem-
ory size overhead depends on the policy. More compartments
generally introduce more overhead because of (1) sandbox iso-
lation requirement on compartment alignment, (2) additional
stub wrappers, and (3) more stack redzones. Compartment

alignment on cortex-M introduces more memory overhead
than cortex-A because of a lack of virtual memory. The over-
head of ARI is acceptable since the overhead is less than
1MB out of 1GB on Pi3 and 45KB out of 960KB on the
microcontroller. To further understand the practicality, we
survey the memory utilization of 10 CPS applications on low-
end platforms [5, 31, 44] and measure 2 CPS applications on
high-end platforms. On low-end platforms which often have
700KB to 1MB memory capacity [56, 57], CPS applications
consumes 7KB to 125KB memory. The applications range
from simple light controller to complex network applications,
e.g., TCP-Echo. On high-end platforms which often have
around 1GB memory [58], the runtime memory consumption
of ArduCopter and ArduRover is less than 10 MB. Therefore,
the corresponding memory overhead is acceptable.
Measurement Size and Verification Time: As shown in
Tab. 1, compared with the solution which records all control
flow events, ARI reduces the size of mission measurement
logs to 34.7% on average under all evaluated applications and
policies. ARI attributes this optimized result to not measuring
non-critical compartments and optimized encoding. The veri-
fication of control flow integrity takes at most 10.37 minutes
per hour mission time. It can be further reduced by paralleliza-
tion. More details about system performance under different
timing recording granularity can be found in Appendix C.

7.2 Scalability
Two important factors impact the scalability of policies: num-
ber of compartments and number of critical compartments.
To understand the trade-off, we evaluated the performance

2770 32nd USENIX Security Symposium USENIX Association

10 20 30 40 50 60 70 80 90 100

The Number of Compartments

0

20

40

60

80

100

R
u
n
ti
m

e
 O

v
e
rh

e
a
d
 (

%
)

0

5

10

15

M
e
m

o
ry

 O
v
e
rh

e
a
d
 (

%
)

Sandbox Overhead

Compartment Transfer Overhead

Critical Compartment Overhead

Memory Overhead

(a) #Compartments (Cortex-A)

5 10 15 20 25 30

The Number of Compartments

0

2

4

6

8

10

R
u
n
ti
m

e
 O

v
e
rh

e
a
d
 (

%
)

0

5

10

15

20

M
e
m

o
ry

 O
v
e
rh

e
a
d
 (

%
)

Sandbox Overhead

Compartment Transfer Overhead

Critical Compartment Overhead

Memory Overhead

(b) #Compartments (Cortex-M)

no crit.

velocity
attitu

de

positio
n

fail s
afe

avoidance
land

follow
all c

tl.

all c
ode

0

20

40

60

80

100

R
u
n
ti
m

e
 O

v
e
rh

e
a
d
 (

%
)

2

4

6

8

10

M
e
m

o
ry

 O
v
e
rh

e
a
d
 (

%
)

Sandbox Overhead

Compartment Transfer Overhead

Critical Compartment Overhead

Memory Overhead

(c) #Critical Compartments(Cortex-A)

no crit. psa

sensor read
device opt

all tasks
all code

0

5

10

15

20

R
u
n
ti
m

e
 O

v
e
rh

e
a
d
 (

%
)

0

5

10

15

20

M
e
m

o
ry

 O
v
e
rh

e
a
d
 (

%
)

Sandbox Overhead

Compartment Transfer Overhead

Critical Compartment Overhead

Memory Overhead

(d) #Critical Compartments(Cortex-M)

Figure 6: Scalability Analysis

of ARI under different total numbers of compartments as
well as different percentages of critical ones. ArduCopter on
Cortex-A and oxygen concentrator on Cortex-M are used in
this evaluation due to their highest system overhead.

Number of Compartments: To create policies with different
numbers of compartments, we use a filename-based compart-
mentalization policy. Compartments are merged based on
how frequently they communicate with each other to generate
an arbitrary number of compartments. As shown in Fig. 6(a)
and Fig. 6(b), both runtime and memory overhead increase
as the number of compartments increases on both Cortex-A
and Cortex-M. The increased runtime overhead is caused by
the increased inter-compartment communications (i.e., com-
partment switching and timing recording overhead) and data
accesses (i.e., shared data and cross-stack data accesses). The
memory overhead is mainly caused by inter-compartment
communication trampolines, stack redzones, and stub wrap-
pers. Lastly, tasks in Copter are able to meet all deadlines
when the number of compartments is less than 80.

Number of Critical Compartments: To evaluate system
overhead under different numbers of critical compartments,
we randomly select compartments derived from policy-
specified compartmentalization as critical ones. We choose
controller-based and filename-based compartmentalization
policies for ArduCopter and oxygen concentrator since they
have higher runtime overhead. As shown in Fig. 6(c) and
Fig. 6(d), the runtime and memory overhead increase as the
number of critical compartments increases. Generally, an in-
creasing number of critical compartments generates more
control flow events that need to be recorded. Since program
information flow events can vary significantly among differ-
ent compartments, the selection of critical compartments can
have more impacts on runtime and memory overhead.

7.3 User Study

Our user study aims to evaluate two aspects of ARI: usability
and extensibility. The usability study examined the required
manual efforts of using the system to detect a specific known
attack, while the extensibility study evaluated whether it is
easy for users to customize solutions by building on top of
built-in capabilities. We measured extensibility by asking the

participants to optimize their initial policy from the usability
study to improve system performance. We conducted the
user studies both qualitatively and quantitatively, surveying
participants’ user experience and measuring policy accuracy,
time spent on policy implementation, and script size. Our user
study is approved by our university’s IRB.

Recruitment: Our user study was conducted with known con-
tacts to ensure diversity in the development experience, with a
total of 21 participants. Participants have diverse development
experiences (1-5 years) and backgrounds (from industry (6)
to academia (15), from CPS (9) to security area (18)). About
24% of the participants have no prior exposure to TEE or SFI.

Procedure: All participants were asked to fill out their demo-
graphic information at the beginning. They are then provided
with a tutorial that explains the working principles, APIs of-
fered by ARI, as well as a concrete example of how the system
can be used to detect a buffer overflow attack. Participants
were asked to finish two tasks and keep track of the time they
spent, including reading the documentation and optimizing
policies. The first task is to detect three types of attacks (tim-
ing attack, control attack, and software attack) by choosing a
default built-in compartmentalization and annotation policies
from ARI, which were discussed in Section 4.1. The second
task is to customize the aforementioned policies with lower
runtime overhead. We consider a policy to be correct if it
can be used by ARI to detect the attack successfully. The
only feedback participants would receive during the process
is whether their policy leads to successful detection. Partici-
pants were asked about the time spent and their experience.
We tried to minimize the impact of desirability bias by com-
municating with the participant that the goal is to improve the
design through the exercises.

Usability: We evaluated usability by collecting policy cor-
rectness, average time consumption, and difficulty score of
defining a policy in each task. Participants will rate their per-
ceived usage difficulty on a 5-point Likert scale [59] at the
end of the survey, with 1 representing extremely easy to use
and 5 being extremely difficult to use. The final difficulty
score is the average of all responses from the participants.
The correctness of the policies in the first submission reached
93.7%. Participants took 7.3 minutes on average to choose a
default policy and the average difficulty score was 1.85. With

USENIX Association 32nd USENIX Security Symposium 2771

Timing Control Software

Attacks

0

50

100

150

C
o
rr

e
c
tn

e
s
s
 (

%
)

One Time Submission

Two Times Submissions

Three Times Submissions

(a) Correctness of User Policy

Timing Control Software

Attacks

0

20

40

60

D
if
fi
c
u

lt
y
 P

e
rc

e
n

ta
g

e
 (

%
)

0

5

10

15

20

25

T
a

s
k
s
 F

in
is

h
in

g
 T

im
e

 (
m

in
)

Extremely Easy

Very Easy

Neutral

Very Difficult

Extremely Difficult

Spent Time

(b) Difficulty of Using ARI

Figure 7: Usability of ARI with Customized Policy

further investigation, we found that most incorrect policies
were used to detect timing attacks and control attacks. Incor-
rect policies are mostly generated by participants that did not
have experience with robotic vehicles. However, all of them
submitted the correct policy on their second attempt.

Extensibility: To understand extensibility, we evaluated the
easiness of building a customized policy from the default.
Among the submitted policies, at most 3 critical variables and
2 critical functions are annotated, with all scripts containing
less than 56 lines of code. As shown in Fig. 7, the average
difficulty score in Task 2 was 2.12. While the default policies
generate 41.6% runtime and 10.11% memory overhead, par-
ticipants were able to generate new customized policies with
10.56 % runtime overhead and 7.51% memory overhead. The
performance improvement comes from avoiding unnecessary
critical variable annotation and a larger number of critical
compartments. These customizations (i.e., reducing 31.49%
runtime overhead and 3.05% memory overhead on average)
require additional 6.9 minutes from the participants. In addi-
tion, the average difficulty score is increased by 0.27, which
shows extensibility with moderate additional manual effort.

8 Security Analysis

Compartment Isolation: Attackers may attempt to break out
of the sandbox. However, all indirect jump and memory access
instructions use the reserved general purpose register rrsv to
store the destination address. Furthermore, the high bits of
rrsv, which define the boundary of the compartment sandbox,
are only updated by the reference monitor upon entering or
exiting the compartment, or accessing global data. Therefore,
skipping the mask instruction does not help the attacker. As
a result, reference monitors that handle inter-compartment
transfers are the only gateway to escape compartmentalization.
However, these inter-compartment transfers are measured.

Timing Attack: Timing attacks manipulate the temporal
property of the computation, such as introducing latency to
make tasks miss deadlines or introducing jitters to destabilize
the system. Therefore, by examining the timestamps of the
measured events, it is possible to detect timing attacks. How-
ever, in order to meet the real-time performance of the system,

not all the timing information can be recorded. Even though it
is often possible to detect timing manipulation attacks using
just the timestamps of the inter-compartment transfer, the cor-
rect configuration of the policy remains important for attack
detection, similar to other policy-based approaches [31].

Security on the Timing Impact from ARI: ARI changes
the temporal behavior of the CPS, which may open up new
attack surface. From the latency perspective, an attacker may
use a compromised non-critical compartment to run an infinite
loop to exhaust system resource. However, this would only
exhaust the budget of the non-critical tasks without impacting
critical tasks’ ability to meet their deadlines due to the real-
time task model and scheduler. From the jitters perspective,
runtime overhead introduced by ARI has the potential to be
misused to introduce jitters. Upon instrumentation, system
designer can examine the newly introduced attack surface to
determine if the threat can be mitigated, since not all jitters
are harmful. If this is indeed a concern, dummy instructions
can be used to maintain the original temporal profile variance.
More analysis is in Appendix D.

9 Related Work

CPS Attack and Defense: Besides software attacks, there
has been significant interest in understanding attacks from the
physical domain [42, 60, 61]. To detect CPS attacks, defend-
ers turn to physics to recognize violations of system invari-
ants [62–64], often using learning-based approaches [64] or
rule-based approaches [65]. ARI supplements these works by
providing an additional measurement on the temporal behav-
ior of the mission, even when the system software is compro-
mised.

Remote Attestation: Remote attestation schemes can be
generally categorized into static remote attestation and run-
time (or dynamic) remote attestation. Static remote attesta-
tion focuses on remotely attesting static properties of a de-
vice [14–16, 37, 66–73]. However, they are often unable to
capture the dynamic behavior of the prover. Another line of
work is Proof of Execution (PoX) [6–8], which can only at-
test whether the specified software is executed but cannot
detect runtime attacks such as control flow hijacking. Re-
cent works [3, 5, 9–12, 33, 34], including ARI, supplement
these works by attesting runtime behaviors such as control
flow. Lastly, while both DIAT [4] and ARI are designed for
autonomous systems, their focuses are different in that ARI
aims to attest RMEI, while DIAT aims to attest data integrity
on messages exchanged among autonomous systems. ARI
can also be combined with DIAT to further provide temporal
property attestation.

Tab. 3 shows the seven closely related works. From the per-
spective of attestation goal, ARI differs from existing work
in that it aims to attest mission integrity, which is principally
derived from program behavior integrity via measurement of

2772 32nd USENIX Security Symposium USENIX Association

Table 3: Related Work Comparison Table

System
APEX

[7]
C-FLAT

[3]
DIAT

[4]
OAT
[5]

RSWATT
[67]

ScaRR
[33]

ReCFA
[34] ARI

temporal property X
continuous attest X X X

PoX X X X X X X X
CFI X X X X

CFI (crit. cpt. only) X
DFI (crit. var. only) X X X

Security Goal (↑) Optimization Techniques (↓)

sp

coarse info X
re-execution X X
opt. encoding X X X

part. attest X

tp selec. record X
dedicate core X

RT performance X X

crit. var. (critical variable), crit. cpt. (critical compartment), coarse info (coarse
information), opt. encoding (optimized encoding), part. attest (partial attestation),
selec. record (selective recording), sp (spatial), tp (temporal)

control flow and/or data flow events, and temporal character-
istics via execution timestamps. ARI is the first attempt to
measure and attest temporal properties. Furthermore, while
attestation on information-flow-based program behavior is
well studied [3–5], ARI is the first to attempt to combine
this with continuous attestation. However, the trade-off is on
the granularity of program behaviors of non-critical compart-
ments. From the perspective of performance, existing work
has adapted various optimization techniques to reduce the
performance overhead. ARI is the first work to explicitly con-
sider the real-time impact for soft real-time tasks and hard
real-time tasks. ARI also does not require a dedicated pro-
cessor core for continuous attestation. Lastly, to reduce per-
formance overhead, ARI combines re-execution and optimal
encoding spatial techniques from existing work [3, 5, 33, 34].
The trade-off for performance improvement is the lack of
visibility in non-critical compartments.

Lastly, though ARI is related to the attack detection and
prevention techniques for CPS [62,63,65,74], similar to other
attestation systems, ARI differs from the prevention and mit-
igation techniques [62, 65] in that it captures the system be-
haviors for remote verification.

10 Limitations and Discussions

Source Code Requirement and Certification: ARI cur-
rently assumes the availability of the source code of the tar-
geted CPS. Even though it is possible to remove this require-
ment by applying binary instrumentation techniques [75],
understanding the internal program structures and critical
controls of a binary application may require non-trivial ef-
forts in reverse engineering. Furthermore, similar to other
security mechanisms [3–5, 31–34], the addition of security
mechanisms changes the application logic as well as its per-
formance. Depending on the agency and acceptance test pro-
cedure, the cyber-physical system may have to go through the
re-certification process.

Approximation of Information Flow: The main approach
in ARI to handle scalability is to trade the granularity of
measurement for performance. As a result, measurements
(such as CF) may not be as accurate as those in the previous
works [3, 5] that capture the complete information flow. Thus,
ARI can only attest over-approximation of the correct system
behavior.

Manual Effort: Developing a policy that can detect mission
deviation while maintaining real-time performance can be
non-trivial. In general, the developer has to be familiar with
the high-level software architecture of the system, and a clear
assessment of the risk faced by the autonomous system dur-
ing the mission. ARI embraces several design elements to
improve the usability of the system. First, ARI allows for
different levels of customization. Even at the lowest level of
customization, ARI still attempts to minimize the real-time
impact automatically. Second, ARI provides a diverse set of
built-in policies for different types of systems. Our user study
showed that the system is relatively usable. However, we also
acknowledge that a poor choice in the policy specification
will not only impact the ability to detect attacks but also the
corresponding performance overhead.

Sensor (Physical) Attacks: Software remote attestation
methods, such as ARI, focus entirely on the behavior in com-
puting. They have the potential to detect system anomaly
(either in timing or information flow) if sensor attacks [76]
leave traces in computing, but ARI is unable to confirm the
physical attacks.

11 Conclusion

In this paper, we present ARI, a real-time mission execution
integrity attestation system, that continuously measures the
program behaviors (both information flow and real-time prop-
erties) of the autonomous system. To tackle the prohibitive
performance overhead from attestation, ARI leverages soft-
ware compartmentalization to allow for meaningful measure-
ment only on the critical compartments. The proposed sys-
tem is implemented and evaluated on different policies and
real-time CPS applications. The source code and extended
technical report are available at our project repository1.

Acknowledgment

We thank the reviewers for their feedback. This work is sup-
ported in part by US National Science Foundation under
grants CNS-1837519, CNS-1916926, CNS-2038995, CNS-
2154930, CNS-2229427, and CNS-2238635, Office of Naval
Research under grant N00014-19-1-2621, Army Research
Office under grant W911NF-20-1-0141, and Intel.

1Source code is available at https://github.com/WUSTL-CSPL/ARI

USENIX Association 32nd USENIX Security Symposium 2773

References

[1] http://cuts2.com/PZXPb.

[2] E. A. Lee, “Cyber physical systems: Design challenges,”
in ISORC, IEEE, 2008.

[3] T. Abera et al., “C-FLAT: control-flow attestation for
embedded systems software,” in CCS, ACM, 2016.

[4] T. Abera et al., “DIAT: Data Integrity Attestation for
Resilient Collaboration of Autonomous Systems.,” in
NDSS, 2019.

[5] Z. Sun et al., “OAT: Attesting operation integrity of
embedded devices,” in S&P, IEEE, 2020.

[6] I. de Oliveira Nunes et al., “Pure: Using verified remote
attestation to obtain proofs of update, reset and erasure
in low-end embedded systems,” in ICCAD, IEEE, 2019.

[7] I. D. O. Nunes et al., “APEX: A Verified Architecture
for Proofs of Execution on Remote Devices under Full
Software Compromise,” in Security, USENIX, 2020.

[8] A. Caulfield et al., “ASAP: reconciling asynchronous
real-time operations and proofs of execution in simple
embedded systems,” in DAC, 2022.

[9] I. D. O. Nunes et al., “Tiny-cfa: Minimalistic control-
flow attestation using verified proofs of execution,” in
DATE, IEEE, 2021.

[10] G. Dessouky et al., “Lo-fat: Low-overhead control flow
attestation in hardware,” in DAC, ACM, 2017.

[11] S. Zeitouni et al., “Atrium: Runtime attestation resilient
under memory attacks,” in ICCAD, IEEE, 2017.

[12] G. Dessouky et al., “Litehax: Lightweight hardware-
assisted attestation of program execution,” in ICCAD,
IEEE, 2018.

[13] I. D. O. Nunes et al., “Dialed: Data integrity attestation
for low-end embedded devices,” in DAC, ACM/IEEE,
2021.

[14] A. Seshadri et al., “Pioneer: verifying code integrity
and enforcing untampered code execution on legacy
systems,” in SIGOPS Operating Systems Review, ACM,
2005.

[15] A. Seshadri et al., “Swatt: Software-based attestation
for embedded devices,” in S&P, IEEE, 2004.

[16] Y. Li et al., “Viper: verifying the integrity of peripherals’
firmware,” in CCS, ACM, 2011.

[17] D. Iorga et al., “Slow and steady: Measuring and tuning
multicore interference,” in RTAS, IEEE, 2020.

[18] M. Bechtel and H. Yun, “Denial-of-service attacks on
shared cache in multicore: Analysis and prevention,” in
RTAS, IEEE, 2019.

[19] R. Mahfouzi et al., “Butterfly attack: Adversarial ma-
nipulation of temporal properties of cyber-physical sys-
tems,” in RTSS, IEEE, 2019.

[20] “Ardupilot.” https://ardupilot.org/.

[21] G. Bernat et al., “Weakly hard real-time systems,” TC,
vol. 50, no. 4, 2001.

[22] R. Wahbe et al., “Efficient software-based fault isola-
tion,” in SOSP, ACM, 1993.

[23] L. Szekeres et al., “Sok: Eternal war in memory,” in
S&P, IEEE, 2013.

[24] P. Larsen et al., “Sok: Automated software diversity,” in
S&P, IEEE, 2014.

[25] M. Bechtel and H. Yun, “Memory-aware denial-of-
service attacks on shared cache in multicore real-time
systems,” TC, 2021.

[26] B. Wittenmark et al., “Timing problems in real-time
control systems,” in ACC, IEEE, 1995.

[27] B. Lincoln, “Jitter compensation in digital control sys-
tems,” in ACC, IEEE, 2002.

[28] P. Marti et al., “Jitter compensation for real-time control
systems,” in RTSS, IEEE, 2001.

[29] E. Ebeid et al., “A survey of open-source uav flight
controllers and flight simulators,” Microprocessors and
Microsystems, 2018.

[30] H. Peng and M. Payer, “USBFuzz: A Framework for
Fuzzing USB Drivers by Device Emulation,” in Security,
USENIX, 2020.

[31] A. A. Clements et al., “ACES: Automatic Compart-
ments for Embedded Systems,” in Security, USENIX,
2018.

[32] C. H. Kim et al., “Securing real-time microcontroller
systems through customized memory view switching.,”
in NDSS, 2018.

[33] F. Toffalini et al., “ScaRR: Scalable Runtime Remote
Attestation for Complex Systems,” in RAID, 2019.

[34] Y. Zhang et al., “Recfa: Resilient control-flow attesta-
tion,” in ATC, USENIX, 2021.

[35] “Arm trustzone.” http://cuts2.com/Wymiq.

[36] “Risc-v keystone.” http://cuts2.com/wotsz.

2774 32nd USENIX Security Symposium USENIX Association

http://cuts2.com/PZXPb
https://ardupilot.org/
http://cuts2.com/Wymiq
http://cuts2.com/wotsz

[37] I. D. O. Nunes et al., “VRASED: A verified hardware/-
software co-design for remote attestation,” in Security,
USENIX, 2019.

[38] P. Koeberl et al., “Trustlite: A security architecture for
tiny embedded devices,” in EuroSys, ACM, 2014.

[39] I. Shumailov et al., “Sponge examples: Energy-latency
attacks on neural networks,” in EuroS&P, IEEE, 2021.

[40] A. Li et al., “Chronos: Timing interference as a new
attack vector on autonomous cyber-physical systems,”
in CCS, 2021.

[41] A. Li et al., “Polyrhythm: Adaptive tuning of a multi-
channel attack template for timing interference,” in
RTSS, IEEE, 2022.

[42] C. Yan et al., “Sok: A minimalist approach to formaliz-
ing analog sensor security,” in S&P, IEEE, 2020.

[43] H. Choi et al., “Cyber-physical inconsistency vulnera-
bility identification for safety checks in robotic vehicles,”
in CCS, ACM, 2020.

[44] A. A. Clements et al., “Protecting bare-metal embedded
systems with privilege overlays,” in S&P, IEEE, 2017.

[45] S. McCamant and G. Morrisett, “Evaluating sfi for a
cisc architecture.,” in Security, USENIX, 2006.

[46] S. M. Silver, “Implementation and analysis of software
based fault isolation,” 1996.

[47] L. E. Leyva-del Foyo et al., “Predictable interrupt man-
agement for real time kernels over conventional pc hard-
ware,” in RTAS, IEEE, 2006.

[48] “aiT.” https://www.absint.com/ait/.

[49] “Carts.” https://rtg.cis.upenn.edu/carts/.

[50] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” 1960.

[51] T. Kim et al., “From Control Model to Program: Inves-
tigating Robotic Aerial Vehicle Accidents with MAY-
DAY,” in Security, USENIX, 2020.

[52] “Optee.” https://www.op-tee.org/.

[53] “Capstone.” http://www.capstone-engine.org/.

[54] D. Formby and R. Beyah, “Temporal execution behav-
ior for host anomaly detection in programmable logic
controllers,” TIFS, 2019.

[55] P. Krishnamurthy et al., “Anomaly detection in real-time
multi-threaded processes using hardware performance
counters,” TIFS, 2019.

[56] “Stm32f4dsc.” http://cuts2.com/GFOXl.

[57] “Lpc55s6x.” http://cuts2.com/fGXCD.

[58] “Raspberry pi 3 b+.” http://cuts2.com/wnqOQ.

[59] E. M. Redmiles et al., “A summary of survey methodol-
ogy best practices for security and privacy researchers,”
tech. rep., 2017.

[60] Y. Cao et al., “Adversarial sensor attack on lidar-based
perception in autonomous driving,” in CCS, ACM, 2019.

[61] Y. Cao et al., “Invisible for both camera and lidar: Se-
curity of multi-sensor fusion based perception in au-
tonomous driving under physical-world attacks,” in
S&P, IEEE, 2021.

[62] R. Quinonez et al., “SAVIOR: Securing autonomous
vehicles with robust physical invariants,” in Security,
USENIX, 2020.

[63] H. Choi et al., “Detecting attacks against robotic ve-
hicles: A control invariant approach,” in CCS, ACM,
2018.

[64] Y. Chen et al., “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-
physical system,” in S&P, IEEE, 2018.

[65] A. Khan et al., “M2MON: Building an MMIO-based
Security Reference Monitor for Unmanned Vehicles,” in
Security, USENIX, 2021.

[66] M. Ammar et al., “SµV—the security microvisor: A
formally-verified software-based security architecture
for the internet of things,” TDSC, 2019.

[67] S. Surminski et al., “RealSWATT: Remote Software-
based Attestation for Embedded Devices under Realtime
Constraints,” in CCS, ACM, 2021.

[68] K. Eldefrawy et al., “SMART: Secure and Minimal Ar-
chitecture for (Establishing Dynamic) Root of Trust.,”
in NDSS, 2012.

[69] F. Brasser et al., “TyTAN: tiny trust anchor for tiny de-
vices,” in DAC, ACM, 2015.

[70] J. Noorman et al., “Sancus 2.0: A low-cost security
architecture for iot devices,” TOPS, 2017.

[71] I. De Oliveira Nunes et al., “On the toctou problem in
remote attestation,” in CCS, ACM, 2021.

[72] N. Asokan et al., “Seda: Scalable embedded device at-
testation,” in CCS, ACM, 2015.

[73] M. Ambrosin et al., “Sana: secure and scalable aggre-
gate network attestation,” in CCS, ACM, 2016.

USENIX Association 32nd USENIX Security Symposium 2775

https://www.absint.com/ait/
https://rtg.cis.upenn.edu/carts/
https://www.op-tee.org/
http://www.capstone-engine.org/
http://cuts2.com/GFOXl
http://cuts2.com/fGXCD
http://cuts2.com/wnqOQ

[74] J. Wang et al., “Rt-tee: Real-time system availability for
cyber-physical systems using arm trustzone,” in S&P,
IEEE, 2022.

[75] T. Kim et al., “Revarm: A platform-agnostic arm binary
rewriter for security applications,” in ACSAC, 2017.

[76] Z. Yu, Z. Kaplan, Q. Yan, and N. Zhang, “Security and
privacy in the emerging cyber-physical world: A survey,”
IEEE Communications Surveys & Tutorials, vol. 23,
no. 3, pp. 1879–1919, 2021.

[77] “Blake2.” https://github.com/BLAKE2/BLAKE2.

[78] L. Lamport, “Proving the correctness of multiprocess
programs,” TSE, 1977.

A Case Studies on Control and SW Attacks

Control Attack: Control-level semantic attacks exploit weak
input validation, making control flow recording insufficient.
Analyzing control variable values is a way to detect such
attacks. As delays often exist between the exploitation of a
vulnerability and the manifestation of control deviation, con-
tinuous monitoring of control variable changes is necessary.
Mayday [51] identifies such attack by recording the control
variables and post-analyzing their runtime changes. ARI is
complementary to Mayday due to (1) ARI provides a secure
logging system using sandboxing, which is pre-assumed in
Mayday. (2) ARI allows the logging of users’ customized
code blocks, providing a flexible trade-off between log granu-
larity and runtime performance.

Attack implementation: We use one of the case studies on Ar-
ducopter in [51] as an illustrating example, where the adver-
sary exploits a value range uncheck vulnerability by sending
a MavLink message to configure the control parameter _kp
to an abnormal value. The message is received by the func-
tion handle_common_message() in MavLink module, which
further invokes function handle_param_set() to assign an ab-
normal value (500) to _kp. After that, abnormal _kp degrades
the control performance by corrupting the velocity controllers,
which finally causes the drone to crash once it makes a turn.

Detection implementation: To detect this attack, ARI adopts
a policy that separates primitive controllers and input han-
dling components. In this way, the transfers between MavLink
module to the velocity controller, such as the invocation of
_kp.set_float() in handle_param_set(), will be recorded. In
compartments of primitive controllers, the values of critical
control variables are recorded, including _kp. In attestation,
ARI calculates the control errors by comparing reference and
actual values. If there is a control digression detected, ARI
can trace back the digression and find that the digression was
instigated by the change of _kp up to 500, which confirms the
root cause is the malicious message.

Software Attack - Control Flow Violation: Control flow
hijacking is one of the most common software attacks. In
each mission, ArduCopter will follow mission-specified way-
points. Before the mission starts, write_cmd_to_storage() is
invoked to write mission waypoints into hardware storage.
Every time a waypoint is reached, read_cmd_from_storage()
is invoked. To conduct the case study, we manually inject a
buffer overflow vulnerability in read_block().

Attack implementation: We implemented the attack using a
malformed waypoint in CMAC-circuit mission, a test flight
mission with seven waypoints. Upon reading the malicious
waypoint, the attacker hijacks the control flow of read_block()
to deliberately crash the drone by turning off the motor using
AP_Arming::disarm() then running an infinite loop to prevent
the drone from recovering.

Detection implementation: To detect the attack, AP_ Arm-
ing::disarm() is assigned to a critical compartment, so mali-
cious inter-compartment control flow from read_block() to
AP_Arming::disarm() will be recorded. The run-time and
memory overhead are around 4.29% and 1.91%.

B System Implementation

B.1 Compartmentalization

API and Build-in Policies: To help users to define their
policies, ARI provides well-defined APIs for users to com-
partmentalize program and annotate criticality. Specifically,
the compartmentalization APIs are designed to manipulate
program on the PDG, which contains both low-level and se-
mantic information, e.g., data-flow, source file name and func-
tion name, such that users can easily find the target functions
or variables while traversing the PDG. Additionally, criticality
annotation APIs allow users to label the criticality of com-
partments and variables. For more details, please refer to the
developer guide in the open-sourced repository.

B.2 Program Instrumentation

Compartment Isolation: ARI restricts both control and data
flow either by masking the address with reserved registers or
by using trampolines. Key instrumentation instructions are
shown in Tab. 4. Specifically, both intra-data/control flows
are restricted by address masking with the reserved register
rrsv. To reduce the overhead of restricting the data flows, red
zones instead of address masking are used to restrict local
write instructions that use sp relative addressing. For inter-
compartment data/control flows, trampolines are used to allow
cross-stack data access and inter-compartment transfers, as
well as record the control transfer targets. Fixed mask mod-
ification is used to access shared variables. Since a control
flow can be either inter or intra-compartment flow, distin-
guishing them can be more time-consuming than masking.

2776 32nd USENIX Security Symposium USENIX Association

https://github.com/BLAKE2/BLAKE2

Therefore, stub wrappers are added at function returns for
inter-compartment callers to reduce the time of distinguishing
return addresses.

Table 4: Instrumentation in ARI for Cortex-A platform

Type Original Instruction Sanxbox Instruction
intra-forward
indirect jump bx/blx rx

bfi rrsv, rx, #0, #n
bx/blx rrsv

intra-backward
indirect jump pop pc, bx lr

pop lr (only for pop pc)
bfi rrsv, lr, #0, #n
bx rrsv

inter-compartment
transfer

bx/blx rx

bfi rrsv, rx, #0, #n
cmp rx, rrsv
push lr (only for bx)
blne tpl_switch_cpt
bx/blx rrsv

b/bl #addr

movt rrsv, #addr
movw rrsv, #addr
push lr (only for b)
bl tpl_switch_cpt

pop pc, bx lr
pop lr (only for pop pc)
bfi rrsv, lr, #0, #n
bx rrsv

intra-forward
direct function call bl func bl func_internal

data access str/ldr ry, [rx]
bfi rrsv, rx, #0, #n
str/ldr ry, [rrsv]

Real-time Attested Event Measurement: Real-time mis-
sion measurement mechanism implementations in ARI in-
clude compiled time instrumentation insertion for recording
and runtime storage and sealing during mission execution.

Recording Function Insertion: CFEventsPASS is used to in-
sert trampolines to record control flow events according to
the encoding mechanism in Appendix B.3. To record the
temporal property of critical compartments, TPEventsPASS
identifies entries and exits of the critical compartment whose
temporal property needs to be measured according to policy
to insert timestamp recording. To efficiently calculate the hash
of return addresses, ARI uses BLAKE2 [77] hash algorithm.

Runtime Storage and Sealing: During mission execution,
events are measured according to the encoding scheme il-
lustrated in Appendix B.3, and stored in memory which is
outside the sandbox. Meanwhile, a sealer signs the measure-
ments and stores them in storage periodically. To prevent
compromised applications from corrupting the measurement
sealing process, ARI thus runs the sealer in TEE. To reduce
runtime overhead introduced by frequent world switches, ARI
leverages batching and multi-threading mechanisms to reduce
the number of world switches. Since the sealer is implemented
as a real-time task, during a mission, the execution time is
measured as the worst-case execution time of sealing and then
storing a batch of measurement results on hardware storage,
and the period is measured as the shortest period of filling a
batch of the measurement buffers.

Table 5: Inter-Compartment Event Encoding Scheme

Inter-cpt Transfer Direct Jmp Indirect Jmp Reture
Critical->Critical none dst_addr dst_addr

Critical->Noncritical none dst_addr dst_addr
Noncritical->Critical dst_loc_id dst_addr dst_addr

Noncritical->Noncritical dst_cpt_id dst_cpt_id des_cpt_id

Table 6: Intra-Critical-Compartment Encoding Scheme

Direct Jmp Indirect Jmp Return Cond. Branch
none des_addr hash true/false

B.3 Recording Overhead Minimization

Measurement Event Encoding: ARI encodes control flow
information as shown in Tab. 5, taking a few approaches to
reduce data overhead. First, ARI only records the destination
of any CF event since the source is already recorded as the
preceding CF event’s destination. Second, ARI doesn’t record
the destination of a direct jump sourced from a critical com-
partment because it can be inferred during intra-compartment
CF attestation. Third, when possible, ARI encodes compart-
ment and location ID that takes fewer bytes instead of full
address information. For example, for noncritical to critical
CF events, each critical compartment only has limited and
fixed addresses transferable from other compartments, allow-
ing ARI to record the destination location ID instead of the
address. Similarly, ARI doesn’t attest CF events inside non-
critical compartments, only recording their compartment IDs.
As shown in Tab. 6, ARI attests all control flow inside critical
compartments, recording their destination addresses of the in-
direct jumps, the hash of the return addresses, and conditional
branch decisions.

Recording with SFI and Lock-free Ring: Existing tech-
niques store the measurement metadata in memory either by
trapping them into a TEE [3,5] or in privilege mode [31]. Con-
text saving and restoring during system trapping is expensive,
as is shown in Fig. 1. To minimize the performance penalty,
ARI makes use of the isolation provided by the software sand-
boxing to store metadata securely while avoiding context
switching overhead caused by system trapping. Specifically,
ARI saves mission measurement data outside the sandboxes
into a lock-free ring buffer [78]. Meanwhile, a mission events
sealer runs as a separate thread that signs and stores mission
events into storage. To minimize CPU utilization, the mis-
sion events sealer fetches and signs mission events in batches.
Introducing new tasks, i.e. measurement sealer may break real-
time schedulability of real-time CPS. To maintain real-time
CPS schedulability, ARI implements the mission measure-
ment sealer as another real-time task in CPS, and integrates it
into schedulability analysis.

USENIX Association 32nd USENIX Security Symposium 2777

Table 7: Real-time Tasks Execution time

App Task Runtime w/o ARI Runtime w ARI Deadline

SP Injec. (A) 109 ms 119 ms 2000 ms
Injec. (M) 114 ms 132 ms 2000 ms

OC
PSA 4.536 ms 4.722 ms 100 ms
SR 131 us 139 us 25 ms
DO 952 us 986 us 100 ms

SP(Syringe Pump), OC(Oxygen Concentrator), Injec.(Medicine Injec-
tion), PSA(Pressure Swing Adsorption), SR(Sensor Read), DO(Device
Operation)

ah
rs

_u
pd

at
e

se
t_

se
rv

os

up
da

te
_G

PS

up
da

te
_v

is
ua

l_
od

om

up
da

te
_c

om
pa

ss

up
da

te
_m

is
si
on

gc
s_

da
ta

_s
tre

am
_s

en
d

re
ad

_c
on

tro
l_
sw

itc
h

gc
s_

fa
ils

af
e_

ch
ec

k

fe
nc

e_
ch

ec
k

co
m

pa
ss

_a
cc

um
ul
at

e

on
e_

se
co

nd
_l
oo

p

co
m

pa
ss

_c
al
_u

pd
at

e

co
m

pa
ss

_s
av

e

ac
ce

l_
ca

l_
up

da
te

cr
ui
se

_l
ea

rn
_u

pd
at

e

up
da

te
_c

ur
re

nt
_m

od
e

10
0

10
2

10
4

E
x
e
c
u
ti
o
n
 T

im
e
 (

u
s
)

Max Execution Time

W/O ARI

ARI
300

3000

1500

200 200200200200200200200200200200 200 200

1500

6.56%

17.88%

21.51%

11.04%

7.89%

4.76%

20.42%

7.99%

0.34%

6.45%
21.48%

13.93%

20.31%

11.45%

13.33%

22.22%

10.11%

Figure 8: Tasks Execution Runtime Overhead in ArduRover
(controller-based policy with fail-safe controller as critical)

C Evaluation

Tasks Deadline Miss Rate: Tab. 7 and Fig. 8 shows that
real-time tasks in ArduRover (AR), syringe pump (SP), and
oxygen concentrator (OC) do not exceed their deadlines even
under the policy with the highest runtime overhead from Sec-
tion 7.1. The real-time performance of house alarms was not
measured as it is not a real-time application.

Timing Recording Overhead: To measure runtime over-
head under different timing recording granularity, we measure
tasks/operations average runtime overhead of all five applica-
tions on both Cortex-A and Cortex-M under three kinds of
configurations, including recording timestamps on every en-
tering and exiting critical compartment, on every control-flow
transfer between different compartments, and every control
flow event in the whole system. The average tasks/operations
execution time is measured by recording the timestamps at
the beginning and end of each task/operation and calculating
the difference. As shown in Fig. 9. Timing recording in ARI
generates the highest overhead on ArduCopter among the five
applications because of its complexity. Specifically, recording
all control flow events and all compartment transfer generates
470% and 7.4% runtime overhead respectively. Recording
compartment transfer to and from critical compartment only
generates 2.27% runtime overhead.

Copter(A)

Rover(A)

Syringe Pump(A)

House Alarm(A)

Syringe Pump(M)

Oxygen Concent.(M
)

10-1

100

101

102

103

T
im

in
g
 R

C
 O

v
e
rh

e
a
d
 (

%
)

Compartment Transfer

Critical Compartment In and Out

All Control Flow Events

Figure 9: Time Recording Runtime Overhead

D Additional Security Analysis

CF/DF Attestation Security: To evade ARI, an attacker can
1. Disable program instrumentation: However, code integrity
is guaranteed by memory protection mechanisms as described
in Section 3. Any instrumentation bypassing by control flow
hijacking is recorded and will be detected in the verifica-
tion phase. 2. Manipulate program Behavior measurement
functions: However, the program behavior measurement tram-
polines are located separately from every compartment. Intra-
compartment indirect jumps can not jump to program behav-
ior measurement trampolines because of the sandbox. Inter-
compartment indirect jumps to program behavior measure-
ment trampolines will be recorded and verified in the verifi-
cation phase. 3. Hijack control flow by generating a return
address hash collision: Hijacking control flow to generate a
hash collision is at least as hard as finding a hash collision.
This can very challenging when a collision-resistant hash
algorithm is used.
Log Manipulation: An attacker may try to manipulate the
control flow or critical data read-write recording mechanism
to manipulate what ARI records. There are three ways to ma-
nipulate ARI recording systems maliciously. Attackers can
1. Manipulate the logging function or TEE API to sign and
seal mission information onto the disk directly: ARI prevents
such attack by putting the logging trampoline which has ac-
cess to the log ring buffer and TEE API outside sandboxes.
Any invocation to the trampoline uses direct jump instruction.
Thus, an attacker in the sandbox cannot jump to the middle
of the trampoline function by using intra-compartment in-
direct jump instructions. Exploitation by inter-compartment
indirect jumps is recorded and verified. 2. Modify signed log
record stored on disk to change the content of the log: This
is prevented by ARI using AES to encrypt logs. 3. Modify
the mission events stored in plaintext in DRAM temporarily:
However, ring buffers can only be accessed by trampolines
which are also outside sandboxes.

2778 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Real-time System Security
	Why Real-time Mission Integrity?
	Real-time Mission Execution Integrity

	Threat Model
	ARI Design
	From Policy to Compartments
	Compartment Isolation
	Real-time Attested Event Measurement
	Verification on the Measurement

	Implementation
	Case Study on Autonomous Drone
	Evaluation
	System Overhead
	Scalability
	User Study

	Security Analysis
	Related Work
	Limitations and Discussions
	Conclusion
	Case Studies on Control and SW Attacks
	System Implementation
	Compartmentalization
	Program Instrumentation
	Recording Overhead Minimization

	Evaluation
	Additional Security Analysis

